
INTOS: Persistent Embedded Operating System and Language Support
for Multi-threaded Intermittent Computing

Yilun Wu*, Byounguk Min†, Mohannad Ismail‡, Wenjie Xiong‡, Changhee Jung†, Dongyoon Lee*

*Stony Brook University, †Purdue University, ‡Virginia Tech

Abstract
This paper introduces INTOS, an embedded operating sys-

tem and language support for multi-threaded intermittent com-
puting on a battery-less energy-harvesting platform. INTOS
simplifies programming with a traditional “thread” and a
“transaction” with automatic undo-logging of persistent ob-
jects in non-volatile memory. While INTOS allows the use
of volatile memory for performance and energy efficiency,
conventional transactions do not ensure crash consistency
of volatile register and memory states. To address this chal-
lenge, INTOS proposes a novel replay-and-bypass approach,
eliminating the need for users to checkpoint volatile states.
Upon power restoration, INTOS recovers non-volatile states
by undoing the updates of power-interrupted transactions. To
reconstruct volatile states, INTOS restarts each thread by-
passing committed transactions and system calls by returning
recorded results without re-execution. INTOS seeks to build
a persistent, full-fledged embedded OS, supporting priority-
based preemptive multithreading while ensuring crash con-
sistency even if power failure occurs during a system call or
while some threads are blocked. Experiments on a commodity
platform MSP430FR5994 show that when subjected to an ex-
treme power failure frequency of 1 ms, INTOS demonstrated
1.24x lower latency and 1.29x less energy consumption than
prior work leveraging idempotent processing. This trend turns
out to be more pronounced on Apollo 4 Blue Plus.

1 Introduction

Instead of using a battery, energy-harvesting systems [24, 30,
40, 54, 57] capture necessary energy from ambient sources
(e.g., solar [27], radio frequency [35]) and leverage a small ca-
pacitor as energy storage. The ability to offer sustainable and
long-term deployment without the need for battery replace-
ments has unlocked a diverse range of emerging applications
such as body implants [29], wearables [61], wildlife track-
ing [67], road monitoring [26], and satellites [5].

Since the capacitor undergoes cycles of depletion and
recharge, program execution on an energy-harvesting system
is inherently intermittent, involving repetitive power interrup-

tions and resumptions. The nature of intermittent computing
necessitates crash consistency to guarantee correct resumption
throughout frequent power cycles.

An operating system (OS) offers essential services to appli-
cation developers (users), including multi-threading, queues,
semaphores, events, and timers, to assist in creating feature-
rich applications. To illustrate, widely-used embedded OSes
like FreeRTOS [3] have streamlined the development of di-
verse embedded applications. Unfortunately, this level of OS-
/runtime support is absent in intermittent computing envi-
ronments. For instance, ImmortalThreads [65] offers a tiny
runtime supporting (pseudo) threads with cooperative schedul-
ing; however, its capabilities are limited. It lacks a wait-list for
blocking threads. Its event loop is based on polling, wasting
microcontroller (MCU) cycles. Many task-based solutions
such as Ink [64] and CatNap [52] do not support threads.

There arises a growing need for a more robust OS tai-
lored specifically for intermittent computing. Advancements
in hardware technologies, such as ultra-low power microcon-
trollers like TI’s MSP430FR [6] and ARM’s Cortex-M4 [2],
as well as non-volatile memory (NVM) like FRAM [12] and
MRAM [10], have empowered intermittent applications to per-
form more computations. Emerging intermittent applications
are becoming increasingly complex, incorporating features
like multi-threading, communication, synchronization, and
responsiveness to events. We started witnessing machine and
deep learning tasks [16, 28, 39, 48] on energy-harvesting plat-
forms. Despite these advancements, users are compelled to
manage this complexity without adequate OS support.

Unfortunately, the current crash consistency solutions are
hard to adopt or result in inefficient designs when applied to
the development of persistent embedded OS kernels. Some ap-
proaches [22,31,49,52,53,56,64] require users to decompose
applications into a task graph, demanding each task to inher-
ently possess failure-atomicity and idempotence. This poses
considerable challenges for programmers [38, 65]. Breaking
down a kernel system call, such as creating a thread or block-
ing on a full queue, into tasks is not trivial. Other compiler-
based solutions [15, 18, 19, 37, 47, 50, 55, 62] automatically
divide programs (e.g., into idempotent regions) and incor-

porate checkpoints, requiring little to no user annotations.
Thus, they may be used to build a persistent OS. Yet, many
(except Chinchilla [50]) assume execution solely on NVM,
overlooking potential advantages offered by volatile memory.

This paper introduces INTOS, a new persistent full-fledged
embedded OS accompanied by language support for multi-
threaded intermittent computing (§4). To ease intermittent
application programming, INTOS offers a traditional “thread”
along with a priority-based preemptive scheduler. INTOS also
allows users to define a standard “transaction” with automatic
undo-logging to ensure the crash consistency of persistent
objects residing in NVM, akin to a widely adopted Intel’s Per-
sistent Memory Programming Kit (PMDK) [7]. INTOS places
program stacks, encompassing local variables and function
frames, in volatile memory to improve performance and en-
ergy efficiency. However, their crash consistency in the event
of a power failure is not safeguarded by transactions. The
absence of volatile states (e.g., stacks) makes it impossible to
simply resume from the beginning of a transaction.

To address this challenge, INTOS proposes a new replay-
and-bypass approach (§5). Upon power restoration, INTOS
recovers non-volatile states by undoing the updates of power-
interrupted transactions. To reconstruct volatile states, it then
restarts each thread from the beginning while bypassing com-
mitted transactions and system calls by returning recorded
results without re-execution. This approach is grounded in
the insight that reconstructing the volatile states with replay-
and-bypass is more energy-efficient, compared to alternatives
checkpointing volatile states to NVM—since NVM writes are
the most energy-consuming in the instruction set architecture.

In particular, INTOS provides a programming model based
on Rust, leveraging Rust’s type system to enforce various
programming rules (§6). These rules are designed to ensure
crash consistency: e.g., the prohibition of modifications to
persistent objects outside of transactions. The adaptability
of this programming model has been showcased through the
successful implementation of the INTOS kernel, featuring
multithreading, queues, semaphores, events, and timers.

We evaluate INTOS with three single-threaded and eight
multi-threaded applications, including those ported from
RIoTBench [58], an IoT/Edge stream processing bench-
mark for real city sensing and fitness sensing data, on
MSP430FR5994 [6] and Apollo 4 Blue Plus [1]. We compare
INTOS with Ratchet [62] where compiler-based idempotent
processing is applied in both the INTOS kernel and appli-
cation. On the MSP430FR platform without power failures,
INTOS exhibited 1.65x lower latency and 1.85x less energy,
compared to Ratchet. Even when subjected to an extreme
power failure frequency of 1 ms, INTOS demonstrated 1.24x
lower latency and 1.29x less energy overhead. This trend
became more pronounced on the Apollo 4 platform.

This paper makes the following contributions:
• To the best of our knowledge, INTOS is the first persistent

embedded OS that supports priority-based preemptive mul-

Volatile Memory
(e.g., SRAM)Regs

Non-Volatile Memory
(e.g., FRAM)

MCU

CapacitorHarvester

Figure 1: An architecture of energy harvesting platforms (e.g.,
MSP430FR). Registers and SRAM (blue boxes) are volatile.

tithreading and other core features, tailored for intermittent
computing with frequent power failures.

• INTOS combines transactional programming with a new
replay-and-bypass recovery mechanism to ensure whole-
system crash consistency, encompassing both volatile and
non-volatile memory states at both user and kernel levels.

• INTOS introduces a Rust-based programming model en-
suring crash consistency through the proposed transactions
and replay-and-bypass recovery mechanisms.

• INTOS is to our best knowledge the first intermittent system
that is evaluated with multithreaded applications.

2 Background

This section briefly discusses intermittent computing, embed-
ded OS, and transactions.

2.1 Intermittent Computing

Execution on an energy-harvesting platform is intermittent,
i.e., it abruptly halts upon the depletion of the capacitor and
resumes after recharging, typically to the full capacitance.
This implies that the program is often power-interrupted, and
therefore intermittent computing requires to ensure crash con-
sistency for correct recovery across frequent power cycles.

Figure 1 depicts an architecture of energy harvesting plat-
forms available in TI MSP430 [6] or Ambiq Apollo 4 [1].
The energy harvester gathers ambient energy (e.g., solar, RF)
and stores it in a capacitor. Capacitor sizes typically vary
from a few to several hundred microfarads (µF). For refer-
ence, WISP [57] uses 47 µF. The computing components
include an ultra-low power microcontroller (MCU) along
with both volatile memory (e.g., SRAM) and non-volatile
memory (e.g., FRAM [12] or MRAM [10]). For instance,
the MSP430FR5994 features a 16 MHz MCU with 8KB
SRAM and 256KB FRAM. Registers and SRAM states (blue
boxes) are lost upon a power outage. Previous solutions (§3)
have suggested diverse approaches to maintaining the crash
consistency of data stored in registers, volatile memory, and
non-volatile memory across a power cycle.

Prior Works Crash Consistency Multithreads? Queues? Semaphores? Events? Timers? Prog. Burden? Volatile Mem?

