
Secure Data-Binding in FPGA-based Hardware Architectures
utilizing PUFs

Florian Frank
Florian.Frank@uni-passau.de

University of Passau
Passau, Germany

Martin Schmid
Martin.Schmid@uni-passau.de

University of Passau
Passau, Germany

Felix Klement
Felix.Klement@uni-passau.de

University of Passau
Passau, Germany

Purushothaman Palani
purushothsankari@vt.edu

Virginia Tech
Blacksburg, USA

Andreas Weber
Andreas.Weber@uni-passau.de

University of Passau
Passau, Germany

Elif Bilge Kavun
Elif.Kavun@uni-passau.de

University of Passau
Passau, Germany

Wenjie Xiong
wenjiex@vt.edu
Virginia Tech

Blacksburg, USA

Tolga Arul
Tolga.Arul@uni-passau.de

University of Passau
Passau, Germany

Stefan Katzenbeisser
Stefan.Katzenbeisser@uni-passau.de

University of Passau
Passau, Germany

ABSTRACT
In this work, a novel FPGA-based data-binding architecture incor-
porating PUFs and a user-specific encryption key to protect the
confidentiality of data on external non-volatile memories is pre-
sented. By utilizing an intrinsic PUF derived from the samememory,
the confidential data is additionally bound to the device. This feature
proves valuable in cases where software is restricted to be executed
exclusively on specific hardware or privacy-critical data is not al-
lowed to be decrypted elsewhere. To improve the resistance against
hardware attacks, a novel method to randomly select memory cells
utilized for PUF measurements is presented. The FPGA-based de-
sign presented in this work allows for low latency as well as small
area utilization, offers high adaptability to diverse hardware and
software platforms, and is accessible from bare-metal programs to
full Linux kernels. Moreover, a detailed performance and security
evaluation is conducted on five boards. A single read or write op-
eration can be executed in 0.58 𝜇𝑠 when utilizing the lightweight
PRINCE cipher on an AMD Zync 7000 MPSoC. Furthermore, the
entire architecture occupies only about 10% of the FPGA’s available
space on a resource-constrained AMD PYNQ-Z2. Ultimately, the
implementation is demonstrated by storing confidential user data
on new generations of network base stations equipped with FPGAs.

CCS CONCEPTS
• Computer systems organization → Reconfigurable com-
puting; • Hardware → Reconfigurable logic applications; •
Security and privacy → Hardware-based security protocols.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ASIA CCS ’24, July 1–5, 2024, Singapore, Singapore
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0482-6/24/07
https://doi.org/10.1145/3634737.3656996

KEYWORDS
Hardware Security, FPGAs, Physical Unclonable Functions, Privacy,
Broadband Cellular Networks

ACM Reference Format:
Florian Frank, Martin Schmid, Felix Klement, Purushothaman Palani, An-
dreas Weber, Elif Bilge Kavun, Wenjie Xiong, Tolga Arul, and Stefan Katzen-
beisser. 2024. Secure Data-Binding in FPGA-based Hardware Architectures
utilizing PUFs. In ACM Asia Conference on Computer and Communications
Security (ASIA CCS ’24), July 1–5, 2024, Singapore, Singapore. ACM, New
York, NY, USA, 13 pages. https://doi.org/10.1145/3634737.3656996

1 INTRODUCTION
During the last years, Field-Programmable Gate Arrays (FPGAs)
turned from niche products mostly used in research and devel-
opment settings to increasing adoption as integral components
across various domains, including data centers [12, 28], network
devices [18, 26], or automotive electronics [17]. This development is
caused by improvements in performance, energy consumption, and
the number of available logical cells in newer generations of FPGAs.
Their primary advantage is the ability to program custom hardware
designs, which can be reconfigured even during run-time, resulting
in a high degree of flexibility, remarkable performance improve-
ments, and significant cost savings compared to the development
of Application-Specific Integrated Circuits (ASICs). Despite these
benefits, FPGAs deployed in the field, e.g., in a cellular network base
station, are vulnerable to physical attacks. For example, the attacker
can probe the memory or peripherals to gain privacy-sensitive data
processed on the FPGA. Furthermore, an attacker could also modify
or replace certain components of an FPGA platform. To counteract
such attacks, additional measures beyond a simple decryption of
data on the device are necessary.

One approach to mitigate these vulnerabilities is to bind data
encryption to specific hardware and restrict processing to the de-
vice. Maintaining the security of that single device and, therefore,
the critical data processed on it becomes a much more manageable

https://orcid.org/0000-0001-6914-2152
https://orcid.org/0009-0001-6800-5479
https://orcid.org/0000-0001-9650-7698
https://orcid.org/0000-0001-9942-2104
https://orcid.org/0009-0004-5418-2847
https://orcid.org/0000-0003-3193-8440
https://orcid.org/0000-0002-7626-2651
https://orcid.org/0000-0002-2078-3976
https://orcid.org/0009-0005-3608-874X
https://doi.org/10.1145/3634737.3656996
https://doi.org/10.1145/3634737.3656996

ASIA CCS ’24, July 1–5, 2024, Singapore, Singapore Florian Frank et al.

task than in highly heterogeneous and distributed systems. In gen-
eral, hardware-data binding provides several benefits. It improves
overall security and ensures that data can only be processed on
authorized and trusted devices. Moreover, tamper resistance can
be enhanced by ensuring that the dedicated device offers security
features like hardware-based encryption or a secure boot process.
Furthermore, it simplifies the enforcement of access restrictions and
controls accountability when accessing sensitive data by ensuring
that the data processing is exclusively permitted for authorized
applications and users. Data-binding has been demonstrated in var-
ious use cases, such as maintaining the integrity of Digital Rights
Management (DRM)-systems [36], the prevention of unauthorized
replication of software, or the secure storage of highly critical bio-
metric, healthcare, military, or financial data [30]. This method
prevents the data from disclosure or tampering attacks by allowing
only the decryption on a single physical device.

This work presents an FPGA-based data-binding architecture
utilizing intrinsic memory-based Physical Unclonable Functions
(PUFs) to tackle the above-mentioned problems while, at the same
time, offering notable latency reductions, improved flexibility and
security against hardware attacks exploiting the advantages of
optimized hardware designs.

PUFs exploit unique variations occurring during the manufactur-
ing process of hardware components such as memory modules to
generate unpredictable digital fingerprints. PUFs accept a challenge
denoted as 𝑐 and generate a response 𝑟 , based on 𝑐 . Notably, the
same challenge sent to a device leads to the same response on a
specific device, whereas sending the same challenge to a different
device leads to a completely different response. These properties
allow the use of these responses for secure device authentication
and identification or, as presented in this paper, the generation of
cryptographic keys to bind data to a designated device. Particularly
intrinsic PUFs, for example, such based on memory modules, offer
a cost-effective solution for key generation in resource-constrained
devices by exploiting marginal variations inherent in existing hard-
ware. This approach eliminates the need for memory-intensive key
management, which could additionally be prone to side-channel
attacks. Moreover, no additional hardware such as Trusted Plat-
form Modules (TPMs) is required while offering a substantial set of
keys defined by the specific set of challenges and corresponding re-
sponses. Furthermore, some PUF implementations provide tamper
detection capabilities [16].

Our design makes use of these benefits and leverages a PUF re-
trieved from the samememory that stores the privacy-sensitive data
and uses the PUF-response combined with an externally provided
cryptographic key to encrypt the data on the memory. This method
ensures that data can only be decrypted by measuring the PUF of
the memory that hosts the data and PUF. Prior to conducting a PUF
measurement, the content of the selected cells is temporarily stored
in volatile registers on the FPGA, allowing the acquisition of PUF
measurements on cells already containing other data. Unlike other
commonly used memory-based PUF constructions, as cited in the
references [39, 47], our solution eliminates the need for a dedicated
reserved area. This enables the utilization of the entire memory
capacity to store payload data, while allowing the execution of PUF
measurements across all regions of the memory module.

Furthermore, even if an attacker gains physical access to the
device and manages to read out the PUF, he cannot decrypt the
information without possessing an additional external key. To in-
crease the resistance against hardware attacks, we additionally
present a novel method, which obfuscates the locations of the used
PUF cells by spreading them across the logical memory space based
on the externally provided cryptographic key, also used when en-
crypting the memory. Unlike a hard-coded manufacturer-provided
key, our random PUF cell selection enables key revocation by choos-
ing a different set of random cells. Moreover, this measure prevents
a PUF-readout even if an attacker possesses the device.

Our FPGA-based data-binding architecture is implemented on
devices incorporating Multi-Processor System-on-Chips (MPSoCs)
consisting of one or multiple CPUs and an FPGA to accelerate
specific tasks. In contrast to prior works and well-established disk
encryption schemes, our work provides several advantages:

We do not require any additional or dedicated hardware to
achieve secure hardware data binding. Moreover, a high degree
of flexibility is offered through our modular design approach. In ad-
dition to the modular design, all buses and address buses can be cus-
tomized to match the capabilities of high-level resource-constrained
devices. Overall, our design is optimized for high performance and
low area consumption, achieved through the hardware implementa-
tion of optimized lightweight ciphers. To achieve all these benefits,
our design is encapsulated within the FPGA accessible from the
CPU, from which different instructions to the FPGA such as storing
the external secret, reading out the PUF, or storing and loading
confidential data using the PUF-key and the external secret can be
sent. Finally, we demonstrate our implementation in a practical use
case by leveraging FPGAs in base stations of emerging generations
of cellular networks.

1.1 Contributions
In this paper, we present the following novel contributions:

• Design of a data-binding architecture using intrinsicmemory-
based PUFs to provide confidentiality and data-binding of
privacy-sensitive data on MPSoCs.

• The highly flexible hardware design allows the adoption of
different use cases and implementation across a spectrum
of devices, spanning from resource-constrained MPSoCs to
high-end architectures. It also provides compatibility with
different memory modules and memory-based PUF imple-
mentations.

• Implementation of a novel method to randomly distribute
memory cells based on an external key used for PUF invo-
cation, eliminating both the need for an internal entropy
source and the impacts of a stolen device.

• Extensive performance and security evaluation on five de-
vices with different performance capabilities to assess the
presented implementation. The assessment includes an anal-
ysis of six variants of lightweight ciphers and a proof-of-
concept implementation of the entire architecture support-
ing read- and write-latency PUFs.

• Demonstration of the implementation in a practical use case
in the domain of new generations of cellular network base
stations.

Secure Data-Binding in FPGA-based Hardware Architectures utilizing PUFs ASIA CCS ’24, July 1–5, 2024, Singapore, Singapore

1.2 Paper Organization
Section 2 presents works related to data-binding and FPGA-based
PUFs. In Section 3, the capabilities and limitations of an attacker are
outlined, based on the previously presented design. Furthermore,
in Section 4, the design and architecture of our data-binding archi-
tecture are presented. Section 5 presents important aspects of the
implementation. In Section 6, an evaluation of the area occupied on
the FPGA and the latency of the implementation is given. In Sec-
tion 7, the security aspects of the implemented design are discussed.
In Section 8, the implementation is demonstrated through a use
case in the domain of new generations of mobile cellular networks.
Finally, the main findings are summarized, and future research
directions are presented in Section 9.

2 RELATEDWORK
This section provides a comprehensive review of existing work
related to the topic presented in this paper, including several FPGA
architectures incorporating PUFs for hardware-software binding,
Intellectual Propertys (IPs) protection, or FPGA-based enclaves.

Xilinx provides a PUF implementation as part of the Zync®
UltraScale+TM platform [31]. This solution allows for encrypting
user data on an external memory using the Advanced Encryption
Standard (AES). Therefore, the PUF cannot be directly accessed.
Instead, it requires the AES-based encryption process exclusively
available on Zync® UltraScale+TM MPSoCs. In contrast, our imple-
mentation is highly adaptable to different use cases and hardware
platforms thanks to exchangeable modules.