Alpaca [49], Coala [53], MayFly [31] manual task decomposition no (tasks) no no no no high yes
Chain [22] manual task decomposition no (tasks) limitedly no no no high yes
Coati [56], Ink [64] manual task decomposition no (tasks) no no limitedly no high yes
CatNap [52] manual task decomposition no (tasks) limitedly no limitedly no high yes

Ratchet [62], WARio [37] idempotent processing no no no no no none, very low no
Chinchilla [50] ckpt & undo-logging no no no no no none, very low yes
HarvOS [15], RockClimb [19] static energy analysis no no no no no none, very low no
TICS [38] ckpt & undo-logging no no no no no low no
ImmortalThread [65] ckpt & micro-continuation yes (pseudo-stackful) no limitedly limitedly no low no

INTOS (ours) replay & undo-logging yes (stackful) yes yes yes yes medium (transactions) yes (replay)

Table 1: A comparison of the main features of INTOS with prior intermittent computing solutions.

2.2 Embedded Operating Systems
Embedded OSs [3,13,14,25,41,42] are a specialized software
layer that provides essential services for the target embedded
system. They empower users (application developers) to cre-
ate applications with rich features using a conventional thread-
based programming model, even within resource-constrained
environments. For instance, FreeRTOS [3], widely recognized
as one of the most adopted, supports (1) multi-threading with
a priority-based preemptive scheduler; (2) synchronization
(e.g., semaphores) and communication (e.g., queues) among
threads; (3) dynamic memory allocation; and (4) software
timers. An embedded OS is intimately linked with the appli-
cation code and is typically included as part of the firmware
image. Existing embedded OS kernels are not designed to be
crash-consistent and do not support intermittent computing.

2.3 Transactions for Non-volatile Memory
Transactions stand out as a widely adopted programming
model for NVM, as demonstrated by Intel’s PMDK [7] for
Optane memory [4]. Users can allocate a persistent object
using a non-volatile memory allocator. A transaction employs
undo logging (or redo logging) to ensure failure-atomicity
(the “all-or-nothing” semantic) for operations executed during
the transaction. Transactional programming has demonstrated
success in the development of complex software such as per-
sistent memchached [9] and redis [8].

3 Related Work

This section initially emphasizes the absence of essential OS
features in prior solutions (Table 1) and then delves into the
challenges associated with applying existing crash consis-
tency solutions to design persistent OS services.

No OS exists for intermittent computing. As highlighted in
the middle five columns of Table 1, current intermittent pro-
cessing runtimes lack essential features present in modern em-
bedded OSes. ImmortalThreads [65], for example, introduces
(pseudo) multithreading with “non-blocking” spin-locks and
event buffers. Spinning results in inefficient utilization of
MCU cycles. To support “blocking” semaphores, queues,

event groups, and software timers in intermittent computing,
an OS/runtime should maintain a run-queue, wait-queues, and
other relevant kernel metadata in a crash-consistent manner.
ImmortalThreads (its runtime) does not offer them.

We believe ImmortalThreads can be extended to implement
such missing kernel features using its micro-continuation
approach. However, we expect ImmortalThreads would suf-
fer from two fundamental problems. First, ImmortalThreads
would incur high performance overhead. Unlike those
hardware-based roll-forward solutions [17, 21, 36, 51, 66] that
detect impending power failure and save registers to resume
from the failure point, ImmortalThreads does not (cannot)
sense the dying voltage. Thus, it ends up persisting a pro-
gram counter in every store instruction to enable roll-forward
recovery (micro-continuation). Second, micro-continuation
only works for non-volatile memory and excludes volatile
SRAM available in commodity energy harvesting systems,
thereby losing a great opportunity to enable more energy-
efficient intermittent computing. JustDo logging [34], from
which the micro-continuation idea is inspired, also requires
the entire memory hierarchy to be fully persistent. We discuss
ImmortalThreads’ potential high overhead later in §10.

On the other hand, Ink [64], Coati [56], and Catnap [52]
offers partial support for task-based event-driven runtimes, yet
they do not accommodate threads and demand a task-based
programming model, which we explain next.
Manual task decomposition adds programming burden.
For crash consistency, several prior solutions [22,31,49,52,53,
56,64] require users to decompose an application into a graph
of “tasks”. Each task is compelled to inherently guarantee fail-
ure atomicity and idempotence in the face of a power failure,
leading to considerable programming challenges and design
complexities. Some runtime systems employ a cooperative
scheduler to execute multiple tasks. However, the manual
task decomposition shifts the responsibility of ensuring crash
consistency onto users. This has been demonstrated to be a
significant burden for programmers [38, 65]. For example,
breaking down a kernel system call, such as creating a thread
or blocking on a full queue, into tasks is far from trivial.

Within the task-based model, several new features have
been introduced. For example, Alpaca [49] suggests task pri-
vatization, creating a volatile copy of shared non-volatile vari-

ables before entering each task. A task’s local computation
can run on volatile memory. Upon task completion, updates to
shared variables are committed to NVM in a double-buffered
manner. Chain [22] abstracts inter-task variable passing with
the use of a persistent queue; Ink [64] and Coati [56] sup-
port event-driven programming; and CatNap [52] adaptively
schedules tasks based on task priority, energy consumption,
current energy level, and charging rate.

Automatic checkpointing often does not consider volatile
memory. Several works [15, 19, 37, 47, 50, 55, 62] have intro-
duced compiler support to automatically partition a program
into multiple regions and insert checkpointing at the bound-
aries of these regions. Users require little to no annotations,
so they can be used to build persistent OS services. Our evalu-
ation (§10) includes a comparison against Ratchet [62] idem-
potent processing. However, many compiler-based solutions
assume a program execution solely on non-volatile memory,
foregoing the potential performance and energy efficiency
benefits that volatile memory could provide. Experiments
with MSP430FR5994 (§10.1) show that executing our 11
benchmarks entirely in non-volatile memory (FRAM) results
in 1.11x latency and 1.16x energy overheads compared to run-
ning them entirely in volatile memory (SRAM). In this con-
text, only live-in (volatile) registers necessitate checkpointing
at a region boundary. A notable exception is Chinchilla [50]
which maintains volatile and non-volatile stacks, yet it still
involves frequent checkpoints of stacks to NVM.

Ratchet [62] divides a program into idempotent regions [23,
43, 45, 46] with no write-after-read dependencies within a re-
gion. Chinchilla [50] selectively skips certain checkpoints
based on energy conditions. WARio [37] reduces the num-
ber of idempotent regions by reordering instructions and in-
corporating a loop optimization. Differently, HarvOS [15]
partitions a program into regions where the energy required
to complete that region is less than the energy buffer size.
RockClimb [19] checks the energy level at the region bound-
ary and only proceeds if there is sufficient energy. On the
other hand, TICS [38] and ImmortalThreads [65] leverage a
compiler for checkpoint instrumentation without region par-
titioning. TICS employs stack segmentation, where only a
working stack (and registers) is checkpointed in NVM via a
two-phase commit. ImmortalThreads introduces micro con-
tinuation, which checkpoints every memory update, ensuring
the idempotence of the execution until the next checkpoint
(store).

Other issues Prior works also address data timeliness [31,38,
52,64], event-driven programming model [38,52,56,64], and
others. Surbatovich et al. [59, 60] use Rust’s type systems for
data freshness checking and crash consistency. Hardwawre
support [20, 32, 36, 44, 63, 68] also exists.

Volatile Memory
(eg, stack, local var.)Regs

Non-volatile Memory
(eg, persistent objs.)

MCU

La
ng

ua
ge

O
S

H
W

Priority-based
Preemptive
scheduler

Persistent objsVolatile objs
Transaction (TX1)Thread TX2

…syscall

Semaphores

Timers

Events

Mem. Alloc.

Undo-logging TXsReplay-and-bypass
Crash Consistency

Queues

TX

Figure 2: Overview of INTOS

4 Overview of INTOS

Figure 2 shows an overview of INTOS, embedded OS and
language support for multi-threaded intermittent computing.

4.1 Multithreading and Transactions
Threads To ease the aforementioned programming burden
and keep the same embedded application programming model,
INTOS supports a traditional stackful “thread” as a program-
ming unit and a schedulable entity, similar to commodity
embedded OSes (e.g., FreeRTOS1). Users can generate mul-
tiple threads through the system call sys_create_thread
(Table 2). These threads run concurrently. Users can assign
different priorities for threads. The INTOS scheduler em-
ploys a priority-based preemptive scheduling policy, a widely
adopted approach for real-time capabilities. More discussion
on INTOS’s real-time capability will follow in §8.

Transactions To facilitate the utilization of both volatile and
non-volatile memories while simplifying crash-consistent pro-
gramming, INTOS offers a conventional “transaction” with
automatic undo-logging to ensure crash-atomicity of persis-
tent objects. Program stacks, encompassing local variables
and function frames, reside in volatile memory. Users can
either annotate a persistent variable (e.g., globals) or employ
the sys_palloc system call to create a persistent object in
non-volatile memory. Both volatile and persistent objects
can be used inside a transaction. Users do not need manual
undo-logging. INTOS’s transactions ensure that updates on
persistent objects (not volatile ones) within a transaction are
crash-atomic via automatic undo-logging. INTOS leverages
Rust to identify the first writable dereference. As persistent
objects share a base class or trait in Rust, the logging logic is
integrated into the dereference operation within the class/trait.
This approach mirrors PMDK’s undo-logging support for its

1FreeRTOS employs the term “task”, but it is technically a preemptive
thread. For clarity and to distinguish it from the (cooperative) task in manual
task decomposition works (§3), we will refer to it as a (preemptive) thread.

C++ programs. In §7.3, we discuss an undo logging optimiza-
tion that logs old values only if there is a write-after-read
dependency in a transaction.

Language The Rust type system in INTOS guarantees that
persistent objects are not modified outside transactions (§6).
Conversely, volatile states, such as local variables in program
stacks, can be utilized both outside and inside transactions.

Challenges INTOS allows users to employ volatile variables
for computing, yet INTOS transactions do not protect them.
Consequently, the states of program stacks are susceptible to
loss upon a power failure. A program cannot resume from the
beginning of the failed transaction due to the absence of stack
(and register) states. One solution could involve abstaining
from the use of volatile memory, a proposition we oppose
for energy efficiency reasons. Another approach might be
to checkpoint volatile states to NVM at the onset of each
transaction, but this would be expensive.

4.2 Replay-and-Bypass
To address the above challenge, INTOS proposes a novel
replay-and-bypass approach (§5) to guarantee whole-system
crash consistency across a power cycle. INTOS eliminates
the need for users to checkpoint or create customized crash
consistency solutions for volatile register and memory states.
Upon power restoration, INTOS first recovers non-volatile
states by undoing uncommitted transactions. Then, the thread
is restarted from the beginning, safely resuming with empty
registers and stack states. Throughout the execution, commit-
ted transactions and system calls are replayed and bypassed by
returning the recorded results without re-execution – resulting
in a more energy-efficient recovery process. Volatile states
are reconstructed, enabling the program to resume beyond the
point of power failure.

4.3 Persistent Embedded OS
System Calls INTOS provides comprehensive multithread-
ing features (Table 2), comparable to those found in FreeR-
TOS. For instance, threads can communicate and/or syn-
chronize with each other using the sys_queue_* and
sys_semaphore_* system calls. A thread might block, for
instance, if a queue is either empty or full. Multiple threads
may access a shared persistent object by obtaining its refer-
ence (inside a transaction). Later in §6, we delve into how
INTOS’s programming model ensures the obligatory use of a
mutex for synchronization via Rust’s strong type system.

Kernel Crash Consistency Similar to user threads, INTOS
kernel codes, including system calls, utilize volatile and non-
volatile memories. The INTOS kernel employs the same
undo-logging transactions to ensure crash consistency of per-
sistent kernel objects that undergo updates during system
calls. Table 2 lists the number of transactions and examples

Features System calls TXs Persistent kernel objects

Threads sys_create_thread 2 ready_list, thread_cnt, heap
sys_thread_delay 1 delay_list

Queues
sys_queue_create 1 heap
sys_queue_send_back 2 queue and its waitlist
sys_queue_receive 2 queue and its waitlist

Events
sys_event_group_create 1 heap
sys_event_group_wait 3 event_grp and its waitlist
sys_event_group_set 3 event_grp and its waitlist

Semaphores
sys_create_semaphore 1 heap
sys_semaphore_take 2 semaphore and its waitlist
sys_semaphore_give 2 semaphore and its waitlist

Dyn. memory sys_palloc 1 heap
sys_pfree 1 heap

Timers
sys_timer_create 1 heap
sys_start_timer 2 timer_cmd_q and its waitlit
sys_reset_timer 2 timer_cmd_q and its waitlist

Table 2: INTOS supports full-fledged embedded OS features,
akin to FreeRTOS [3]. Some system calls are not listed.

of persistent kernel data safeguarded by kernel-level trans-
actions. Later in §7.2, we also discuss that the kernel uses
optimized transactions (without undo-logging) for frequently
used linked lists operations (e.g., ready-list, wait-list).
Using the same replay-and-bypass, INTOS provides a crash
consistency guarantee even if a power failure occurs in the
midst of a system call and some threads are blocked.

Energy efficient execution Designing an OS and language
support for intermittent computing requires more than merely
ensuring crash consistency. Both (fail-free) execution and
recovery should be energy-efficient. INTOS provides energy-
efficient execution by: (1) Utilizing both volatile and non-
volatile memories; (2) Avoiding the checkpointing of volatile
states; (3) Optimizing undo-logging for non-volatile states
(§7.3); (4) Offering blocking/waiting system calls, such as
semaphores and events, in contrast to existing approaches like
ImmortalThreads [65], which requires spinning and wastes
MCU cycles; (5) In the absence of events, with a blocking
mechanism, allowing the MCU to enter a deep sleep mode
where only a subset of interrupts are monitored.

Energy efficient recovery INTOS offers energy-efficient re-
covery by: (1) Utilizing replay-and-bypass recovery to avoid
redundant execution (§5); (2) Undoing only the non-volatile
state relevant to the high-priority thread that will resume dur-
ing recovery (§5.2); (3) Introducing loop optimization (§7.1).

4.4 INTOS Program Example
The example presented in Listing 1 illustrates the recognize
program with two transactions. In this example, a queue is
created to enable message passing between two threads, like
a Linux pipe. A thread (recognize) is reading data from the
sensor and sending the data to another thread (not shown)
for processing using the queue. PBox is a smart pointer for a

1 fn recognize(model: PBox<Model>) {
2 let (q,stats) = transaction::run(|j, t| {
3 // syscall to create a queue
4 let q=sys_queue_create::<Result>(Q_SZ, t).unwrap();
5 // syscall to create a persistent object
6 let stats = PBox::new(Stats::new(), t);
7 ...
8 return (q,stats)
9 });

10 transaction::run(|j, t| {
11 // obtain read only ref, no logging
12 let mdl_ref = model.as_ref(j);
13 // syscall to perform I/O
14 let reading = sys_read(SENSOR_0);
15 // data processing in volatile buffer
16 let mut window = [AccelReading::new(); 3];
17 init_window(&readings);
18 transform(&mut window, j);
19 let feature = featurize(&window);
20 let class = classify(&feature, mdl_ref);
21 // obtain mutable ref, auto. undo logging
22 let mut stats_ref = stats.as_mut(j);
23 stats_ref.cnt[class] += 1;
24 // syscall to send result
25 sys_queue_send_back(q, class, WAIT_TIME, t);
26 });
27 ...
28 }

Listing 1: An example INTOS program with transactions.

persistent object. Users can enclose a program region with the
transaction construct, transaction::run(|j,t|{ ... }),
where j represents the journal object and t is the system call
token. The journal object enforces restrictions, ensuring that
persistent smart pointers like PBox cannot be dereferenced
outside a transaction, while the system call token restricts
system calls to occur exclusively within a transaction. Further
details on this will be provided in §6.

The first transaction (Lines 2-9) involves creating a queue
with a size of Q_SZ. This queue contains objects of type
Result, and a persistent object (stats) that holds counts
(cnt) for each class/result. The transaction returns them af-
ter some processing. The second transaction (Lines 10-26)
reads an ML model using a read-only reference. This elimi-
nates the need for undo-logging. Following I/O, it conducts
data processing (Lines 16-20) such as filtering, normalization,
and classification, notably on a volatile buffer. This strategy
enhances performance and energy efficiency compared to
conducting all intermediate computations on a non-volatile
buffer. Subsequently, the transaction obtains a mutable refer-
ence to a persistent object (stat), created, and passed from
the first transaction, and updates it. As this is the first write
after getting a mutable reference, INTOS automatically ap-
plies undo logging. Finally, the transaction makes a system
call sys_queue_send_back to place the result into the queue,
maintained by INTOS. Another thread (not shown) can then
receive the result from the queue for subsequent processing.

Th 1 TX2

TX3 TX4

TX1 syscall

Kernel

(a) Case 1: An execution of Listing 1 without a power failure.

Th 1 TX2

TX3 TX4

TX1 syscall

Kernel

replay1

tx bypass2

resume3

crash

State s1scs0

(b) Case 2: A power failure outside a transaction

Th 1 TX2

TX3 TX4

TX1 syscall

Kernel undo

replay2

tx bypass3

resume4

1

crash

State s1 scs0

(c) Case 3: A power failure inside a transaction before a syscall

Th 1 TX2

TX3 TX4

TX1 syscall

Kernel

replay2

bypass3 4

State s1 sc

crash

s0

undo1

syscall bypass
resume

s2

(d) Case 4: A power failure inside a transaction after a syscall

Th 1 TX2

TX3 TX4

TX1 syscall

Kernel

replay2

bypass3

State s1 sc

crash

s0

undo1

resume4

(e) Case 5: A power failure during a syscall before a transaction

Th 1 TX2

TX3 TX4

TX1 syscall

Kernel

replay3

tx bypass4

State s1 s2

crash

s0

undo2

5

undo1

tx bypass

s2

resume

(f) Case 6: A power failure during a syscall inside a transaction

Figure 3: Replay-with-bypass recovery examples

5 Replay-and-Bypass Recovery

The following two sections demonstrate INTOS’s replay-and-
bypass approach. along with examples.

5.1 Single Thread Crash Consistency

Let’s illustrate INTOS’s replay-and-bypass recovery mech-
anism using the recognize example in Listing 1, which in-
volves two user-level transactions, TX1 and TX2. Figure 3a
depicts an execution of recognize without a power failure.
For simplicity, the system calls in the first transaction TX1 are
omitted, and only the system call sys_queue_send_back
(Line 23) made by TX2 is highlighted. Assume that the system
call includes two kernel-level transactions, TX3 and TX4.