Kleber et al. [27] presents an implementation using PUFs to
encrypt basic blocks of programs by one-time keys derived from
FPGAs to bind program executables to specific hardware. The pro-
totype implementation presented in this paper utilizes a PUFs
based on Ring-Oscillators (ROs), but discusses the use of other
PUF-types, for example, Static Random-Access Memory (SRAM)
PUFs or Bistable-Ring PUFs. In general, this work is based on a
rather heavy AES implementation instead of using lightweight ci-
phers. Further, the implementation is specifically tailored for basic
block encryption, whereas we provide a generic solution suitable
for a variety of use cases.

Sepulveda et al. [41] presents a PUF-based architecture for mem-
ory authentication and integrity verification on MPSoCs using an
implementation called k-SUM PUF described in the work of Maiti et
al. [29]. Therefore, the paper only focuses on the properties of in-
tegrity and verification and does not address data confidentiality,
which is a key aspect of our work.

Zhao et al. [53] presents an Trusted Execution Environment
(TEE) on FPGAs in cloud environments. Here, the TEE is used
as Root of Trust for secure boot or in remote attestation. Further
research on FPGAs-based enclaves is presented by the following
works [20, 46]. Implementations protecting bit-streams of FPGAs
using PUFs are outlined in the following papers [22, 48–50].

In addition, several studies have explored FPGA-based encryp-
tion and authentication protocols utilizing RO-PUFs [8, 9, 54]. A
limitation of the majority of the above-described works stems from
the adoption of this PUF type. RO-PUFs require two concurrent
ROs to generate a single response bit. Therefore, the implemen-
tation of ROs to produce an adequate number of bits to serve as

cryptographic keys occupies a significant amount of area on the
FPGA.Moreover, the ROsmust be placed as symmetric paths, which
requires a manual placement on the FPGA, making these implemen-
tations inflexible. In contrast, our design enables the implementa-
tion of various types of intrinsic memory-based PUFs, significantly
reducing the footprint on the FPGA. Moreover, our design binds
the data to the memory rather than binding the data to the FPGA,
allowing for flexible hardware upgrades and thus enhances the
maintainability.

3 ATTACKER MODEL
In this section, we define the abilities and limitations of an adver-
sary A, from whom the encrypted data stored within the memory
module should be kept confidential. This definition is used for con-
ducting the security evaluation of our architecture in Section 7. We
assume thatA has knowledge of our architecture. The type as well
as the configuration of the PUF that is used for encrypting the data
in the system, except for the specific set of memory cells queried
by the PUF, are known to A. We define A to have the following
abilities:

• Retrieval of the complete ciphertext stored in memory;
• Encryption of arbitrary data and storing the resulting cipher-
text in memory at an arbitrary location;

• Modification and subsequent decryption of elements stored
in memory.

• Evaluation of the PUF on arbitrary parameters;
• Theft of the memory module.

In addition to outlining the abilities of A, our attacker model
sets specific boundaries. Firstly, A does not know external secrets
passed to the device, specifically the initialization secret that is
defined in Section 4. Moreover, our attacker model excludes any
possible attacks probing the buses within the MPSoC or between
the MPSoC and the connected memory module. Consequently, the
attacker could recreate the PUF response, having in-depth knowl-
edge about the error correction mechanism and helper data. As a
result, the security of the system would rely on the confidentiality
of the initialization secret.

Under these assumptions, it must not be possible for A to break
confidentiality by gaining any information on the data stored on
the device or on the keys and exploiting tweaks used during the
encryption process.

4 DESIGN AND ARCHITECTURE
The design of our architecture facilitates the extraction of PUFs
from an off-chip non-volatile memory module also designated to
store confidential data. Subsequently, for run-time encryption, two
keys are used, one based on the PUF, as well as an externally pro-
vided cryptographic key, only known to the user. The encryption
with these keys ensures both hardware data-binding and data con-
fidentiality.

Furthermore, our goal is to optimize resource efficiency regard-
ing area and time consumption while employing a modular ap-
proach adaptable and scalable to various use cases and hardware
configurations. Therefore, our design and implementation target
hybrid devices such as MPSoCs, comprising a CPU, which we refer
to as the Processing System (PS), and an FPGA, which we refer to

ASIA CCS ’24, July 1–5, 2024, Singapore, Singapore Florian Frank et al.

as Programming Logic (PL). The majority of the components are
implemented on the PL, allowing for an optimized hardware design
and, thus, an execution with low latency and high flexibility. More-
over, the utilized memory module is accessed directly by the PL,
supporting various PUF implementations on several memory mod-
ules using a customized hardware-implemented memory controller.
Figure 1 provides an overview of the proposed architecture.

rand

{a, ctr}

PS/PL interconnection

PS

PL





CPU

Linux Operating System

PS/PL interconnection
module

Instruction DecoderStorage Controller

PUF Controller

Memory Controller

Memory Module

PUF Allocation
Unit

Post-Processing
Unit

kPUF

aout

a{kI, vI, kpuf}
{kI, vI}

{spuf , dI, c, mr}

rraw

resi

Crypto Core

{c, dI}

MPSoC

Figure 1: General architecture overview of the data-binding
architecture.

As shown in Figure 1, our design achieves modularity by di-
viding it into several exchangeable and easy-to-maintain modules
𝑚, presented as rectangles with solid frames interacting through
different connections 𝑐𝑛, drawn as arrows. During startup, the user-
possessed cryptographic key𝑘𝐼 and a random 𝑣𝐼 must be transferred
from the PS to the PL and stored by the Storage Controller. After-
ward, a PUF measurement on a memory connected to the PL is
performed by the PUF Controller returning a raw response 𝑟𝑟𝑎𝑤 ,
which is corrected by the Post-Processing Unit. Subsequently, the
Storage Controller stores the corrected response 𝑘𝑝𝑢𝑓 . Therefore,
different PUF implementations, identified by an identifier 𝑠𝑝𝑢𝑓 ,
can be implemented and selected at execution time. During this
process, random memory cells are selected by the PUF Allocation
Unit using the Crypto Core module, returning random values. The
memory access is performed by a custom Memory Controller. After
finishing the initialization phase with the PUF readout, the user
application can send read- and write-requests from the PS to the
PL to store confidential data, encrypted by two keys. These keys
𝑘𝑝𝑢𝑓 and 𝑘𝐼 are forwarded to the Crypto Core, wrapping the cryp-
tographic cipher. The PS/PL Interconnection Module is responsible
for receiving instructions from the CPU and replying with corre-
sponding answers. It forwards all instructions to the Instruction
Decoder, responsible for decoding the commands, setting the re-
quired signals, and maintaining the synchronization between the
modules. Before integrating the architecture into an application,
the PUF must be enrolled, and PUF-dependent helper data ℎ𝑑 is
generated, which is stored in non-volatile memory, accessible by

the Post-Processing Unit. In the forthcoming sections, each of these
modules is described in more detail.

4.1 Processing System (PS)
Our design is based on well-defined interfaces and minimal de-
pendencies across the modules, enabling a high degree of decou-
pling between them. For this reason, a generic interface should be
provided to user programs to interact with our architecture. This
interface utilizes a standardized PS/PL interaction protocol, offering
support for various CPUs and software, ranging from bare-metal
programs to full Linux operating systems.

The interface allows a set of instructions 𝐼 ∈ {𝑖0, ..., 𝑖𝑛} to be
sent from the PS to the PL and a set of corresponding results
𝑅𝑒𝑠 ∈ {𝑟𝑒𝑠0, ..., 𝑟𝑒𝑠𝑛}, responding from the PL based on the pre-
viously sent commands. In addition, each instruction 𝑖 := {𝑖𝑜 , 𝑖𝑝𝑦𝑙 }
consists of an instruction opcode 𝑖𝑜 recognizing the instruction
type and a payload 𝑖𝑝𝑦𝑙 specifying the parameters required by the
corresponding instruction. In this initial implementation, four in-
structions are supported:

• save_secret: awaits a payload 𝑖𝑝𝑦𝑙 := {𝑘𝐼 , 𝑣𝐼 } to store the ini-
tialization secret (𝑘𝐼 , 𝑣𝐼) comprising a secret cryptographic
key 𝑘𝐼 and a randomly chosen and public initialization vector
𝑣𝐼 on the PL in volatile memory.

• retrieve_puf: accepts a payload 𝑖𝑝𝑦𝑙 := {𝑠𝑝𝑢𝑓 , 𝑑𝐼 , 𝑐,𝑚𝑟 } con-
sisting of the type of PUF 𝑠𝑝𝑢𝑓 , the initialization data 𝑑𝐼 ∈
{0, 1}𝑚𝑑 to initialize the selected PUF cells of data bus width
𝑚𝑑 , and PUF challenge 𝑐 depending on 𝑠𝑝𝑢𝑓 . Finally, the
bit size of the response is specified by 𝑚𝑟 . After parsing
the payload, a set of randomly selected memory addresses
𝐴𝑝𝑢𝑓 = {𝑎0, ..., 𝑎 (𝑚𝑟 /𝑚𝑑)−1} is derived from (𝑘𝐼 , 𝑣𝐼). The cells
in 𝐴𝑝𝑢𝑓 are initialized with 𝑑𝐼 , and the PUF of type 𝑠𝑝𝑢𝑓 is
executed with a challenge 𝑐 , as further described in Sec-
tion 4.3.1. The execution results in𝑚𝑟 response bits 𝑟𝑟𝑎𝑤 ∈
{0, 1}𝑚𝑟 . This response is corrected to 𝑘𝑝𝑢𝑓 utilizing helper
data ℎ𝑑 . Finally, 𝑘𝑝𝑢𝑓 is stored in the PL. A description of
the different steps of this instruction is given in Equation (1).
It shows the random address generation, the PUF readout,
and the PUF post-processing, eliminating instabilities and
improving the entropy of the raw PUF response 𝑟𝑟𝑎𝑤 .

𝐴𝑝𝑢𝑓 B 𝑝𝑎𝑢 (𝑘𝐼 , 𝑣𝐼)
𝑟𝑟𝑎𝑤 B 𝑝𝑢𝑓 (𝑠𝑝𝑢𝑓 , 𝐴𝑝𝑢𝑓 , 𝑑𝐼 , 𝑐)
𝑘𝑝𝑢𝑓 B 𝑝𝑜𝑠𝑡𝑝𝑟𝑜𝑐ℎ𝑑 (𝑟𝑟𝑎𝑤)

(1)

• write_data: loads the user key 𝑘𝐼 and the corrected PUF
response 𝑘𝑝𝑢𝑓 , as well as the initialization vector 𝑣𝐼 from
the Storage Controller. These keys are used to encrypt the
data received from the memory connected to the PL. To
store 𝑣𝐼 and 𝑘𝑝𝑢𝑓 , a previous execution of save_secret and
retrieve_puf is necessary. The payload 𝑖𝑝𝑦𝑙 := {P, 𝑎} consists
of the write address 𝑎 and the plaintext P to be encrypted.
As described in Equation (2), this instruction encrypts P and
writes the resulting ciphertext C to the cells identified by
address 𝑎.

C B 𝑒𝑛𝑐𝑟𝑦𝑝𝑡𝑘𝑝𝑢𝑓 ,𝑘𝐼 (P, 𝑎)
𝑟𝑒𝑠 B 𝑤𝑟𝑖𝑡𝑒 (C, 𝑎) (2)

Secure Data-Binding in FPGA-based Hardware Architectures utilizing PUFs ASIA CCS ’24, July 1–5, 2024, Singapore, Singapore

• read_data: Similar to write_data, two keys denoted as 𝑘𝐼 and
𝑘𝑝𝑢𝑓 are required to decrypt data requested from the mem-
ory module. As described in Equation (3), this instruction
accepts an address 𝑎 as payload 𝑖𝑝𝑦𝑙 := {𝑎}, necessary to
read the corresponding data from the memory module and
subsequently execute the decryption operation. Finally, the
plaintext P is returned to the PS

C B 𝑟𝑒𝑎𝑑 (𝑎)
P B 𝑑𝑒𝑐𝑟𝑦𝑝𝑡𝑘𝑝𝑢𝑓 ,𝑘𝐼 (C, 𝑎)

(3)

Upon executing an instruction 𝑖 𝑗 , a corresponding result 𝑟𝑒𝑠 𝑗 :=
{𝑖𝑜 , 𝑖𝑠𝑡𝑎𝑡𝑒 ,P} is returned from the PL and forwarded to the user
application executed on the PS. The result includes the state 𝑖𝑠𝑡𝑎𝑡𝑒 ∈
{𝑠𝑢𝑐𝑐𝑒𝑠𝑠, 𝑓 𝑎𝑖𝑙𝑒𝑑} of the previously executed instruction identified
by opcode 𝑖𝑜 , together with the identifier of 𝑖 𝑗 . In the case of an 𝑖 𝑗
with 𝑖𝑜 := 𝑟𝑒𝑎𝑑_𝑑𝑎𝑡𝑎, the decrypted value P is returned along with
𝑖𝑠𝑡𝑎𝑡𝑒 .