In Figure 3b, we consider a scenario where TX1 has been
committed, and then a power failure occurs before TX2 starts
(outside transactions). Upon power recovery, INTOS initiates
a replay of the thread from the beginning (step 1), restarting
with empty registers and stack state s0. INTOS’s type system
(§6) ensures that no non-volatile states are updated outside
the transaction. Volatile states are reconstructed during replay.
Since the non-volatile states at sc (before the power failure)
already incorporate the effects of the committed transaction
TX1, re-executing TX1 would be incorrect and non-idempotent.
Therefore, INTOS bypasses the transaction TX1 (step 2), sim-
ply returning the logged return value without re-execution.
No system calls are made during bypass, and no kernel-level
recovery is required. INTOS ensures that the program reaches
the same state s1 as sc, from which it can safely resume.

Now, let’s consider a power failure inside a transaction. In
Figure 3c, a power failure occurs inside a user-level trans-
action before a syscall. INTOS’s undo-logging transaction
ensures the failure-atomicity of non-volatile states changed
within the transaction. Upon power recovery, INTOS applies
undo-logging (step 1) to roll back the (user-level) non-volatile
states from sc to s1, the state before the transaction begins.
Next, INTOS starts a replay from the beginning state s0 (step
2). The committed transaction TX1 is bypassed (step 3), and
INTOS reconstructs all volatile states along the way, making
the state s1 (after replay) equivalent to sc (before the failure).

Figure 3d illustrates the actions to be taken if a power
failure occurs after a syscall completes (inside a user-level
transaction). As usual, INTOS applies undo-logging (step 1)
and initiates a replay (step 2). The committed transaction
TX1 is bypassed (step 3). Notably, in this scenario, while re-
playing transaction TX2, INTOS also bypasses the completed
system call (step 4). Consequently, INTOS avoids the need to
alter kernel states — any changes to kernel-side non-volatile
states made during the original system call (before a power
outage) can remain unchanged. The INTOS kernel caches the
return value of a system call upon its completion (before a
power failure). Then it simply returns the cached value during
replay. From the user thread’s perspective, a system call can

be considered as a nested black-box transaction.
Now, let’s delve into scenarios where a power failure oc-

curs during a system call. As mentioned earlier, INTOS uti-
lizes transactions (TX3 and TX4) to safeguard kernel-side non-
volatile data. If a crash occurs before (or outside) a kernel-side
transaction, as depicted in Figure 3e, the situation is straight-
forward and aligns with the case presented in Figure 3c. There
is no need to undo anything in the kernel. INTOS simply un-
does the user-level transaction that invoked the system call
(1) and initiates the replay-and-bypass recovery mechanism.

On the other hand, if a crash occurs inside a kernel-side
transaction, as illustrated in Figure 3f, INTOS must first undo
transaction TX4 (step 1) to roll back the kernel-side state to
s2, followed by undoing transaction TX2 (step 2) to roll back
the user-side state to s1. INTOS then employs a replay from
initial s0 (step 3), bypassing the committed transactions on
the user side, TX1 (step 4), and on the kernel side, TX3 (step
5). Note that INTOS rolls back the kernel-side transaction
first (before any aborted user-level transaction). This has cor-
rectness implications in multi-thread scenarios, which will be
discussed in the subsequent section.

5.2 Multi-Threads Crash Consistency

Next, we discuss INTOS’s approach to ensuring crash con-
sistency for multiple threads. Specifically, INTOS employs
priority-based recovery and resumption. Upon power restora-
tion, INTOS always recovers and replays the thread with the
highest priority among those ready.

Figure 4a illustrates a two-thread execution without
a power failure. Initially, high-priority Thread 2 waits,
for example, on a queue. A low-priority Thread 1 uses
sys_queue_send_back to enqueue data, allowing Thread
1 enabled (its waiting condition is satisfied). During the sys-
tem call, the kernel-side transaction TX3 updates the kernel
queue object in NVM. As Thread 1 is awakened and has a
higher priority, the INTOS scheduler preempts Thread 1 and
context-switches to Thread 2 by modifying thread-related per-
sistent linked lists, such as ready-list and wait-list, in
transaction TX4. It is a common pattern for a system call to up-
date a system call-specific kernel data structure (e.g., queue)
in one transaction and to modify schedule-related linked lists
in another transaction. After the context switch, Thread 2 runs,
and Thread 1 remains on the ready-list, awaiting its turn.

Let’s first consider a simple power failure case. If power is
lost during the system call (e.g., during TX3 or TX4 or between
them), it constitutes a single-thread scenario. The recovery
protocol remains the same as the case presented in Figure 3f.

Suppose a power outage occurs while running Thread 2
(after the context switch) as depicted in Figure 4b. This makes
a multi-thread scenario: Threads 1 and 2 are runnable. Upon
power restoration, INTOS recovers and runs Thread 2 — the
thread that was running and experienced a power failure. The
priority-based scheduler always schedules the thread with

Th 1 TX2

TX3 TX4

TX1 preempted

Kernel

Th 2

wait-list:

high priority

low priority

ready-list:
running:

Th 2 ∅

Th 1 Th 2
∅ Th 1

context
switch

TX5waiting
Q updates

(a) A two-thread execution without a power failure. Initially, a high-
priority Thread 2 is waiting. A low-priority Thread 1 makes it ready.

Th 1 TX2

TX3 TX4

TX1 preempted

Kernel

Th 2
high priority

low priority

TX5waiting crash

undo1

replay
Task 2 first

2

undo (not started)3

replay
Task 1 (not started)

4

Q updates

(b) A power failure occurs after Thread 2 is scheduled.

Th 1 TX2

TX3 TX4

TX1 à syscall blocked

Kernel

Th 2

wait-list:

low priority

high priority

ready-list:
running:

∅ Th 1

Th 1 Th 2
Th 2 ∅context

switch

TX5ready
No Q updates

Q is full

(c) A two-thread execution without a power failure. Initially, a high-
priority Thread 1 runs first and makes a blocking system call, yield-
ing a turn to a low-priority Thread 2.

Th 1 TX2

TX3 TX4

TX1 blocked

Kernel

Th 2

high priority

low priority
TX5ready crash

undo1

replay
Task 2 first

2

undo (not started)3

replay
Task 1 (not started)

4

No Q updates

(d) A power failure occurs after Thread 2 is scheduled.

Figure 4: Multi-threads recovery examples

the highest priority among ready threads. Thus, recovering
the failed thread implies that when power becomes available,
INTOS runs the ready thread with the highest priority. In this
example, it is Thread 2. INTOS roll-backs transaction TX5
(step 1) and replays Thread 2 (step 2). On the other hand,

INTOS does not eagerly undo transaction TX2 (step 3). Hard-
won energy should not be wasted. A system may not possess
enough energy to run Thread 1 (after Thread 2). High-priority
ready Thread 2 takes precedence over undoing the transaction
TX2 of Thread 1. Sometime later, when Thread 1 is scheduled,
INTOS then rolls back transaction TX2 on demand (step 3)
and replays Thread 1 (step 4).

When managing multiple threads, a blocking system call
warrants detailed discussion. Figure 4c depicts another two-
thread execution without a power failure, distinct from Fig-
ure 4a. In this scenario, Thread 1 possesses high priority, and
even though Thread 2 is ready, it is not scheduled. Suppose
the queue is already full. Assuming the queue is already full,
when Thread 1 employs the sys_queue_send_back system
call to enqueue data, it discovers the queue lacks space and
becomes blocked. Subsequently, the scheduler moves Thread
1 to the wait_list in transaction TX4. In this scenario, it is
crucial to note that TX3 is indeed a null transaction, making
no updates to the queue. An essential invariant established by
the INTOS kernel is that a blocking system call, if it actually
blocks, does not alter the state of system call-specific persis-
tent objects (e.g., queue). The system call is not considered
complete, and no result is cached for bypassing. The impact
of a blocking call is confined to schedule-related linked lists
in TX4. Given that a blocking system call has no substantive
effect on kernel states, it is safe to proceed with the same
recovery and replay of the ready thread with high priority —
Thread 2 in this example. Any processing for the blocked
threads, such as Thread 1, can be deferred, as illustrated in
Figure 4d. When Thread 1 is later scheduled for recovery
and replay, it will re-invoke the system call as if it had not
been issued previously. In the INTOS implementation, those
system calls that may block always first check for a blocking
condition to uphold this invariant.

6 INTOS Programming Model

INTOS’s programming model upholds five rules designed to
guarantee crash consistency.

Rule 1: Persistent objects should not be accessed (both
write and read) outside the transaction and their update
inside the transaction must be logged. Modifications on per-
sistent objects outside transactions are untracked. Therefore,
any update to persistent objects should be confined within
transactions. INTOS also prohibits the reading of persistent
objects outside transactions to prevent potential divergence
in program control flow during replay. When restarting, non-
volatile memory states are not rolled back to the thread’s
outset. For example, in the scenario illustrated in Figure 3c,
replay begins with non-volatile memory states still reflect-
ing the state s1 after TX1. Consequently, control flow outside
transactions should not rely on persistent objects. To precisely
identify a subset of persistent object reads that may influence

control flows, one can perform static analysis and selectively
prevent them. INTOS, for simplicity, conservatively enforces
the restriction of no reads (and writes) outside transactions.
This approach does not overly constrain programmability
since it is natural to assume that persistent objects are pri-
marily used within transactions. Furthermore, INTOS permits
a transaction to acquire references to persistent objects that
were created or modified by another transaction and subse-
quently update them arbitrarily within the executing transac-
tion, as demonstrated in Listing 1 (Lines 6, 22-23).

Rule 2: References/Pointers to persistent objects should
not escape a transaction as a return value. Rule 2 further
enforces Rule 1. Allowing the return of references would
potentially enable users to directly modify persistent objects
without proper logging. Mutable references should be ac-
quired and dereferenced exclusively within a transaction, as
exemplified in Listing 1 (Lines 22-23).

Rule 3: Persistent objects should not contain references to
volatile objects. Volatile objects are susceptible to data loss
during power failures. Storing their references in persistent
objects is thus unsafe.

Rule 4: System calls (excluding Locks) should only be
made within transactions. There is, in theory, no fundamen-
tal restriction against using a system call outside a transaction
for crash consistency. Yet, INTOS mandates adherence to this
rule to constrain the length of system call replay and bound
memory resources. After a transaction concludes, there is no
necessity to replay any system call within that transaction.
As a result, the upper limit for system calls to be replayed
is determined by the number of system calls in the last un-
committed transaction. INTOS can safely free the system call
replay metadata for committed transactions.

Rule 5: Locks should not be used inside transactions. A
critical section, defined by locks, should be larger than a trans-
action. Suppose two concurrent transactions, TX1 and TX2,
utilize a lock when accessing a shared object X within trans-
actions. TX1 acquires the lock, updates X, releases the lock,
but remains uncommitted. The concurrent TX2 acquires the
lock, reads X, performs some computation, releases the lock,
and eventually commits. If a power failure occurs at this point
while TX1 remains uncommitted, a data consistency issue
arises. This occurs because our transaction lacks “isolation”
among concurrent transactions. Rule 5 is enforced to avoid
this problem. Ultra-low power intermittent computing sys-
tems hardly use multi-cores. Introducing a more intricate yet
efficient solution, such as tracking data dependencies between
transactions and aborting one if a conflict is detected, doesn’t
appear necessary in this context.

Enforcement INTOS employs Rust’s robust type system to
uphold the aforementioned rules, akin to [33] that statically
prevents common persistent memory programming errors
within the realm of server-side (non-energy-harvesting) persis-
tent memory programming. Rules 1-3 resemble those in [33],

with INTOS extending Rule 1 to disallow reading persistent
objects outside transactions to avoid potential control flow
divergence during replay. Rules 4-5 are distinctive to INTOS.
The implementation utilizes Rust’s traits.

7 Optimization

INTOS employs three performance optimizations.

7.1 Loop Optimization
Threads in embedded systems often involve loops, such as
event loops handling sensor readings or loops with numerous
iterations, as seen in matrix multiplication for neural network
machine learning threads. Consider a thread with a loop where
the loop body comprises T transactions, and a power crash oc-
curs on the N-th iteration. While INTOS’s replay-and-bypass
approach can bypass (N −1)∗T transactions (in addition to
any committed transaction in the last iteration), the overall
replay window’s length could potentially be excessively long,
leading to substantial energy consumption during replay.

To address this common scenario, INTOS introduces the
new nv_for_loop! macro, extending the loop construct in
Rust to utilize a non-volatile variable as the iteration counter.
With the non-volatile iteration counter, INTOS can infer com-
pleted iterations (committed transactions therein) during re-
play, enabling a safe and efficient fast-forward to the last
iteration without executing the bypass logics.

INTOS’s Rust language enforces the absence of
loop-carried dependent volatile states to safely employ
nv_for_loop! optimization as it skips iterations during re-
covery. Users are still able to employ volatile variables within
a loop body, provided there is no loop-carried dependency.

7.2 Linked List Optimization
The INTOS kernel extensively utilizes doubly-linked lists to
manage threads and scheduling states. Nearly every system
call involves the manipulation of these linked lists. Notably,
we have identified optimization opportunities, recognizing
that linked list updates within the kernel occur within a critical
section, eliminating the need to account for arbitrary inter-
leaving. Additionally, there are no intermediate volatile hard-
ware buffers (such as store buffer or cache) between registers
and non-volatile memory. Consequently, any store instruction
promptly persists as it retires from the pipeline. With these
factors combined, we can scrutinize the crash non-volatile
state, reason through intermediate linked list update steps, and
precisely identify the power failure point.

INTOS presents crash state analysis-based roll-forward
recovery optimization for linked list transactions. There is
no undo-logging. Instead, INTOS records an operation log
including the type (e.g., insert) and the node (data) — only
one per operation. During recovery, INTOS analyzes the crash

New

crash

Op log

NextPrev

insert node

1 2
3

4

5 6 removed
to be added

Figure 5: Crash state analysis to roll forward a list insertion

state remaining in NVM to infer the steps that have been
completed. Then, it rolls forward the rest of the operation.

Consider an insertion transaction, illustrated in Figure 5.
The process of list insertion involves six ordered steps. Ini-
tially, we link the node to its previous and next node (step
1 - 2). Then, the backward/forward link between the next
node and the previous node is removed (step 3 - 4). Finally,
we insert the new forward/backward link between the pre-
vious/next node and the new node (step 5 - 6). Suppose a
power crash occurs before step 4 . During recovery, the opera-
tional log is first retrieved to determine the operation type and
the node involved. It is discovered that the link from the new
node to the previous/next node already exists, indicating that
steps 1 - 2 are completed. It is also found that the forward
link from the previous to the next node is removed, but the
backward link remains intact. This observation suggests that
the crash occurred before step 4 was completed. INTOS can
roll forward the operation by executing steps 4 - 6 .

7.3 Undo-Logging Optimization
The default INTOS transactions automatically perform undo-
logging on every first write (after acquiring a mutable refer-
ence), as in Listing 1 (Lines 22-23). INTOS introduces an-
other smart pointer type, Ptr<T>, providing an option to lever-
age Rust’s type system for the static detection of write-after-
read (WAR) dependencies. A transaction utilizing Ptr<T>
logs an old value only if there is a WAR dependency in
the transaction, resulting in fewer logs. Within a transaction,
users should dereference a persistent object pointer to obtain
a reference. Ptr<T> does not provide users with a raw refer-
ence and imposes restrictions on the access interface, such as
r.read() and r.write(). Consequently, utilizing Ptr<T>
involves some additional coding efforts.

8 Discussion

Transactions for Partial vs. Whole System Persistence
A crucial distinction between PMDK [7] (libpmemobj)
and INTOS transactions lies in their persistence guarantees.
libpmemobj supports “partial” system persistence, only en-
suring the recoverability of non-volatile objects within trans-
actions. Thus resuming program execution often requires
user-defined custom crash-recovery logic to achieve consis-
tent whole system states including volatile ones. In contrast,

INTOS offers “whole” system persistence through the pro-
posed replay-and-bypass mechanism, guaranteeing the recov-
ery of both persistent and volatile states.

Transaction Length To ensure forward progress, INTOS
mandates that a transaction must be able to complete with
a fully charged capacitor. INTOS handles only one ready,
highest-priority thread at a time and employs replay-and-
bypass mechanisms to skip committed transactions and sys-
tem calls, ensuring progress as long as one transaction success-
fully passes each power cycle. INTOS asks users to ensure
this property via profiling. Bounding the size of a program
region is a common requirement for many intermittent com-
puting systems (e.g., an idempotent region, a failure atomic
section, and a transaction in INTOS) to ensure stagnation-free
execution. Consequently, previous solutions including Choi
et al. [19] have proposed various dynamic (profiling) and
static program analysis techniques considering the worst-case
behaviors. INTOS’s kernel transactions are intentionally de-
signed to be brief, considering this constraint. Our evaluation
(§10) reports the maximum number of cycles per transaction
in tested applications is short enough.

Energy-aware Scheduler If hardware provides a capabil-
ity to monitor the remaining energy in the capacitor, one
can design an energy-aware scheduler in INTOS: e.g., not
scheduling a thread if it is soon to stop.

Real-time Capabilities INTOS provides real-time capabili-
ties comparable to FreeRTOS as long as the power is on. Yet,
INTOS does not provide (hard) real-time guarantees due to
the non-deterministic energy nature inherent in intermittent
computing, rendering such assurances impossible.

Rust Rust is chosen for static correctness guarantees. Users
can use C or other languages, provided they adhere to the
programming rules (§6). It is feasible to statically link C
programs with the Rust INTOS kernel since the contract/in-
terface between the kernel and a user program is well-defined.
Using C would require complex static program analysis to
verify adherence to the programming rules. Additional static
analysis should be employed for automatic undo-logging.