4.2 PS/PL Interconnection
On the PL, the PS/PL interconnection module is responsible for
receiving instructions from the CPU and responding with corre-
sponding results. This module should provide a First In – First Out
(FIFO)-storage mechanism, buffering multiple instructions 𝑖 and
forwarding them to the Instruction Decoder. It additionally waits
for the corresponding results 𝑟𝑒𝑠 𝑗 from the Instruction Decoder. If
a result is received, it is forwarded to the PS, and the corresponding
𝑖 𝑗 is removed from the FIFO. To avoid unreliable behavior in the
later implemented prototype, a command 𝑖 𝑗+1 is only executed after
receiving the result 𝑟𝑒𝑠 𝑗 of the previous instruction 𝑖 𝑗 . To enhance
the overall throughput, the whole architecture could be designed
as a pipeline. However, for the sake of simplicity and to avoid the
increased area consumption caused by implementing additional
buffers, this approach is not adopted in this work.

4.3 Programming Logic (PL)
This section describes the different modules implemented on the PL,
constituting the core functionality of our data-binding architecture.

4.3.1 PUF Controller. This module is responsible for conducting
PUF measurements of type 𝑠𝑝𝑢𝑓 . It acquires a set of randomly
selected memory addresses from the PUF Allocation Unit, as out-
lined in the subsequent section. Subsequently, it delegates the PUF-
dependent read and write operations to the memory controller.
Finally, this module handles the transmission of the PUF response
𝑟𝑟𝑎𝑤 to the Post-Processing Unit, which transforms them into a
cryptographically usable key 𝑘𝑝𝑢𝑓 . The actual PUF implementation
is described in Section 5.0.3.

4.3.2 PUF Allocation Unit (PAU). In order to increase the resistance
against an attacker capable of determining thememory cells queried
by the PUF implementation, additional measures have to be taken.
To this end, we have implemented a novel method that generates
PUF responses based on a selection of random addresses for PUF
readout. This method enhances the resilience against hardware
attacks. The PUF Allocation Unit (PAU) provides functionality for
creating a set of randomly distributed addresses within the valid
address space of the connected memory module. The generation is

based on the initialization secret (𝑘𝐼 , 𝑣𝐼) and utilizes the random
numbers generated through Equation (5). Depending on the block
size of the cipher, these numbers then may have to be mapped
to the space of valid addresses using some function 𝜑{0, 1}𝑚𝑏 →
{0, 1}𝑚𝑎 . Formally, the composition of both steps is defined through
Equation (4).

𝑝𝑎𝑢 (𝑘𝐼 , 𝑣𝐼) = (𝜑 ◦ 𝑔𝑒𝑛_𝑟𝑎𝑛𝑑𝑘𝑝𝑢𝑓 ,𝑘𝐼){0, 1, . . . } (4)

4.3.3 Crypto Core. In our architecture, encryption is provided by
a block cipher, formally defined through the function 𝐸𝑘 (P) = C.
The Crypto Core extends it by two additional modes of operation.
Counter Mode (CTR) mode is used by the PAU with 𝑘 = 𝑘𝐼 and
𝐼𝑉 = 𝑣𝐼 for the generation of random values through Equation (5).

𝑔𝑒𝑛_𝑟𝑎𝑛𝑑𝑘𝑝𝑢𝑓 ,𝑘𝐼 (𝑐𝑡𝑟) = 𝐸𝑘𝐼 (𝑣𝐼 + 𝑐𝑡𝑟) (5)

Further, the well-established Xor–Encrypt–Xor (XEX) mode [37]
is used for the encryption and decryption of data to be stored in
memory. As shown in Equation (6), we generate a tweak𝑇𝑎 through
encryption of the address 𝑎 of the memory cell that is written to or
read from, which is then XORed with the respective data. For both
operations, a common key 𝑘 = 𝑘𝑝𝑢𝑓 ⊕ 𝑘𝐼 is used. We do not split
the memory into sectors, and thus, we multiply each tweak 𝑇 by a
constant value of 2.

𝑔𝑒𝑛_𝑡𝑤𝑒𝑎𝑘𝑘𝑝𝑢𝑓 ,𝑘𝐼 (𝑎) = 2𝐸𝑘𝑝𝑢𝑓 ⊕𝑘𝐼 (𝑎)
𝑒𝑛𝑐𝑟𝑦𝑝𝑡𝑘𝑝𝑢𝑓 ,𝑘𝐼 (P, 𝑎) = 𝐸𝑘𝑝𝑢𝑓 ⊕𝑘𝐼 (𝑇𝑎 ⊕ P) ⊕ 𝑇𝑎

𝑑𝑒𝑐𝑟𝑦𝑝𝑡𝑘𝑝𝑢𝑓 ,𝑘𝐼 (C, 𝑎) = 𝐸−1
𝑘𝑝𝑢𝑓 ⊕𝑘𝐼 (𝑇𝑎 ⊕ C) ⊕ 𝑇𝑎

(6)

4.3.4 Memory Controller. To perform the physical read and write
operations initiated by the write_data and read_data instructions or
to implement various PUF-types on externally connected memory
modules, a custom memory controller is required. This controller
offers an interface, accepting an address 𝑎 of width𝑚𝑎 in order to
read the value at the designated address or an address 𝑎 and data
value 𝑑 of width𝑚𝑑 to write data.𝑚𝑑 must be equal to or a multiple
of the data bus width of the connected memory. If the data bus
width of the memory module is smaller than𝑚𝑑 , multiple read and
write operations are performed. To avoid an additional mapping of
virtual addresses to logical addresses, we define the address width
𝑚𝑎 to be equal to the address width of the memory module in this
prototype implementation.

4.3.5 Instruction Decoder. This module awaits an instruction 𝑖 B
{𝑖𝑜 , 𝑖𝑝𝑦𝑙 }, transmitted by the PS/PL Interconnection Module. Upon
reception, 𝑖𝑝𝑦𝑙 is decomposed based on the opcode 𝑖𝑜 , and the de-
composed values are forwarded to the required modules to execute
the instruction. Furthermore, the Instruction Decoder handles the
initialization of the modules and maintains their order of execution.
Ultimately, the modules respond to the Instruction Decoder after
the instructions have been executed. Finally, a result 𝑟𝑒𝑠 is gener-
ated and forwarded to the PS/PL Interconnection Module.

4.3.6 Post-Processing Unit. This module is responsible for the cor-
rection of errors occurring in a raw PUF response 𝑟𝑟𝑎𝑤 with the
aid of helper data ℎ𝑑 resulting in a cryptographically usable key

ASIA CCS ’24, July 1–5, 2024, Singapore, Singapore Florian Frank et al.

𝑘𝑝𝑢𝑓 . Otherwise, unstable responses would lead to minor varia-
tions in cryptographic keys, preventing the successful decryption
of stored data. The required helper data is generated from a series of
PUF measurements conducted from memory blocks selected by the
PAU. This process is performed during the enrollment phase. All
measurements are carried out under the same challenge 𝑐 and sub-
sequently stored on non-volatile memory accessible from the FPGA.
The generation of helper data ℎ𝑑 exclusively for this selection of
cells enables a comparable small helper data size. Furthermore, in
scenarios requiring key revocation or increased instability due to
aging effects, the enrollment process can be repeated. This repe-
tition ensures the creation of a fresh set of helper data, thereby
preserving system security and stability. We propose helper data
schemes that operate on blocks of size 𝑘 . The size of the necessary
helper data ℎ𝑑 depends on the number of selected cells, the chosen
error correction algorithm, its message length 𝑘 , and code word
length 𝑛, and thus the resulting code rate 𝑅 = 𝑛/𝑘 .

5 IMPLEMENTATION
In this section, we elaborate on the implementation based on the pre-
viously introduced conceptual design. All modules defined in Sec-
tion 4 are implemented as single IP-core or, in the case of the mem-
ory controller, subdivided into multiple IP-cores. This allows for a
high degree of decoupling, simplifies the extension of additional
modules added by the user, and improves the overall scalability. In
addition to the module-specific inputs and outputs, each module
provides a generic interface to start the module operation and to in-
dicate its state. This allows for a seamless synchronization between
the modules, driven by a single clock source.

5.0.1 Processing System. To demonstrate the interaction with user
applications, we implemented two program variants on the PS. The
first one is implemented as a bare-metal program using the xaxidma
driver provided by Xilinx. We could demonstrate the support for
Direct Memory Access (DMA)-polling mode as well as the imple-
mentation using interrupts. Furthermore, we have implemented a
kernel that supports the same interface accessible from a PetaLinux
operating system.

5.0.2 PS/PL Interconnection. A high-performance Advanced eX-
tensible Interface (AXI) interface implements the communication
between the PS and PL. We have implemented an AXI-stream inter-
face, which supports high bandwidths and the DMA mapping into
the address space of the PL [6]. The AXI interface, a custom FIFO
module, as well as the DMA functionality utilizing the AXI-DMA
IP-core [3] is combined in the PS/PL Interconnection IP-core and
connected to the PS. The block design of the IP-core is depicted
in Figure 2. It provides interfaces to send instructions and receive
results from the Instruction Decoder, established by an AXI-slave
and AXI-master interface. These two interfaces are connected via
AXI interconnect modules to the DMA controller and a custom
FIFO implementation.

5.0.3 PUF Controller. This module is responsible for the execution
of PUFs on external Non-Volatile Memories (NVMs). In this proto-
type implementation, the PUF types 𝑠𝑝𝑢𝑓 ∈ {𝑟𝑒𝑎𝑑_𝑙𝑎𝑡𝑒𝑛𝑐𝑦,
𝑤𝑟𝑖𝑡𝑒_𝑙𝑎𝑡𝑒𝑛𝑐𝑦} are supported, similar to the implementation de-
noted in the works of Khan et al. [25] or Zhang et al. [52]. The

res_in[79:0]

AXI Direct Memory Access

S_AXI_LITE AXI_MM2S
AXI_S2MM

AXIS_MM2SS_AXIS_S2MM
s_axi_lite_aclk
m_axi_mm2s_aclk
m_axi_s2mm_aclk
axi_resetn

mm2s_rst
s2mm_rst

mm2s_introut
s2mm_introut

axi_in axi_out
inst_out[263:0]

AXI FIFO Module

axism

axiss
axism_aclk
axism_aresetn
axiss_aclk
axiss_aresetn

instr_out[287:0]

res_in[63:0]
ready

active_in
ready_in

AXI Interconnect

S0_AXI

M00_AXI

S1_AXI
S0_ACLK
S0_ARESETN
M_ACLK
M_ARESETN
S1ACLK
S1_ARESETN

active_in

clk_in

mm2s_itr
ready_in

reset_in start_module

s2mm_itr

AXI Interconnect

S00_AXI

M00_AXI

ACLK
ARESETN
S00_ACLK
S00_ARESETN
M00_ACLK
M00_ARESETN

Figure 2: Module showing the interconnection module sup-
porting the AXI-streaming interface to transmit data be-
tween the PL and PS.

foundation of these PUF implementations lies in the intentional
violation of the timing of the memory module, for example, by
reading or writing in faster intervals than specified in the manual
of the memory chip or setting certain signals of the communica-
tion protocol for shorter periods of time, e.g., the Chip Enable (𝐶𝐸)
or Write Enable (𝑊𝐸) signals when communicating with SRAM
protocol-compatible memory modules. These violations result in
bit-flips, which are used as PUF response 𝑟𝑟𝑎𝑤 and, after applying
post-processing, as cryptographic key𝑘𝑝𝑢𝑓 . Furthermore, it is possi-
ble to extend the implementation by PUF implementations on other
NVMs, like PUFs based on Phase Change Memory (PCM) [51], Re-
sistive Random Access Memory (ReRAM) [43], or well-established
flash memory [4, 35, 39, 44].