9 Implementation

We implement INTOS using the Rust programming language,
leveraging its strong static type system to uphold INTOS’s
programming model (§6) with performance comparable to
C. The initial implementation of the INTOS kernel mirrors
FreeRTOS, having been ported to Rust and extended with
transaction and crash consistency support. User threads are
also crafted in Rust. Presently, INTOS extends support to two
architectures: ARM Cortex-M4 and MSP430. The overall
INTOS implementation, excluding testing and benchmark
code, encompasses approximately 9900 lines of Rust code.
We elaborate on some details below:

Multithreading The INTOS kernel allocates essential data
structures, such as the thread control blocks, inter-thread com-
munication objects (e.g., queue, semaphore), and scheduling
lists (e.g., ready-list, wait-list) in non-volatile memory. Ta-
ble 2 (last column) lists some examples.

Replay Tables To support replay-and-bypass recovery,
INTOS maintains three per-thread replay tables that cache
the return values of user-level transactions, kernel-level trans-
actions, and system calls. For each table, the tail pointer
indicates the last completed transaction or syscall, and the
current pointer points to the presently executing one. The
transaction tail pointer contains the commit flag, transaction
id, and the pointer to the replay table.

Log Sizes The logged results of system calls generated within
a transaction are garbage-collected upon the completion of
each transaction, thereby bounding the maximum length of
system call logs. Upon the completion of a task, all transaction
logs associated with that task can be cleaned. We assume that
a task entails a finite number of transactions, which is typically
valid given that embedded application tasks often serve as
short event handlers. An exception arises with tasks executing
transactions within a loop, potentially leading to unbounded
logs. This scenario is addressed by the nv_for_loop! op-
timization (§7.1). Transaction result logs from completed
(old) loop iterations can be safely discarded, thus capping the
transaction log size per loop iteration.

10 Evaluation

We evaluate the performance of INTOS on two plat-
forms: MSP430FR5994 [6] and Apollo 4 Blue Plus [1].
MSP430FR5994 features 256KB of non-volatile FRAM and
8KB of volatile SRAM. We configured its MCU to operate at
16MHz. The Apollo 4 Blue Plus is equipped with an ARM
Cortex-M4 processor. It has 384KB of TCM (faster SRAM),
2MB of SRAM, and 2MB of non-volatile MRAM.

The benchmark suite comprises 11 applications. The first
group encompasses three single-thread applications (BC, AR,
MLP), utilized in previous studies [22,38,49,50,53,56,64,65].
The second group comprises four multithreaded applica-
tions (KV, SEN, EM, MQ) designed to evaluate the perfor-
mance of INTOS’s OS features, including locks (semaphores),
timers, events, and queues, respectively. The final macro-
benchmark group comprises four multithreaded applica-
tions (ETL, PRED, STATS, TRAIN), adapted from RIoT-
Bench [58]. Table 3 provides the application name, descrip-
tion, the number of threads, transactions, and system calls.
The last three columns will be discussed later.

We compare the following four configurations:
• SRAM (not crash consistent, baseline): A vanilla appli-

cation and INTOS kernel without crash consistency support
(i.e., no undo-logging, no replay-and-bypass) operate on
volatile SRAM. All the data is in SRAM, while the code is

Figure 6: Latency overhead without power failure on MSP430

stored on FRAM due to space limitations. In the event of a
power outage, both register and SRAM memory states are
lost. This configuration serves as the baseline.

• FRAM (not crash consistent): A vanilla application and
INTOS kernel without crash consistency support (i.e., no
undo-logging, no replay-and-bypass) runs on non-volatile
FRAM. All data resides in FRAM. Volatile registers remain
susceptible to loss. This setup underscores the limitations
of not utilizing SRAM and establishes the lower bound for
existing compiler-based checkpointing solutions assuming
no volatile memory (§3).

• INTOS (crash consistent): This configuration represents
our approach using both SRAM and FRAM. It uses
INTOS’s transaction undo-logging and replay-and-bypass
recovery to ensure whole-system crash consistency.

• Ratchet (crash consistent): Ratchet [62] represents a state-
of-the-art compiler-based idempotent processing solution
that uses non-volatile FRAM only. We used Ratchet com-
piler to transform a vanilla application and INTOS kernel
to idempotent regions — with neither undo-logging nor
replay-and-bypass.

It is worth noting that we were unable to compare INTOS
with ImmortalThreads [65] due to the incomplete nature of
the publicly available code. It offers only the essential logic
for micro-continuations and lacks OS/runtime features re-
quired by the tested benchmarks (e.g., blocking queues). It
was originally evaluated with four simple single-threaded Bit-
count (BC), Cuckoo Filter (CF), Activity Recognition (AR),
and DNN, which do not involve any application-OS inter-
actions. Thus, conducting a fair comparison becomes im-
practical without ImmortalThreads’ supplementary runtime
support. Nonetheless, as discussed in §3, we expect its micro-
continuation would suffer from high runtime overhead. For
example, ImmortalThreads reports (See [65] Table 4 and Fig-
ure 7) that AR incurs 237% overhead with no failure and
300% with 5ms-period power failure. In contrast, we later
show that in INTOS, AR experiences 8% and 15% overheads,
respectively (See Figure 6 and Figure 8).

App Description Threads TXs Syscalls Max Cycles/TX LoC Add&Mod

BC Count the number of 1s in an integer using multiple algorithms 1 8 1 10676 181 32
MLP Multi-layer perception with two fully connected layers 1 4 2 3488 155 30
AR Train an activity recognition model and analyze the activities 1 3 3 12060 301 33

KV Two threads perform concurrent operations on KV Store with locks 2 9 23 6276 325 102
SEN Periodic Sensing using software timers 2 3 4 6420 107 15
EM One thread monitors events and notifies other threads with event groups 3 6 12 2592 113 29
MQ One thread distribute messages to other threads using queues 4 6 13 2532 166 51

ETL
Extract, Transform and Load dataflow in RIoTBench [58]
(e.g., range filter, bloom filter, interpolation, join, annotation, kv store) 5 10 23 3580 709 148

PRED
Predictive analysis dataflow in RIoTBench [58]
(e.g., average, kalman filter, distinct count, sliding linear reg., kv store) 5 9 26 3808 440 58

STATS
Statistic summerization dataflow in RIoTBench [58]
(e.g., decision tree, multivar linear reg., average, error estimation, kv store) 5 11 27 4884 413 46

TRAIN
Model training dataflow in RIoTBench [58]
(e.g., multivar linear reg. training, decision tree training) 4 20 28 9472 511 132

Table 3: Description for Benchmarks and Statistics

Figure 7: Energy overhead without power failure on MSP430

10.1 Without Power Failures on MSP430

We first measure the performance and energy overhead with-
out power failure on MSP430FR5994.

Figure 6 illustrates the latency overhead of four configura-
tions, normalized to the SRAM baseline. Each bar provides a
breakdown between user-level (top, solid color) and kernel-
level (bottom, light color) execution times. On a geometric
mean, FRAM (the second bar) shows 1.11x latency overhead
compared to SRAM. This highlights the performance loss
when SRAM is not utilized, as in existing compiler-based
checkpointing solutions. This serves as the lower bound for
the latency overhead imposed by such tools. Specifically,
Ratchet (the last bar) incurs a latency overhead ranging from
1.12x to 5.30x, with a geometric mean of 2.14x. Ratchet’s
performance is highly dependent on the precision of static
analysis and application characteristics.

Contrastingly, INTOS (the third bar) demonstrates substan-
tially lower latency overhead, ranging from 1.07x to 1.55x,
with a geometric mean of 1.29x. This showcases the advan-
tages of placing the stack and performing computations on
local variables in SRAM while storing persistent objects in
FRAM. Notably, for AR, SEN, and TRAIN, INTOS demon-
strates comparable or superior performance to FRAM, even

Figure 8: Latency overhead with power failure on MSP430

considering INTOS’s transaction logging overhead.
Regarding the breakdown between user and kernel levels,

simple single-thread BC, MLP, and AR predominantly oper-
ate in the user level, while multi-threaded RIoTBench’s ETL,
PRED, STATS, and TRAIN frequently utilize system calls
for queues, mutexes, etc. The SEN application conducts peri-
odic sensing using software timers. It displays a small kernel
(syscall) time, as the kernel’s timer handler indeed runs as a
thread and is thus counted as user time.

Figure 7 illustrates the energy overhead of four configura-
tions, normalized to the SRAM-only baseline. We measured
the energy consumption for MSP430FR5994 using TI’s Ener-
gyTrace tool [11]. The observed trend aligns generally with
the latency overhead discussed earlier. The FRAM setting
incurs 1.16x (geometric mean) more energy consumption
compared to the SRAM setting. The energy consumption gap
between INTOS and Ratchet widens, with INTOS consum-
ing 1.31x more energy on a geometric mean relative to the
baseline, while Ratchet consumes 2.43x more energy. No-
tably, across various applications, including MLP, AR, KV,
SEN, and TRAIN, INTOS exhibits comparable or superior
performance to the FRAM-only setup, even when factoring
in INTOS’s transaction overhead.

Figure 9: Energy overhead with power failure on MSP430

Figure 10: Latency with/without optimizations on MSP430

10.2 With Power Failures on MSP430
In this section, we investigate the latency and energy overhead
of INTOS and Ratchet under frequent power failures. We
inject controlled power failure at regular intervals of 10ms,
5ms, and 1ms using a soft reset, following the methodology
employed in previous works [37,38,49,62,64,65]. Intermittent
computing devices continue operation until the energy stored
in the capacitor is depleted, subsequently restarting after the
capacitor is fully recharged. In cases where the capacitor can
recharge during the run, it results in extended run time for
the power cycle. Employing a regular power failure interval
represents the worst-case scenario, where the capacitor cannot
be effectively charged during execution.

To determine and justify the power failure interval, we ran
our benchmarks and used EnergyTrace to measure the aver-
age power consumption of MSP430FR5994 and the number
of MCU cycles spent for each time interval. We considered
the maximum power consumption (among applications) and
calculated the corresponding capacitor size under a 3V volt-
age. To sustain continuous operation for 1ms, where MSP430
MCU can run for about 16,000 cycles, the capacitor size re-
quired is approximately 4 µF, which is ten times smaller than
a typical capacitor size (e.g., WISP [57] utilizes 47 µF). Thus,
the 1ms interval represents an extreme case.

INTOS requires each transaction to be completed with a
fully charged capacitor to guarantee forward progress. The
third last column in Table 3 displays the maximum number of
cycles per user transaction in tested applications, indicating
that an application can be implemented with a (relatively)

short transaction. Should a longer transaction be desired,
INTOS might necessitate a larger capacitor.

Figure 8 depicts the latency overhead under power failures
on MSP430. Moving from left to right, the bars represent the
latency overhead of INTOS in a no-failure scenario, with fail-
ure intervals of 10ms, 5ms, 1ms, and Ratchet – all of which
are normalized to the SRAM setting (baseline). Note that as
an idempotent processing solution, Ratchet exhibits negligible
latency difference between with and without power failures.
Across different applications, we observed 30-900 power

outages with the 1ms failure interval, and 3-60 power failures
with the 10ms interval. As anticipated, the latency overhead
of INTOS increases with the frequency of power failures.
On a geometric mean, INTOS exhibits latency overheads of
1.37x, 1.43x, and 1.73x for 10ms, 5ms, and 1ms intervals, re-
spectively. INTOS’s recovery mechanism involves restoring
volatile states (while bypassing numerous committed trans-
actions and system calls), making its latency sensitive to the
failure frequency. However, for the 10ms, 5ms, and even in
the extreme 1ms failure intervals, INTOS demonstrates sig-
nificantly better performance than Ratchet, particularly when
considering realistic complex applications like RIoTBench’s
ETL, PRED, and STATS, while excluding trivial single-thread
applications like BC and MLP.

The figure also provides a breakdown of the latency over-
head between re-execution (orange bar) and recovery (green
bar). Re-execution overhead involves rerunning an interrupted
program region, representing wasted computation, while by-
passing committed transactions and system calls. Recovery
overhead is incurred by applying undo logging to roll back a
failed transaction and executing other basic recovery checking
codes. The results indicate that INTOS’s latency overhead is
predominantly attributed to re-execution overhead. SEN is
unique in that it uses software timers, so in most cases, it has
no task to run but simply checks for recovery.

Figure 9 illustrates the energy overhead under the same
power failure experiments on MSP430. The energy overhead
follows a similar trend as the latency overhead. INTOS consis-
tently demonstrates a lower energy profile than Ratchet across
all failure intervals, especially when considering realistic ap-
plications ETL, PRED, and STATS. On a geometric mean,
INTOS exhibits energy overheads of 1.47x, 1.55x, and 1.88x
for 10ms, 5ms, and 1ms intervals, respectively. In comparison,
Ratchet incurs an energy overhead of 2.43x.

10.3 Optimization Effectiveness on MSP430

This section investigated the impact of linked list optimiza-
tion (§7.2) and undo logging optimization (§7.3). Each op-
timization was individually enabled, and the execution time
was measured. The results, normalized to INTOS with no
optimizations (the first bar), are presented in Figure 10. The
second bar illustrates the outcomes with only the list optimiza-
tion enabled, while the last bar represents the results with both

Figure 11: Latency without power failures on Apollo 4

Figure 12: Latency with power failures on Apollo 4

optimizations in use. For applications with frequent system
call usage, the list optimization significantly enhances per-
formance, with improvements exceeding 40%. However, for
simpler single-thread BC, MLP, and AR, which only utilize
memory allocation syscalls, there was marginal improvement.
The effectiveness of the undo-logging optimization is highly
dependent on application characteristics. MLP, KV, SEN, EM,
and MQ have a small fraction of stores with write-after-read
dependencies. Thus the undo logging optimization demon-
strates substantial improvements.

10.4 Experiments with Apollo 4
Now, we transition our experiment to the Apollo 4 Blue Plus,
equipped with an ARM Cortex-M4 MCU, 384KB of TCM
(faster SRAM), 2MB of SRAM, and 2MB of non-volatile
MRAM. However, it is important to acknowledge that the
MRAM in Apollo is presently only byte-readable and not
byte-writable. To overcome this constraint, we simulate the
execution environment by utilizing (fast) TCM as volatile
memory and designating the (slow) SRAM as non-volatile
memory. In our experiment, the SRAM is approximately 2-
3 times slower than TCM for sequential access, which is
bigger than the FRAM-SRAM gap in MSP430. The (simu-
lated) Apollo 4 experiment has two purposes. First, it demon-
strates that INTOS can support different MCU architectures:
MSP430 and ARM Cortex-M4. Second, it illustrates a sce-
nario in which the latency disparity between volatile and non-
volatile memories is more pronounced. The board does not

have an on-board debugger probe that allows us to measure
the energy, so this experiment focuses on latency comparison.

Figure 11 shows the latency overhead of Apollo 4 Blus Plus
without a power failure, normalized to the TCM-only baseline.
The ETL and STATS bars are missing for Ratchet because the
programs instrumented by Ratchet crashes. With the higher
gap between volatile and non-volatile memories (simulated by
TCM and SRAM), the result shows higher latency overheads
than the MSP430 experiments (Figure 6). INTOS and Ratchet
incur 2.07x and 3.44x latency overhead, respectively, where
Ratchet is more penalized by slow non-volatile memory.

Figure 12 shows the latency overhead when considering
power failure intervals of 1ms, 500ns, and 200 ns. The in-
tervals are set to be much smaller than those of MSP430 as
ARM Cortex-M4 in Apollo 4 runs at a much higher clock
frequency. 200 ns allows around 19,000 cycle executions. The
trend again remains the same. Even in the extreme case of
200 ns failure interval, INTOS incurs 2.52x latency overhead
(compared to SRAM). INTOS is 1.37x less than Ratchet.

10.5 INTOS Programming Overhead
The INTOS programming model asks users to allocate persis-
tent objects in NVM and define transactions to ensure crash
consistency of updates on persistent objects. Quantifying pro-
gramming overhead is challenging, but as a proxy, Table 3
presents the lines of source code (LOC) for each application
and the added/modified LOC for persistent object allocation
and transaction codes. Examining four realistic RIoTBench
applications, the table reveals that the extent of modification
varies from 11% (STATS: 46/413) to 26% (TRAIN: 132/511)
of the source code. Although these percentages may seem
large, it is important to note that these changes pertain to per-
sistent object allocation and transaction codes, aspects that
we believe are well-understood and manageable.

11 Conclusion

INTOS is a persistent embedded OS and language support
for multi-threaded intermittent computing. INTOS uses trans-
actions to ensure the crash consistency of non-volatile ob-
jects. Instead of checkpointing volatile states, INTOS pro-
poses a replay-and-bypass recovery mechanism, reconstruct-
ing volatile states without re-executing committed transac-
tions and system calls. Evaluation with MSP430FR and
Apollo 4 shows that INTOS exhibits lower latency and energy
costs compared to compiler-based idempotent processing.

Acknowledgements

We appreciate the valuable feedback from anonymous re-
viewers and the shepherd. This work is in part supported by
the NSF grants CNS-2135157, CCF-2153747, CCF-2153748,
CCF-2153749, CNS-2314681, and CNS-2214980.

References

[1] Apollo4 Blue Plus. https://ambiq.com/
apollo4-blue-plus/.

[2] ARM Cortex-M4. https://developer.arm.com/
Processors/Cortex-M4.

[3] FreeRTOS. https://www.freertos.org/index.
html.

[4] Intel Optane Memory. https://www.intel.
com/content/www/us/en/products/details/
memory-storage/optane-memory.html.

[5] KickSat. https://kicksat.github.io/.

[6] MSP430FR5994. https://www.ti.com/product/
MSP430FR5994.

[7] Persistent Memory Development Kit (PMDK). https:
//pmem.io/pmdk/.

[8] Persistent Redis v3.2. https://github.com/pmem/
redis/tree/3.2-nvml.

[9] Pmem-Memcached. https://github.com/lenovo/
memcached-pmem.

[10] The MRAM on the Apollo 4 Processor.
https://www.techinsights.com/blog/memory/
disruptive-technology-tsmc-22ull-emram.

[11] TI’s EnergyTrace software for MSP430™ MCUs.
https://www.ti.com/tool/ENERGYTRACE.

[12] TI’s FRAM. https://www.ti.com/lit/wp/
slat151/slat151.pdf.

[13] Zephyr. https://www.zephyrproject.org/.

[14] Emmanuel Baccelli, Oliver Hahm, Matthias Wählisch,
Mesut Gunes, and Thomas Schmidt. RIOT: One OS to
rule them all in the IoT. PhD thesis, INRIA, 2012.

[15] Naveed Anwar Bhatti and Luca Mottola. Harvos: Effi-
cient code instrumentation for transiently-powered em-
bedded sensing. IPSN ’17, page 209–219, 2017.