To start the PUF execution, the initial tuple (𝑘𝐼 , 𝑣𝐼) stored on
the PL is forwarded to the PAU to generate a random selection of
(𝑚𝑟 /𝑚𝑑) memory cell addresses 𝐴𝑝𝑢𝑓 . In the first step, the gener-
ation of a backup of the currently stored values requested at the
addresses 𝐴𝑝𝑢𝑓 is necessary. The contents of the memory cells are
stored in registers on the FPGA and immediately restored directly
after each write operation. Afterwards, the PUF Controller initial-
izes the data cells addressed by 𝐴𝑝𝑢𝑓 with 𝑑𝐼 , using the timing
specifications as defined in the data-sheet of the connected mem-
ory. Subsequently, the PUF measurement of type 𝑠𝑝𝑢𝑓 is performed,
based on a challenge 𝑐 , resulting in a raw response 𝑟𝑟𝑎𝑤 , which is
forwarded to the Post-Processing Unit to generate a cryptographi-
cally usable key 𝑘𝑝𝑢𝑓 . In the case of latency PUFs, the challenge 𝑐
defines the timing reduction of the write cycle time or read cycle
time applied during PUF execution. Finally, the backed-up value is
restored, avoiding the need to reserve a dedicated memory area for
exclusive PUF use.

5.0.4 PUF Allocation Unit. This module utilizes the CTR-mode
offered by the Crypto Core as described in the subsequent Sec-
tion 5.0.5, for the generation of𝑚𝑏 -bit wide random values, depicted
as PUF Addr Gen in Figure 3. Every resulting block is then converted
into (𝑚𝑏/𝑚𝑎) valid addresses by simply splitting it into slices of
size𝑚𝑎 bits. The remaining bits are discarded. Note that only in
the case of𝑚𝑎 = 𝑚𝑏 , no address collisions occur. Otherwise, the
probability of collisions has to be evaluated, and𝑚𝑟 incremented
accordingly to provide a sufficient amount of unique addresses.

5.0.5 Crypto Core. To achieve a high level of security while simul-
taneously minimizing area consumption and latency, we employ

Secure Data-Binding in FPGA-based Hardware Architectures utilizing PUFs ASIA CCS ’24, July 1–5, 2024, Singapore, Singapore

and evaluate a set of well-established lightweight ciphers, namely
SIMON [10], PRINCE [13] and PRINCEv2 [15]. As a baseline, we
compare those to an existing implementation of the AES algo-
rithm [42], where all of these operate with 128-bit keys. To evaluate
the trade-offs between total latency, maximum clock frequency, and
area consumption, we implemented optimized round-based vari-
ants as well as partly and fully unrolled versions of the lightweight
ciphers. To further minimize the area impact caused by the crypto-
graphic cipher, a single block cipher instance is shared among the
components of the design as depicted in Figure 3. The instance is
wrapped within a Crypto Core module, which offers both CTR- and
XEX-mode and, thus, covers all cryptographic use cases described
in Section 4.3.3.

a

Block Cipher

ctr
Tweak Gen PUF Addr Gen

T

kI

Encryption /Decryption

kPUF

T P/C

T

C/P

vI

PUF Addr Gen

Shared
Instance

rand

Encryption /
Decryption

Tweak Gen

kI

2

Figure 3: Reusing a single instance of a block cipher to gen-
erate random PUF addresses, to encrypt data in XEX-mode
and to derive the encryption key.

5.0.6 Memory Controller. In our proof-of-concept implementation,
a memory controller supporting the SRAM-protocol was developed,
enabling seamless interaction not only with SRAM memories but
also a variety of other memory modules, including Magnetoresis-
tive Random Access Memory (MRAM) and Ferroelectric Random
Access Memory (FRAM) modules. Similar to all other components
in our framework, this component can simply be exchanged to sup-
port other transmission protocols, for example, Open NAND Flash
Interface (ONFI) or Serial Peripheral Interface (SPI). To enable the
readout of latency PUFs and the interaction with a variety of differ-
ent memory modules, the timing parameters of the communication
protocol are adjustable during runtime. To achieve a precise timing
resolution, the memory controller is driven by higher clock frequen-
cies compared to the rest of the architecture. This can be achieved
by Xilinx clocking Wizard IP-core [7] that uses the frequency of
the base clock source to generate higher clock frequencies.

To leverage the high clock frequencies, the module is imple-
mented as a state machine with very short critical paths, control-
ling the𝑊𝐸, Output Enable (𝑂𝐸), and 𝐶𝐸 signals, as well as the
data bus (𝑑) and address bus (𝑎) wires, according to the standard
SRAM-protocol. The Memory Controller module is subdivided into
two IP-cores: one implementing the write and the other one imple-
menting the read operation. For our prototype implementation, the
timing parameters of a full write 𝑡𝑤𝑐 and read cycle 𝑡𝑟𝑐 can be ad-
justed during runtime. Specifically, the 𝑡𝑝𝑤𝑐 , which defines the time
when both𝑊𝐸 and𝐶𝐸 are active. This is necessary to execute write-
latency PUFs. To execute read-latency PUFs, the 𝑡𝑝𝑟𝑐 defining when

𝑂𝐸 and 𝐶𝐸 are active can be adjusted dynamically. This allows for
a PUF construction similar to the implementation described in [25].
The memory modules under test were connected to the logical
pins of the FPGA, defined in a constraints file. The connection is
established by a custom-made Printed Circuit Board (PCB).

5.0.7 Instruction Decoder. This module is implemented as a four-
ary state machine, similar to the structure of CPU-pipelines. In
the first phase (fetch), the module waits for an instruction 𝑖 from
the PS/PL Interconnection module. Based on the opcode 𝑖𝑜 , the
payload 𝑖𝑝𝑦𝑙 is parsed and forwarded to the dedicated modules. We
refer to this phase as the decode-phase. If all signals are set, the
required modules are started by triggering their start signals while
maintaining the timing requirements and synchronization between
the modules. This is done during the execution-phase. Afterward,
the Instruction Decoder waits for all modules to complete their op-
erations before sending the result 𝑟𝑒𝑠 to the PS/PL Interconnection
Module in a phase, which is referred to as write-back.

5.0.8 Post-Processing Unit. The design of our architecture allows
for an adaption of various error correction algorithms. Instead of
implementing a specific algorithm in this work, a generic module
was implemented, which allows the adoption of a wide range of
error correction algorithms, as outlined in the existing literature.
For example, an implementation provided by Bösch et al. present-
ing two efficient PUF post-processing algorithms implemented on
FPGAs utilizing the well-known Reed-Muller and Golay codes [14].
Reed-Muller codes allow a correction of 1 out of 3 error bits when
using the parameters 𝑘 = 1 and 𝑛 = 3. Due to its high code rate
𝑅 = 3, a large amount of helper data is necessary. Goley codes allow
only the correction of 3 bits within 𝑛 = 24-bit blocks. A further im-
plementation implementing Bose-Chaudhuri-Hocquenghem-Codes
(BCH) and convolutional codes for PUF post-processing on FPGAs
was presented by Jarvis et al. [24]. BCH codes are capable of cor-
recting 18 errors in each 255-bit block and produce helper data
with a rate of 1.95 to the input data. All these implementations are
capable of correcting PUF errors arising from intrinsic memory-
based PUFs such as those utilized in this work. A further selection
of different PUF post-processing algorithms implemented on FP-
GAs was conducted by Hiller et al. [23]. In their work, different
linear and pointer-based post-processing schemes are compared
and evaluated on Xilinx Spartan 6, Zync 7020, and Ultrascale boards.
Consequently, these implementations seamlessly integrate into our
data-binding architecture, facilitating the correction of prominent
PUF-related errors.

6 PERFORMANCE EVALUATION
The efficiency of our implementation is assessed through a compre-
hensive evaluation of the overall architecture shown in Figure 1.
Therefore, we evaluate the area consumption required to imple-
ment our design, as well as the latency of the critical paths, the
derived maximum clock frequency, and the number of clock cycles
per instruction.

6.0.1 Test setup. Considering the prospective implementation of
our architecture in mobile telecommunication networks, as de-
scribed in Section 8, showcasing our implementation’s adaptability
to resource-constrained and high-performance environments, we

ASIA CCS ’24, July 1–5, 2024, Singapore, Singapore Florian Frank et al.

have conducted an assessment of compatible hardware. The selec-
tion of hardware to evaluate is based on the manuscript published
by Xilinx in which the eligibility of FPGAs in wireless base station
connectivity is discussed [33]. As presented in this work, Xilinx’s
Series 7 FPGAs exhibits a high level of throughput and flexibility
when implementing standard network communication interfaces.
This is attributed to their highly parallel execution and a signif-
icant quantity of high-speed transceivers and I/O ports. Xilinx’s
Series 7 provides three distinct FPGA families optimized for differ-
ent use cases: ArtixTM 7 (Optimized for low cost, low package size
and power consumption), Kintex TM 7 (Balanced between power-
consumption, latency and capacity), and VirtexTM 7 (Optimized for
highest performance and capacity) [2]. To demonstrate the high
adaptability to different types of devices, we perform benchmark
tests on boards of all three categories as shown in Table 1. Specif-
ically, the KintexTM 7 XC7K355T model evaluated in this paper
features 24 serial transceivers capable of achieving speeds of up
to 12.5Gbit/s, making this model suitable for low-end networking
applications. The paper published by Xilinx further utilizes the
XC7VX415T, XC7VX690T, and XC7VX980T models, which respec-
tively accommodate 48, 80, and 72 transceivers while supporting
data rates of up to 13.1Gbit/s. From this list, we consider VirtexTM
7 XC7VX415T and XC7VX980T models in our assessment.

An evaluation of the architecture utilizing ARM CPUs is done
through the resource-constrained PYNQ-Z2 board and the Zync®
UltraScale+TM MPSoC based on a Zync® UltraScale+TM ZCU102
board, which supports the execution of bare-metal programs as
well as full PetaLinux kernels. In addition to the above-mentioned
physical ARM CPU cores, our implementation is also evaluated
incorporating MicroblazeTM soft-cores to support devices not con-
taining a physical CPU.

The benchmark results in the subsequent section were obtained
from a prototype implementation that leverages the AXI-streaming
interface, configured with a beat size of 32 bit, a maximum burst
size of 16 beats, a data width𝑚𝑑 B 64 bit, equal to the block size of
the used PRINCE cipher as well as an address width of𝑚𝑎 B 15 bit,
which is equal to the address width of the connected memory mod-
ule. The FIFO within the PL/PS Interaction Module reserves space
for commands and answers, each with a capacity of ten. Commands
can reach lengths of up to 264 bit when considering the longest
instruction 𝑠𝑎𝑣𝑒_𝑠𝑒𝑐𝑟𝑒𝑡 consisting of a 𝑖𝑜 B 8 bit opcode the key
𝑘𝐼 and 𝑣𝐼 each with a length of 128 bit. Furthermore, ciphers with
a block size of 64 bit and a key size 𝑚𝑘 B 128 bit are utilized.
Our prototype is connected to a Lapis MR48V256C FRAM mem-
ory module supporting the SRAM communication protocol with
𝑡𝑝𝑤𝑐 = 𝑡𝑝𝑟𝑐 B 150 ns and a write-latency PUF implementation
with 𝑡𝑡ℎ𝑟𝑒𝑠ℎ B 55 ns. The memory controller is adjusted to align
with the memory’s specification, including a data width of 8 bit
and an address width of 15 bit. To match with𝑚𝑑 , each read and
write operation requires eight accesses by the memory controller.
Subsequently, the Storage Controller supports data widths of 16 bit.

6.0.2 Area consumption. An important property of our design is
the number of Lookup-tables (LUTs) and Flip-Flops (FFs) utilized
when implementing our design on different FPGAs. A small number
of LUTs and FFs allows for the adoption of our design on devices
offering different resources in terms of area. Additionally, a low

Table 1: Devices used for our performance evaluation [2].
FPGA Part/Board Series # LUTS # FFs
PYNQ-Z2 Zynq®-7000 ArtixTM 7 53200 106400
XC7K355T KintexTM 7 222600 445200
XC7VX415T VirtexTM 7 257600 515200
Ultra-Scale+ ZCU102 UltraScale+TM 274080 548160
XC7VX980T VirtexTM 7 612000 1224000

area consumption leaves more space to implement further logic
for an application integrated with the data-binding architecture.
Figure 4a shows the relative number of LUTs and FFs consumed
per module on each of the devices listed in Table 1. Notably, the
PS/PL Interconnection Module occupies the largest area across
all modules, probably caused by the overhead of the generic AXI-
bus, the DMA-module, such as the instruction and answer FIFO.
Furthermore, the PUF Control Unit occupies only 121 LUTs and
242 FFs in total, independent of the length of the PUF-response, as
long as no adjustment of the data- and address-bus is necessary. In
comparison, the PUF implementations utilized in the architectures
presented in Section 2 occupy higher amounts of area. The PUF
used by Sepulveda et al. [41] occupies 1288 LUTs and 945 FFs when
implementing 128 ROs and the PUF-implementation utilized by
Zhang et al. [49] occupies about 1400 LUTs to generate 128-bit
responses [5].

To estimate the footprint of the whole architecture, we further
analyze different post-processing algorithms required to transform
𝑟𝑟𝑎𝑤 to 𝑘𝑝𝑢𝑓 . Therefore, Bösch et al. [14] presents efficient imple-
mentations of fuzzy extractors on FPGAs, including the repetition
and Reed-Muller code, where both occupy less than 600 LUTs. Jarvis
et al. implemented a suitable decoder of a BCH code with about 870
LUTs. This implementation occupies only 0.81% additional space on
a resource-constraint AMD PYNQ-Z2. Moreover, Hiller et al. [23]
employed various post-processing algorithms in their conducted
analyses. These algorithms occupy an area of 43 to 243 slices, which
would allow a seamless integration into our existing architecture.
We presume that the necessary helper data is stored in non-volatile
memory accessible to the FPGA. Consequently, the storage of helper
data is not included in the count of LUTs and FFs.

In addition to the Post-Processing Unit, the performance of our
design is heavily reliant on the cryptographic cipher utilized in our
design. Hence, we have evaluated the impact on a set of different
ciphers, as explained in Section 5.0.5. The area consumption of
different hardware-implemented ciphers across the devices listed
in Table 1 is depicted in Figure 4b.

The fully unrolled version of SIMON occupies the most space,
requiring 6867 LUTs to unroll each of the 44 rounds. Comparatively,
among the round-based variants, the AES implementation has the
largest area consumption, utilizing 3327 LUTs and 2990 FFs. In
contrast, the round-based version of PRINCE exhibits 541 LUTs
and 259 FFs, utilizing the smallest area and additionally less than
half of the space of its unrolled variant. The difference in the area
consumption when comparing the unrolled versions of PRINCE and
PRINCEv2 is negligible. Our partially unrolled version of SIMON
always unrolling four rounds occupies 3088 LUTs and 132 FFs.

6.0.3 Latency. To allow for a seamless synchronization between
the different modules, our FPGA-based data-binding architecture
is driven by a single clock source. Only the memory controller

Secure Data-Binding in FPGA-based Hardware Architectures utilizing PUFs ASIA CCS ’24, July 1–5, 2024, Singapore, Singapore

(a) (b)
Figure 4: Relative number of LUTs (white background color) and FFs (grey background color) occupied by each of the modules
of the implementation evaluated on the devices of Table 1.

requires higher clock frequencies of 400MHz to match the timing
requirements of the connected memory module and allow for a pre-
cise PUF readout. In general, the overall latency of each instruction
𝑖 can be described by the frequency of the clock driving the archi-
tecture, as well as the number of clock cycles per instruction. As a
result, it is essential to examine the maximum clock frequency ca-
pable of driving all modules, followed by an analysis of the number
of clock cycles required by each module and instruction. Deter-
mining the maximum clock frequency requires a calculation of
the latency of the critical path of our implementation. This can be
accomplished using Xilinx Vivado 2022.1, capable of determining
the Worst Negative Slack (WNS) on each device denoted in Table 1
separately.

The WNS denotes the remaining time within one clock cycle
when considering the latency of the critical path 𝑡𝑐𝑝 , which can be
determined by calculating 𝑡𝑐𝑝 = 𝑇𝑐𝑙𝑘 −𝑡𝑤𝑛𝑠 where𝑇𝑐𝑙𝑘 is the period
of one clock cycle and 𝑡𝑤𝑛𝑠 the determined WNS. The evaluated
WNS values of all modules show that regardless of the employed
cryptographic cipher, the critical path in our design lies always
within the implementation of the cipher. In order to determine
the maximum clock frequency of our design, the WNS of each
cryptographic module is examined and used to derive the delay of
the critical path 𝑡𝑐𝑝 . Subsequently, 𝑡𝑐𝑝 is utilized to calculate the
total delay of a single encryption operation 𝑡𝑡𝑜𝑡 based on the number
of cycles #𝑐𝑐 required to encrypt a single block. Furthermore, 𝑡𝑐𝑝 is
used to derive the maximum frequency 𝑓𝑚𝑎𝑥 as described above.

Table 2 provides an overview of the above-discussed timing
values evaluated for each cipher. In general, it can be seen that
unrolling the designs of PRINCE and SIMON results in a significant
reduction of 𝑡𝑡𝑜𝑡 of their round-based version due to execution
within a single clock cycle. Conversely, the unrolled versions suffer
from much longer critical paths, resulting in higher 𝑡𝑐𝑝 and de-
creasing the maximum frequency 𝑓𝑚𝑎𝑥 of the whole design. Hence,
we consider the round-based version of PRINCE for our prototype

implementation, which requires 10 𝑐𝑐 instead of one but allows ex-
ecuting the whole design with frequencies of up to 134MHz on the
resource-constrained PYNQ-Z2 and with even higher frequencies
on the other boards under evaluation. This is a significant enhance-
ment compared to 32MHz when executing the unrolled version on
the PYNQ-Z2. After determining 𝑓𝑚𝑎𝑥 of our design, we measured
the latency of the overall architecture by evaluating the #𝑐𝑐 of each
instruction 𝑖 through the modules𝑚 independently. The individual
𝑐𝑐 per module and instruction are displayed in Table 3.

As described in Section 6.0.1, instructions are encoded by 264-bit
vectors to be able to store the longest command 𝑠𝑎𝑣𝑒_𝑠𝑒𝑐𝑟𝑒𝑡 , caus-
ing a constant overhead of 10 cc to transmit an AXI burst of 9 beats
each consisting of 32 bit. The Instruction Decoder requires one clock
cycle for each state of its four-ary state machine, consisting of a
fetch, decode, execute, and write-back phase. The storage controller
requires 8 𝑐𝑐 to transmit a 128-bit 𝑘𝐼 , 𝑣𝐼 or 𝑘𝑝𝑢𝑓 when considering
a 16-bit data bus to the Storage Controller. Consequently, during
the execution of 𝑠𝑎𝑣𝑒_𝑠𝑒𝑐𝑟𝑒𝑡 , the tuple | (𝑘𝐼 , 𝑣𝐼) | B 256 bit must be
stored within the module, whereas when reading and writing data
𝑘𝐼 , 𝑣𝐼 , and 𝑘𝑝𝑢𝑓 are loaded from the module and when executing
𝑟𝑒𝑡𝑟𝑖𝑒𝑣𝑒_𝑝𝑢𝑓 , 𝑘𝑝𝑢𝑓 is stored and 𝑘𝐼 and 𝑣𝐼 are loaded to run the
PUF Allocation Unit. The XEX mode requires the execution of the
cipher twice per read and write operation, therefore, resulting in
21 𝑐𝑐 (20 𝑐𝑐 for cipher execution and 1 𝑐𝑐 for module synchroniza-
tion). The memory controller in our implementation operates on a
400MHz clock to achieve the high precision necessary to execute
the PUF and to meet the timing specification of the memory module.
These modules are synchronized with the other modules driven
by a 100MHz clock after the read and write operations. Therefore,
we track the number of clock cycles the 100MHz clock waits for
the memory controller to complete its tasks. Assuming an ideal
PUF without the need for post-processing, extraction of data for
a 128-bit key takes 1048 𝑐𝑐 . This is determined by the number of
memory accesses with respect to a 8-bit data width and the read

ASIA CCS ’24, July 1–5, 2024, Singapore, Singapore Florian Frank et al.

Table 2: Timing parameters of each cipher, evaluated on various FPGAs. tcp is depicted in ns and fmax in MHz. The round-based
version of PRINCE is selected in our architecture.

PYNQ-Z2 XC7K355T XC7VX415T XC7VX980T UltraScale+ ZCU102
tcp #cc ttot fmax tcp #cc ttot fmax tcp #cc ttot fmax tcp #cc ttot fmax tcp #cc ttot fmax

AES round-based 8.86 46 407.7 112 4.74 46 218.2 210 4.00 46 183.8 250 4.80 46 220.3 208 2.78 46 127.7 360
PRINCE round-based 7.41 10 74.1 134 3.49 10 34.9 286 3.42 10 34.2 292 3.55 10 35.5 282 2.43 10 24.3 412
PRINCE unrolled 30.62 1 30.6 32 15.2 1 15.2 65 15.44 1 15.4 64 15.2 1 15.2 65 7.9 1 7.9 126
PRINCEv2 unrolled 29.71 1 29.7 33 7.96 1 8.0 125 15.93 1 15.9 62 15.5 1 15.5 64 7.9 1 7.9 126
SIMON 4 rounds unrolled 7.00 11 77.0 143 3.45 11 38.0 264 3.68 11 40.5 272 3.80 11 41.8 239 2.23 11 24.5 448
SIMON unrolled 69.42 1 69.4 15 39.59 1 39.6 26 40.51 1 40.5 25 39.83 1 39.8 26 26.39 1 26.4 38

Table 3: Clock cycles (𝑐𝑐) and time consumption per module
driven by a 100MHz clock.

Instruction 𝑖

Module save_secret retrieve_puf write_data read_data

PS/PL
Interconnection 10 𝑐𝑐 10 𝑐𝑐 10 𝑐𝑐 10 𝑐𝑐

Instruction
Decoder 4 𝑐𝑐 4 𝑐𝑐 4 𝑐𝑐 4 𝑐𝑐

Storage Controller 16 𝑐𝑐 24 𝑐𝑐 24 𝑐𝑐 24 𝑐𝑐
Crypto Core / 161 𝑐𝑐 21 𝑐𝑐 21 𝑐𝑐
PUF Controller / 69 𝑐𝑐 / /
PUF Allocation
Unit / 16 𝑐𝑐 / /

Memory Controller / 1048 𝑐𝑐 18 𝑐𝑐 18 𝑐𝑐
Total cycles 30 𝑐𝑐 1332 𝑐𝑐 77 𝑐𝑐 77 𝑐𝑐
Time
Consumption 0.30 µs 13.32 µs 0.77 µs 0.77 µs

and write latency of the memory controller for querying and restor-
ing the affected memory cells. In reality, PUF responses are noisy,
and often, more than 4000 bits of data are required, along with the
execution of error-correcting codes. This increases the delay for
querying the required data to around 33𝑘 𝑐𝑐 or 330 µs. Using the
approach by Jarvis et al. [24], around 51𝑘 𝑐𝑐 or 490 µs are required
for decoding with negligible failure probability and sufficient left-
over entropy. While these values are high, it is to be noted that this
latency does not occur during run-time but only once at the start-up
of the device. Therefore, this does not affect the delay of a read or
write operation. For a read and write operation, 17 𝑐𝑐 are needed
to satisfy the timing requirement with 𝑡𝑟𝑐 = 𝑡𝑤𝑐 B 150 ns of the
FRAMmodule under test. When executing read or write requests, it
takes one clock cycle to synchronize either with the PUF Controller
or the Instruction Decoder. Finally, a read or write request requires
77 𝑐𝑐 or 0.77 µs based on a period of 𝑇𝑐𝑙𝑘 B 10 ns. When consid-
ering 𝑓𝑚𝑎𝑥 B 134MHz, as evaluated in Table 2, a read and write
requests would be possible in 0.58 µs; on the Zync® UltraScale+TM
ZCU102, read and write operations could be executed within 0.19 µs
using a frequency of 𝑓𝑚𝑎𝑥 B 412MHz. It is important to note that
these values do not consider effects like clock skews and jitters.

The previously described assessment focuses only on the latency
introduced within the PL. An additional assessment of the PS is es-
sential to evaluate the entire system. Furthermore, our investigation
includes the analysis of the delays caused by the PS/PL interconnec-
tion. To facilitate these measurements, the PS/PL Interconnection
Module was tested by a distinct block design and connected to a cus-
tom FIFO module, which orchestrates the data loop-back, allowing

for exclusive measurements of the latency of the PS/PL interface. To
conduct these measurements, we implemented a small bare-metal
program using Xilinx’s xaxidma library to measure the loop-back
duration while transmitting 32 B data blocks. The validity of the
sent data is additionally analyzed using the System Integrated Logic
Analyzer (ILA) IP-core [1]. These measurements are executed on
the PYNQ-Z2 and ZCU102 boards, with the program running on
the first core of its ARM® CortexTM-A9 CPU and on a single core
of its ARM® CortexTM-A53, as well as on its CortexTM-R5F and a
MicroblazeTM soft-core. The results obtained from the bare-metal
program, conducted over 1000 iterations, are illustrated in Figure 5.

Figure 5: Round-trip time when executing the loop-back test,
evaluated across 1000 iterations.

It can be seen that the overhead caused by the transmission and
reception of 32 B messages leads to a maximum latency of 4.21 µs
on the CortexTM-A9, 3.26 µs on the CortexTM-A53 and 4.98 µs on
the CortexTM-R5F. Hence, the PS/PL Interconnection is respon-
sible for a significant portion of the total latency when driving
the AXI bus with a 100MHz clock. In general, even when running
code on the CortexTM-R5F real-time CPU with 500MHz, read and
write instructions on the FRAM memory module require about
4.5 µs. It should be noted that the lightweight cryptographic cipher
consumes only 0.21 µs the overall latency when executing read or
write instructions. In the end, we evaluated the additional time con-
sumption caused by a user space application using a Linux kernel
module to send data over the AXI-streaming interface, running on
the PYNQ-Z2 incorporating a CortexTM-A9. The time consumption
of 1000 bidirectional requests can be seen in Figure 6. We notice
an average delay centered around 60 µs, which seems to follow the
observation as discussed in [21].

Secure Data-Binding in FPGA-based Hardware Architectures utilizing PUFs ASIA CCS ’24, July 1–5, 2024, Singapore, Singapore

Additional delay Linux Kernel [µs]

Fr
eq

ue
nc

y
of

 O
cc

ur
an

ce

56 58 60 62 64
0.00

0.01

0.02

0.03 Average

Figure 6: Histogram showing the additional latency caused
by the Linux Kernel and the implemented kernel module in
contrast to the bare-metal implementation.

7 SECURITY EVALUATION
Next, we assess the confidentiality of data that is encrypted and
stored on our device against the abilities of a computationally bound
attacker presented in Section 3. The first three abilities ofA require
an analysis against a Chosen-Ciphertext Attack (CCA). In their pa-
per, Minematsu determines that if the underlying 𝑛-bit block cipher
is secure, then XEX offers only negligibly small CCA-advantage to
A, as long as the number of processed blocks is sufficiently smaller
than 2𝑛/2−1 [32]. We conclude that if this bound is satisfied by
choosing the block size𝑚𝑏 large enough with respect to the size of
the address space𝑚𝑎 , our construction is CCA-secure. It is to note
that, in the same paper, Minematsu presented a weakness of XEX.
However, this weakness has no impact on our design, as we do not
split the memory module into sectors and set 𝛼 = 2 to a constant
value.

The last two abilities ofA consider the consequences of physical
access to the device. Through possession of the memory module,
A can recover 𝑘𝑝𝑢𝑓 through evaluation of the PUF on chosen pa-
rameters. To successfully recover the key, knowledge of the value
and order of the (𝑚𝑟 /𝑚𝑑) PUF responses is necessary. Under the
assumption of an ideal PUF, when choosing the number of address-
able memory cells𝑚𝑎 sufficiently large, the probability of A being
able to single out the cells used for the generation of 𝑘𝑝𝑢𝑓 becomes
negligible. However, depending on the uniqueness of the PUF in
place, the responses of the memory cells might correlate, decreasing
both the entropy in the PUF response and the size of the search
space. To combat this, the amount of queried data (𝑚𝑟 /𝑚𝑑) must be
chosen large enough to provide sufficient entropy, and the number
of memory cells with unique responses with respect to the PUF
must be determined to calculate the security margin. Moreover,
by employing our random PUF cell selection, based on an inac-
cessible parameter 𝑘𝐼 , modeling attacks on PUFs can be mitigated.
The random choice of cells within a sufficiently large memory
module generates a broad set of uncorrelated challenge-response
pairs, which makes machine learning attacks as described in [38]
inapplicable. Effects within the PUF, such as the spatial correlation
between the memory cells, must be specifically analyzed for the
employed PUF [45]. In general, we assume a PUF to be resistant to
both mathematical and physical cloning. As the key is only stored
within the device and in volatile memory and re-generated after
powering on the device based on the externally provided secret

(𝑘𝐼 , 𝑣𝐼), theft of the device does not leak 𝑘𝑝𝑢𝑓 and, thus, provides
no advantage over the first three abilities of A.

Current cryptanalysis indicates only attacks on a reduced num-
ber of roundswhen utilizing thewell-studied ciphers PRINCE [19][34]
and SIMON [11] offered by our implementation. To support more
lightweight implementations, we combine 𝑘𝑝𝑢𝑓 with the externally
provided 𝑘𝐼 . We assume that 𝑘𝐼 , such as 𝑘𝑝𝑢𝑓 provides a sufficient
degree of entropy to be used as a cryptographic key.

8 PRIVACY-PRESERVING IN NEW
GENERATIONS OF MOBILE CELLULAR
NETWORKS

Our implementation is constructed in a manner that effectively pre-
vents unauthorized access to information, providing a significant
advantage in the construction of secure and dependable mobile
telecommunication networks. To guarantee extensive network cov-
erage, base stations are dispersed across diverse locations. A signif-
icant and inevitable vulnerability associated with this distribution
is the inability to secure base stations against unauthorized access.
Safeguarding sensitive user data is paramount for both the mobile
network operator and individual users. Base stations are responsi-
ble for processing, caching, and storing various types of sensitive
end-user data to provide low-latency performance or services to
consumers. The physical location of the cached data is generally
irrelevant to the end user, as long as the mobile service operates
smoothly. The implementation of approaches such as Open Radio
Access Network (RAN) further complicates the determination of
data locality, as components of the Distributed Unit of the RAN
can be virtualized at central or cell sites. Thus, it is increasingly
important to prioritize the protection of private user data. Our
FPGA-based architecture, incorporating PUFs, solves these issues
while also enhancing the overall site-induced physical security risks.
The existing base stations can easily integrate our architecture since
most of them already use FPGA technologies. The hardware-level
encryption provided by our approach is highly resistant to attacks,
making it extremely difficult for attackers to bypass the security
measures. Even if an attacker gains physical access to the base sta-
tion, the encryption keys are required to access the data encrypted
in memory.

9 CONCLUSION
In this work, we present a novel FPGA-based data-binding archi-
tecture using memory-based PUFs. Our architecture protects the
confidentiality of data stored on NVM connected to the FPGA,
and additionally binds the data to the memory module. Our de-
sign adopts a modular approach that enables customization of the
overall implementation. It supports different memory modules and
devices with different hardware resources in various use cases. Fur-
thermore, we introduce a novel technique to increase the resistance
against hardware attacks by generating random addresses used
for PUF-readout. The concept is presented in a proof-of-concept
implementation, demonstrated on five different devices, showing
excellent performance in terms of low latency and area consump-
tion. This implementation was tested on five different devices with
varying performance capabilities and the PL/PS interconnectivity

ASIA CCS ’24, July 1–5, 2024, Singapore, Singapore Florian Frank et al.

on three different CPUs. The evaluation further contains the eval-
uation of three different cryptographic ciphers implemented as
unrolled and round-based versions. To further improve our imple-
mentation and to take advantage of the AXI-streaming interface,
the architecture could be extended by a pipelining approach to allow
continuous reading and writing, which further reduces the latency,
but is not considered in this work due to the cost of significantly
higher area consumption. One further possibility for an outlook
on potential improvements is the reduction of Trusted Computing
Base (TCB) by masking mechanisms, as summarized in [40]. Finally,
further research is needed to investigate challenges related to the
robustness of PUFs, such as those arising from aging effects or
potential failures in the memory module hosting the PUF.

ACKNOWLEDGMENTS
This work has been partially funded by the German Research Foun-
dation – Deutsche Forschungsgemeinschaft (DFG), as part of the
Project “PUFMem: Intrinsic Physical Unclonable Functions from
Emerging Non-Volatile Memories” (project number 440182124).
This work has additionally been accomplished within the projects
“AUTOtech.agil” (FKZ01IS22088X) and “6G-RIC” (16KISK034). We
acknowledge the financial support for the projects by the Federal
Ministry of Education and Research of Germany (BMBF). At Vir-
ginia Tech, this project is partially supported by Commonwealth Cy-
bersecurity Initiative, by the National Science Foundation (NSF) un-
der grant 2153748, and by the Air Force Office of Scientific Research
under award number FA9550-22-1-0548. Any opinions, findings,
and conclusions or recommendations expressed in this material are
those of the author(s) and do not necessarily reflect the views of the
United States Air Force. This work has been partially supported by
the AMD Xilinx University Program (XUP). The authors would like
to thank Aaron Difilippo and Calvin Hong from Virginia Tech for
their contributions to three hardware-implemented cryptographic
ciphers utilized in this manuscript.

REFERENCES
[1] Inc. Advanced Micro Devices. 2021. System Integrated Logic Analyzer v1.1.

Retrieved April 15, 2024 from https://docs.xilinx.com/v/u/en-US/pg261-system-
ila

[2] Inc. Advanced Micro Devices. 2023. 7 Series Product Tables and Product Selection
Guide (XMP101). Retrieved April 15, 2024 from https://docs.xilinx.com/v/u/en-
US/7-series-product-selection-guide

[3] Inc. Advanced Micro Devices. 2023. AXI DMA v7.1 LogiCORE IP Product Guide.
Retrieved April 15, 2024 from https://docs.xilinx.com/r/en-US/pg021_axi_dma

[4] Nikolaos Athanasios Anagnostopoulos, Yufan Fan, Muhammad Umair Saleem,
Nico Mexis, Emiliia Gelóczi, Felix Klement, Florian Frank, André Schaller, Tolga
Arul, and Stefan Katzenbeisser. 2022. Testing Physical Unclonable Functions
Implemented on Commercial Off-the-Shelf NAND Flash Memories Using Pro-
gramming Disturbances. In 2022 IEEE 12th International Conference on Consumer
Electronics (ICCE-Berlin). IEEE, IEEE, 445 Hoes Lane, Piscataway, NJ 08854, USA,
1–9. https://doi.org/10.1109/ICCE-Berlin56473.2022.10021310

[5] JasonH. Anderson. 2010. A PUF design for secure FPGA-based embedded systems.
In 2010 15th Asia and South Pacific Design Automation Conference (ASP-DAC).
IEEE, IEEE, 445 Hoes Lane, Piscataway, NJ 08854, USA, 1–6. https://doi.org/10.
1109/ASPDAC.2010.5419927

[6] ARM. 2023. AMBA® AXI-Stream. Retrieved April 15, 2024 from http://aiweb.
techfak.uni-bielefeld.de/content/bworld-robot-control-software/

[7] ARM. 2023. LogiCORE IP Clocking Wizard v3.2. Retrieved April 15, 2024 from
https://docs.xilinx.com/v/u/en-US/clk_wiz_ds709

[8] Armin Babaei, Gregor Schiele, andMichael Zohner. 2022. Reconfigurable Security
Architecture (RESA) Based on PUF for FPGA-Based IoT Devices. Sensors 22, 15
(2022). https://doi.org/10.3390/s22155577

[9] Alexandra Balan, Titus Balan, Marcian Cirstea, and Florin Sandu. 2020. A PUF-
based cryptographic security solution for IoT systems on chip. EURASIP Journal

on Wireless Communications and Networking 2020, 1 (Nov. 2020), 231. https:
//doi.org/10.1186/s13638-020-01839-6

[10] Ray Beaulieu, Douglas Shors, Jason Smith, Stefan Treatman-Clark, Bryan Weeks,
and Louis Wingers. 2013. The SIMON and SPECK Families of Lightweight Block
Ciphers. Cryptology ePrint Archive, Paper 2013/404.

[11] Ray Beaulieu, Douglas Shors, Jason Smith, Stefan Treatman-Clark, Bryan Weeks,
and Louis Wingers. 2017. Notes on the design and analysis of SIMON and SPECK.
IACR Cryptol. ePrint Arch. (2017), 560. http://eprint.iacr.org/2017/560

[12] Christophe Bobda, Joel Mandebi Mbongue, Paul Chow, Mohammad Ewais, Naif
Tarafdar, Juan Camilo Vega, Ken Eguro, Dirk Koch, Suranga Handagala, Miriam
Leeser, Martin Herbordt, Hafsah Shahzad, Peter Hofste, Burkhard Ringlein, Jakub
Szefer, Ahmed Sanaullah, and Russell Tessier. 2022. The Future of FPGA Acceler-
ation in Datacenters and the Cloud. ACM Trans. Reconfigurable Technol. Syst. 15,
3, Article 34 (2022), 42 pages. https://doi.org/10.1145/3506713

[13] Julia Borghoff, Anne Canteaut, TimGüneysu, Elif Bilge Kavun, Miroslav Knezevic,
Lars R. Knudsen, Gregor Leander, Ventzislav Nikov, Christof Paar, Christian
Rechberger, Peter Rombouts, Søren S. Thomsen, and Tolga Yalçın. 2012. PRINCE –
A Low-Latency Block Cipher for Pervasive Computing Applications. In Advances
in Cryptology – ASIACRYPT 2012, Xiaoyun Wang and Kazue Sako (Eds.). Springer
Berlin Heidelberg, Berlin, Heidelberg, 208–225. https://doi.org/10.1007/978-3-
642-34961-4_14

[14] Christoph Bösch, Jorge Guajardo, Ahmad-Reza Sadeghi, Jamshid Shokrollahi, and
Pim Tuyls. 2008. Efficient Helper Data Key Extractor on FPGAs. In Cryptographic
Hardware and Embedded Systems – CHES 2008, Elisabeth Oswald and Pankaj
Rohatgi (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 181–197. https:
//doi.org/10.1007/978-3-540-85053-3_12

[15] Dušan Božilov, Maria Eichlseder, Miroslav Knežević, Baptiste Lambin, Gregor
Leander, Thorben Moos, Ventzislav Nikov, Shahram Rasoolzadeh, Yosuke Todo,
and FriedrichWiemer. 2021. PRINCEv2. In Selected Areas in Cryptography (Lecture
Notes in Computer Science), Orr Dunkelman, Jr. Jacobson, Michael J., and Colin
O’Flynn (Eds.). Springer International Publishing, Cham, 483–511. https://doi.
org/10.1007/978-3-030-81652-0_19

[16] Bertrand Cambou and Ying-Chen Chen. 2021. Tamper Sensitive Ternary ReRAM-
Based PUFs. In Intelligent Computing, Kohei Arai (Ed.). Springer International
Publishing, Cham, 1020–1040. https://doi.org/10.1007/978-3-030-80129-8_67

[17] David Castells-Rufas, Vinh Ngo, Juan Borrego-Carazo, Marc Codina, Carles
Sanchez, Debora Gil, and Jordi Carrabina. 2022. A Survey of FPGA-Based Vision
Systems for Autonomous Cars. IEEE Access 10 (2022), 132525–132563. https:
//doi.org/10.1109/ACCESS.2022.3230282

[18] Hao Chen, Yu Chen, and Douglas H. Summerville. 2011. A Survey on the Applica-
tion of FPGAs for Network Infrastructure Security. IEEE Communications Surveys
& Tutorials 13, 4 (2011), 541–561. https://doi.org/10.1109/SURV.2011.072210.00075

[19] Patrick Derbez and Léo Perrin. 2015. Meet-in-the-Middle Attacks and Structural
Analysis of Round-Reduced PRINCE. In Fast Software Encryption, Gregor Leander
(Ed.). Springer Berlin Heidelberg, Berlin, Heidelberg, 190–216. https://doi.org/
10.1007/978-3-662-48116-5_10

[20] M. E. S. Elrabaa, M. Al-Asli, andM. Abu-Amara. 2021. Secure Computing Enclaves
Using FPGAs. IEEE Transactions on Dependable and Secure Computing 18, 2 (2021),
593–604. https://doi.org/10.1109/TDSC.2019.2933214

[21] Michał Fularz, Dominik Pieczyński, and Marek Kraft. 2017. The performance
comparison of the DMA subsystem of the Zynq SoC in bare metal and Linux
applications. Measurement Automation Monitoring 63, 5 (2017), 189–191.

[22] Sezer Gören, Özgür Özkurt, Abdullah Yıldız, and H. Fatih Uğurdağ. 2011. FPGA
bitstream protection with PUFs, obfuscation, and multi-boot. In 6th International
Workshop on Reconfigurable Communication-Centric Systems-on-Chip (ReCoSoC).
IEEE, IEEE, 445 Hoes Lane, Piscataway, NJ 08854, USA, 1–2. https://doi.org/10.
1109/ReCoSoC.2011.5981541

[23] Matthias Hiller, Ludwig Kürzinger, and Georg Sigl. 2020. Review of error correc-
tion for PUFs and evaluation on state-of-the-art FPGAs. Journal of Cryptographic
Engineering 10, 3 (Sept. 2020), 229–247. https://doi.org/10.1007/s13389-020-
00223-w

[24] Brian Jarvis and Kris Gaj. 2017. Selection of an error-correcting code for FPGA-
based physical unclonable functions. In 2017 International Conference on Field
Programmable Technology (ICFPT). IEEE, IEEE, IEEE, 445 Hoes Lane, Piscataway,
NJ 08854, USA, 243–246. https://doi.org/10.1109/FPT.2017.8280151

[25] Mohammad Nasim Imtiaz Khan, Chak Yuen Cheng, Sung Hao Lin, Abdullah Ash-
Saki, and Swaroop Ghosh. 2021. A Morphable Physically Unclonable Function
and True Random Number Generator Using a Commercial Magnetic Memory.
Journal of Low Power Electronics and Applications 11, 1 (March 2021), 5. https:
//doi.org/10.3390/jlpea11010005

[26] Somayeh Kianpisheh and Tarik Taleb. 2023. A Survey on In-Network Computing:
Programmable Data Plane and Technology Specific Applications. IEEE Communi-
cations Surveys & Tutorials 25, 1 (2023), 701–761. https://doi.org/10.1109/COMST.
2022.3213237

[27] Stephan Kleber, Florian Unterstein, Matthias Hiller, Frank Slomka, Matthias
Matousek, Frank Kargl, and Christoph Bösch. 2018. Secure Code Execution: A
Generic PUF-Driven System Architecture. In Information Security (Lecture Notes
in Computer Science), Liqun Chen, Mark Manulis, and Steve Schneider (Eds.).

https://docs.xilinx.com/v/u/en-US/pg261-system-ila
https://docs.xilinx.com/v/u/en-US/pg261-system-ila
https://docs.xilinx.com/v/u/en-US/7-series-product-selection-guide
https://docs.xilinx.com/v/u/en-US/7-series-product-selection-guide
https://docs.xilinx.com/r/en-US/pg021_axi_dma
https://doi.org/10.1109/ICCE-Berlin56473.2022.10021310
https://doi.org/10.1109/ASPDAC.2010.5419927
https://doi.org/10.1109/ASPDAC.2010.5419927
http://aiweb.techfak.uni-bielefeld.de/content/bworld-robot-control-software/
http://aiweb.techfak.uni-bielefeld.de/content/bworld-robot-control-software/
https://docs.xilinx.com/v/u/en-US/clk_wiz_ds709
https://doi.org/10.3390/s22155577
https://doi.org/10.1186/s13638-020-01839-6
https://doi.org/10.1186/s13638-020-01839-6
http://eprint.iacr.org/2017/560
https://doi.org/10.1145/3506713
https://doi.org/10.1007/978-3-642-34961-4_14
https://doi.org/10.1007/978-3-642-34961-4_14
https://doi.org/10.1007/978-3-540-85053-3_12
https://doi.org/10.1007/978-3-540-85053-3_12
https://doi.org/10.1007/978-3-030-81652-0_19
https://doi.org/10.1007/978-3-030-81652-0_19
https://doi.org/10.1007/978-3-030-80129-8_67
https://doi.org/10.1109/ACCESS.2022.3230282
https://doi.org/10.1109/ACCESS.2022.3230282
https://doi.org/10.1109/SURV.2011.072210.00075
https://doi.org/10.1007/978-3-662-48116-5_10
https://doi.org/10.1007/978-3-662-48116-5_10
https://doi.org/10.1109/TDSC.2019.2933214
https://doi.org/10.1109/ReCoSoC.2011.5981541
https://doi.org/10.1109/ReCoSoC.2011.5981541
https://doi.org/10.1007/s13389-020-00223-w
https://doi.org/10.1007/s13389-020-00223-w
https://doi.org/10.1109/FPT.2017.8280151
https://doi.org/10.3390/jlpea11010005
https://doi.org/10.3390/jlpea11010005
https://doi.org/10.1109/COMST.2022.3213237
https://doi.org/10.1109/COMST.2022.3213237

Secure Data-Binding in FPGA-based Hardware Architectures utilizing PUFs ASIA CCS ’24, July 1–5, 2024, Singapore, Singapore

Springer International Publishing, Cham, 25–46. https://doi.org/10.1007/978-3-
319-99136-8_2

[28] Miriam Leeser, Suranga Handagala, and Michael Zink. 2021. FPGAs in the Cloud.
Computing in Science & Engineering 23, 6 (2021), 72–76. https://doi.org/10.1109/
MCSE.2021.3127288

[29] Abhranil Maiti, Raghunandan Nagesh, Anand Reddy, and Patrick Schaumont.
2009. Physical unclonable function and true random number generator: a com-
pact and scalable implementation. In Proceedings of the 19th ACM Great Lakes
Symposium on VLSI (Boston Area, MA, USA) (GLSVLSI ’09). Association for
Computing Machinery, New York, NY, USA, 425–428. https://doi.org/10.1145/
1531542.1531639

[30] Priyanka Mall, Ruhul Amin, Ashok Kumar Das, Mark T. Leung, and Kim-
Kwang Raymond Choo. 2022. PUF-Based Authentication and Key Agreement Pro-
tocols for IoT, WSNs, and Smart Grids: A Comprehensive Survey. IEEE Internet of
Things Journal 9, 11 (2022), 8205–8228. https://doi.org/10.1109/JIOT.2022.3142084

[31] Nathan Menhorn. 2018. External secure storage using the PUF. Retrieved April
15, 2024 from https://docs.amd.com/r/en-US/xapp1333-external-storage-puf

[32] Kazuhiko Minematsu. 2007. Improved Security Analysis of XEX and LRWModes.
In Selected Areas in Cryptography, Eli Biham and Amr M. Youssef (Eds.). Springer
Berlin Heidelberg, Berlin, Heidelberg, 96–113. https://doi.org/10.1007/978-3-
540-74462-7_8

[33] Paul Newson. 2018. The application of FPGAs for wireless base-station connec-
tivity. https://docs.amd.com/v/u/en-US/wp450-base-stn-connect

[34] Raluca Posteuca, Cristina-Loredana Duta, and Gabriel Negara. 2015. New ap-
proaches for round-reduced PRINCE cipher cryptanalysis. Proceedings of the
Romanian Academy, Series A 16 (2015), 253–264.

[35] Pravin Prabhu, Ameen Akel, Laura M. Grupp, Wing-Kei S. Yu, G. Edward Suh,
Edwin Kan, and Steven Swanson. 2011. Extracting Device Fingerprints from Flash
Memory by Exploiting Physical Variations. In Trust and Trustworthy Comput-
ing, Jonathan M. McCune, Boris Balacheff, Adrian Perrig, Ahmad-Reza Sadeghi,
Angela Sasse, and Yolanta Beres (Eds.). Springer Berlin Heidelberg, Berlin, Hei-
delberg, 188–201. https://doi.org/10.1007/978-3-642-21599-5_14

[36] Jerome Rampon, Renaud Perillat, Lionel Torres, Pascal Benoit, Giorgio Di Natale,
and Mario Barbareschi. 2015. Digital Right Management for IP Protection. In 2015
IEEE Computer Society Annual Symposium on VLSI. IEEE, IEEE, 445 Hoes Lane,
Piscataway, NJ 08854, USA, 200–203. https://doi.org/10.1109/ISVLSI.2015.127

[37] Phillip Rogaway. 2004. Efficient Instantiations of Tweakable Blockciphers and
Refinements to Modes OCB and PMAC. In Advances in Cryptology - ASIACRYPT
2004, Pil Joong Lee (Ed.). Springer Berlin Heidelberg, Berlin, Heidelberg, 16–31.
https://doi.org/10.1007/978-3-540-30539-2_2

[38] Ulrich Rührmair and Jan Sölter. 2014. PUF modeling attacks: An introduction and
overview. In 2014 Design, Automation & Test in Europe Conference & Exhibition
(DATE). IEEE, IEEE, 445 Hoes Lane, Piscataway, NJ 08854, USA, 1–6. https:
//doi.org/10.7873/DATE.2014.361

[39] Sadman Sakib, Aleksandar Milenković, Md Tauhidur Rahman, and Biswajit Ray.
2020. An Aging-Resistant NAND Flash Memory Physical Unclonable Function.
IEEE Transactions on Electron Devices 67, 3 (2020), 937–943. https://doi.org/10.
1109/TED.2020.2968272

[40] Martin Schmid and Elif Bilge Kavun. 2023. Analyzing ModuloNET Against
Transition Effects. In 2023 IEEE International Conference on Omni-layer Intelligent
Systems (COINS). IEEE, IEEE, 445 Hoes Lane, Piscataway, NJ 08854, USA, 1–6.
https://doi.org/10.1109/COINS57856.2023.10189305

[41] Johanna Sepulveda, Felix Willgerodt, and Michael Pehl. 2018. SEPUFSoC: Using
PUFs for Memory Integrity and Authentication in Multi-Processors System-on-
Chip. In Proceedings of the 2018 on Great Lakes Symposium on VLSI (Chicago, IL,
USA) (GLSVLSI ’18). Association for Computing Machinery, New York, NY, USA,
39–44. https://doi.org/10.1145/3194554.3194562

[42] Joachim Strömbergson. 2023. aes. Retrieved April 15, 2024 from https://github.
com/secworks/aes

[43] Manan Suri and Supriya Chakraborty. 2018. High-Quality PUF Extraction from
Commercial RRAM Using Switching-Time Variability. In 2018 IEEE International
Memory Workshop (IMW). IEEE, IEEE, 445 Hoes Lane, Piscataway, NJ 08854, USA,
1–4. https://doi.org/10.1109/IMW.2018.8388836

[44] Yinglei Wang, Wing-kei Yu, ShuoWu, Greg Malysa, G. Edward Suh, and Edwin C.
Kan. 2012. Flash Memory for Ubiquitous Hardware Security Functions: True
Random Number Generation and Device Fingerprints. In 2012 IEEE Symposium
on Security and Privacy. IEEE, IEEE, 445 Hoes Lane, Piscataway, NJ 08854, USA,
33–47. https://doi.org/10.1109/SP.2012.12

[45] Florian Wilde, Berndt M. Gammel, and Michael Pehl. 2018. Spatial Correlation
Analysis on Physical Unclonable Functions. IEEE Transactions on Information
Forensics and Security 13, 6 (2018), 1468–1480. https://doi.org/10.1109/TIFS.2018.
2791341

[46] Ke Xia, Yukui Luo, Xiaolin Xu, and Sheng Wei. 2021. SGX-FPGA: Trusted Exe-
cution Environment for CPU-FPGA Heterogeneous Architecture. In 2021 58th
ACM/IEEE Design Automation Conference (DAC). IEEE, IEEE, 445 Hoes Lane,
Piscataway, NJ 08854, USA, 301–306. https://doi.org/10.1109/DAC18074.2021.
9586207

[47] Wenjie Xiong, André Schaller, Nikolaos Athanasios Anagnostopoulos, Muham-
mad Umair Saleem, Sebastian Gabmeyer, Stefan Katzenbeisser, and Jakub Szefer.
2021. DRAM PUFs in Commodity Devices. IEEE Design & Test 38, 3 (2021), 76–83.
https://doi.org/10.1109/MDAT.2021.3063370

[48] Shaza Zeitouni, Jo Vliegen, Tommaso Frassetto, Dirk Koch, Ahmad-Reza Sadeghi,
and Nele Mentens. 2021. Trusted Configuration in Cloud FPGAs. In 2021 IEEE
29th Annual International Symposium on Field-Programmable Custom Computing
Machines (FCCM). IEEE, IEEE, 445 Hoes Lane, Piscataway, NJ 08854, USA, 233–241.
https://doi.org/10.1109/FCCM51124.2021.00036

[49] Jiliang Zhang, Yaping Lin, Yongqiang Lyu, and Gang Qu. 2015. A PUF-FSM
Binding Scheme for FPGA IP Protection and Pay-Per-Device Licensing. IEEE
Transactions on Information Forensics and Security 10, 6 (2015), 1137–1150. https:
//doi.org/10.1109/TIFS.2015.2400413

[50] Ji-Liang Zhang, Wei-Zheng Wang, Xing-Wei Wang, and Zhi-Hua Xia. 2017.
Enhancing security of FPGA-based embedded systems with combinational
logic binding. Journal of Computer Science and Technology 32 (2017), 329–339.
https://doi.org/10.1007/s11390-017-1700-8

[51] Le Zhang, Zhi Hui Kong, Chip-Hong Chang, Alessandro Cabrini, and Guido
Torelli. 2014. Exploiting Process Variations and Programming Sensitivity of
Phase Change Memory for Reconfigurable Physical Unclonable Functions. IEEE
Transactions on Information Forensics and Security 9, 6 (2014), 921–932. https:
//doi.org/10.1109/TIFS.2014.2315743

[52] Xian Zhang, Guangyu Sun, Yaojun Zhang, Yiran Chen, Hai Li, Wujie Wen, and
Jia Di. 2016. A novel PUF based on cell error rate distribution of STT-RAM. In
2016 21st Asia and South Pacific Design Automation Conference (ASP-DAC). IEEE,
IEEE, 445 Hoes Lane, Piscataway, NJ 08854, USA, 342–347. https://doi.org/10.
1109/ASPDAC.2016.7428035

[53] Mark Zhao, Mingyu Gao, and Christos Kozyrakis. 2022. ShEF: Shielded Enclaves
for Cloud FPGAs. In Proceedings of the 27th ACM International Conference on Ar-
chitectural Support for Programming Languages and Operating Systems (Lausanne,
Switzerland) (ASPLOS ’22). Association for Computing Machinery, New York,
NY, USA, 1070–1085. https://doi.org/10.1145/3503222.3507733

[54] Jason X. Zheng, Dongfang Li, and Miodrag Potkonjak. 2014. A secure and
unclonable embedded system using instruction-level PUF authentication. In
2014 24th International Conference on Field Programmable Logic and Applications
(FPL). IEEE, IEEE, IEEE, 445 Hoes Lane, Piscataway, NJ 08854, USA, 1–4. https:
//doi.org/10.1109/FPL.2014.6927428

https://doi.org/10.1007/978-3-319-99136-8_2
https://doi.org/10.1007/978-3-319-99136-8_2
https://doi.org/10.1109/MCSE.2021.3127288
https://doi.org/10.1109/MCSE.2021.3127288
https://doi.org/10.1145/1531542.1531639
https://doi.org/10.1145/1531542.1531639
https://doi.org/10.1109/JIOT.2022.3142084
https://docs.amd.com/r/en-US/xapp1333-external-storage-puf
https://doi.org/10.1007/978-3-540-74462-7_8
https://doi.org/10.1007/978-3-540-74462-7_8
https://docs.amd.com/v/u/en-US/wp450-base-stn-connect
https://doi.org/10.1007/978-3-642-21599-5_14
https://doi.org/10.1109/ISVLSI.2015.127
https://doi.org/10.1007/978-3-540-30539-2_2
https://doi.org/10.7873/DATE.2014.361
https://doi.org/10.7873/DATE.2014.361
https://doi.org/10.1109/TED.2020.2968272
https://doi.org/10.1109/TED.2020.2968272
https://doi.org/10.1109/COINS57856.2023.10189305
https://doi.org/10.1145/3194554.3194562
https://github.com/secworks/aes
https://github.com/secworks/aes
https://doi.org/10.1109/IMW.2018.8388836
https://doi.org/10.1109/SP.2012.12
https://doi.org/10.1109/TIFS.2018.2791341
https://doi.org/10.1109/TIFS.2018.2791341
https://doi.org/10.1109/DAC18074.2021.9586207
https://doi.org/10.1109/DAC18074.2021.9586207
https://doi.org/10.1109/MDAT.2021.3063370
https://doi.org/10.1109/FCCM51124.2021.00036
https://doi.org/10.1109/TIFS.2015.2400413
https://doi.org/10.1109/TIFS.2015.2400413
https://doi.org/10.1007/s11390-017-1700-8
https://doi.org/10.1109/TIFS.2014.2315743
https://doi.org/10.1109/TIFS.2014.2315743
https://doi.org/10.1109/ASPDAC.2016.7428035
https://doi.org/10.1109/ASPDAC.2016.7428035
https://doi.org/10.1145/3503222.3507733
https://doi.org/10.1109/FPL.2014.6927428
https://doi.org/10.1109/FPL.2014.6927428

	Abstract
	1 Introduction
	1.1 Contributions
	1.2 Paper Organization

	2 Related Work
	3 Attacker Model
	4 Design and Architecture
	4.1 Processing System (PS)
	4.2 PS/PL Interconnection
	4.3 Programming Logic (PL)

	5 Implementation
	6 Performance Evaluation
	7 Security Evaluation
	8 Privacy-preserving in new generations of mobile cellular networks
	9 Conclusion
	Acknowledgments
	References