[16] Luca Caronti, Khakim Akhunov, Matteo Nardello,
Kasım Sinan Yıldırım, and Davide Brunelli. Fine-
grained hardware acceleration for efficient batteryless
intermittent inference on the edge. ACM Trans. Embed.
Comput. Syst., 22(5), sep 2023.

[17] Wei-Ming Chen, Tai-Sheng Cheng, Pi-Cheng Hsiu, and
Tei-Wei Kuo. Value-based task scheduling for non-
volatile processor-based embedded devices. In 2016
IEEE Real-Time Systems Symposium (RTSS), pages 247–
256, 2016.

[18] Jongouk Choi, Hyunwoo Joe, Yongjoo Kim, and
Changhee Jung. Achieving stagnation-free intermit-
tent computation with boundary-free adaptive execution.
In 2019 IEEE Real-Time and Embedded Technology and
Applications Symposium (RTAS), pages 331–344. IEEE,
2019.

[19] Jongouk Choi, Larry Kittinger, Qingrui Liu, and
Changhee Jung. Compiler-directed high-performance
intermittent computation with power failure immunity.
In 2022 IEEE 28th Real-Time and Embedded Technol-
ogy and Applications Symposium (RTAS), pages 40–54,
2022.

[20] Jongouk Choi, Qingrui Liu, and Changhee Jung. Cospec:
Compiler directed speculative intermittent computation.
In Proceedings of the 52nd Annual IEEE/ACM Interna-
tional Symposium on Microarchitecture, pages 399–412,
2019.

[21] Jongouk Choi, Jianping Zeng, Dongyoon Lee, Chang-
woo Min, and Changhee Jung. Write-light cache for
energy harvesting systems. In Proceedings of the 50th
Annual International Symposium on Computer Architec-
ture, pages 1–13, 2023.

[22] Alexei Colin and Brandon Lucia. Chain: Tasks and chan-
nels for reliable intermittent programs. In Proceedings
of the 2016 ACM SIGPLAN International Conference
on Object-Oriented Programming, Systems, Languages,
and Applications, OOPSLA 2016, page 514–530, 2016.

[23] Marc A De Kruijf, Karthikeyan Sankaralingam, and
Somesh Jha. Static analysis and compiler design for
idempotent processing. In Proceedings of the 33rd ACM
SIGPLAN conference on Programming Language De-
sign and Implementation, pages 475–486, 2012.

[24] Jasper de Winkel, Vito Kortbeek, Josiah Hester, and Prze-
mysław Pawełczak. Battery-free game boy. Proc. ACM
Interact. Mob. Wearable Ubiquitous Technol., 4(3), sep
2020.

[25] A. Dunkels, B. Gronvall, and T. Voigt. Contiki - a
lightweight and flexible operating system for tiny net-
worked sensors. In 29th Annual IEEE International
Conference on Local Computer Networks, pages 455–
462, 2004.

[26] Jakob Eriksson, Lewis Girod, Bret Hull, Ryan Newton,
Samuel Madden, and Hari Balakrishnan. The pothole
patrol: Using a mobile sensor network for road surface
monitoring. In Proceedings of the 6th International Con-
ference on Mobile Systems, Applications, and Services,
MobiSys ’08, page 29–39, New York, NY, USA, 2008.
Association for Computing Machinery.

https://ambiq.com/apollo4-blue-plus/
https://ambiq.com/apollo4-blue-plus/
https://developer.arm.com/Processors/Cortex-M4
https://developer.arm.com/Processors/Cortex-M4
https://www.freertos.org/index.html
https://www.freertos.org/index.html
https://www.intel.com/content/www/us/en/products/details/memory-storage/optane-memory.html
https://www.intel.com/content/www/us/en/products/details/memory-storage/optane-memory.html
https://www.intel.com/content/www/us/en/products/details/memory-storage/optane-memory.html
https://kicksat.github.io/
https://www.ti.com/product/MSP430FR5994
https://www.ti.com/product/MSP430FR5994
https://pmem.io/pmdk/
https://pmem.io/pmdk/
https://github.com/pmem/redis/tree/3.2-nvml
https://github.com/pmem/redis/tree/3.2-nvml
https://github.com/lenovo/memcached-pmem
https://github.com/lenovo/memcached-pmem
https://www.techinsights.com/blog/memory/disruptive-technology-tsmc-22ull-emram
https://www.techinsights.com/blog/memory/disruptive-technology-tsmc-22ull-emram
https://www.ti.com/tool/ENERGYTRACE
https://www.ti.com/lit/wp/slat151/slat151.pdf
https://www.ti.com/lit/wp/slat151/slat151.pdf
https://www.zephyrproject.org/

[27] Kai Geissdoerfer and Marco Zimmerling. Bootstrapping
battery-free wireless networks: Efficient neighbor dis-
covery and synchronization in the face of intermittency.
In 18th USENIX Symposium on Networked Systems De-
sign and Implementation (NSDI 21), pages 439–455.
USENIX Association, April 2021.

[28] Graham Gobieski, Brandon Lucia, and Nathan Beck-
mann. Intelligence beyond the edge: Inference on in-
termittent embedded systems. In Proceedings of the
Twenty-Fourth International Conference on Architec-
tural Support for Programming Languages and Oper-
ating Systems, ASPLOS ’19, page 199–213, New York,
NY, USA, 2019. Association for Computing Machinery.

[29] Philipp Gutruf, Vaishnavi Krishnamurthi, Abraham
Vázquez-Guardado, Zhaoqian Xie, Anthony Banks,
Chun-Ju Su, Yeshou Xu, Chad R Haney, Emily A Waters,
Irawati Kandela, et al. Fully implantable optoelectronic
systems for battery-free, multimodal operation in neu-
roscience research. Nature Electronics, 1(12):652–660,
2018.

[30] Josiah Hester and Jacob Sorber. Flicker: Rapid prototyp-
ing for the batteryless internet-of-things. In Proceedings
of the 15th ACM Conference on Embedded Network Sen-
sor Systems, SenSys ’17, 2017.

[31] Josiah Hester, Kevin Storer, and Jacob Sorber. Timely
execution on intermittently powered batteryless sensors.
In Proceedings of the 15th ACM Conference on Embed-
ded Network Sensor Systems, SenSys ’17, 2017.

[32] Matthew Hicks. Clank: Architectural support for in-
termittent computation. In 2017 ACM/IEEE 44th An-
nual International Symposium on Computer Architec-
ture (ISCA), pages 228–240, 2017.

[33] Morteza Hoseinzadeh and Steven Swanson. Corundum:
Statically-enforced persistent memory safety. In Pro-
ceedings of the 26th ACM International Conference on
Architectural Support for Programming Languages and
Operating Systems, ASPLOS ’21, page 429–442, 2021.

[34] Joseph Izraelevitz, Terence Kelly, and Aasheesh Kolli.
Failure-atomic persistent memory updates via justdo log-
ging. In Proceedings of the Twenty-First International
Conference on Architectural Support for Programming
Languages and Operating Systems, ASPLOS ’16, page
427–442, New York, NY, USA, 2016. Association for
Computing Machinery.

[35] Neal Jackson, Joshua Adkins, and Prabal Dutta. Ca-
pacity over capacitance for reliable energy harvesting
sensors. In Proceedings of the 18th International Con-
ference on Information Processing in Sensor Networks,
IPSN ’19, page 193–204, New York, NY, USA, 2019.
Association for Computing Machinery.

[36] Hrishikesh Jayakumar, Arnab Raha, and Vijay Raghu-
nathan. Quickrecall: A low overhead hw/sw approach
for enabling computations across power cycles in tran-
siently powered computers. In 2014 27th International
Conference on VLSI Design and 2014 13th Interna-
tional Conference on Embedded Systems, pages 330–
335, 2014.

[37] Vito Kortbeek, Souradip Ghosh, Josiah Hester, Simone
Campanoni, and Przemysław Pawełczak. Wario: Effi-
cient code generation for intermittent computing. PLDI
2022, page 777–791, 2022.

[38] Vito Kortbeek, Kasim Sinan Yildirim, Abu Bakar, Jacob
Sorber, Josiah Hester, and Przemysław Pawełczak. Time-
sensitive intermittent computing meets legacy software.
ASPLOS ’20, page 85–99, 2020.

[39] Seulki Lee, Bashima Islam, Yubo Luo, and Shahriar Nir-
jon. Intermittent learning: On-device machine learning
on intermittently powered system. Proc. ACM Interact.
Mob. Wearable Ubiquitous Technol., 3(4), sep 2020.

[40] Yoonmyung Lee, Gyouho Kim, Suyoung Bang, Yejoong
Kim, Inhee Lee, Prabal Dutta, Dennis Sylvester, and
David Blaauw. A modular 1mm3 die-stacked sensing
platform with optical communication and multi-modal
energy harvesting. In 2012 IEEE International Solid-
State Circuits Conference, pages 402–404, 2012.

[41] P. Levis, S. Madden, J. Polastre, R. Szewczyk, K. White-
house, A. Woo, D. Gay, J. Hill, M. Welsh, E. Brewer,
and D. Culler. TinyOS: An Operating System for Sensor
Networks, pages 115–148. Springer Berlin Heidelberg,
Berlin, Heidelberg, 2005.

[42] Amit Levy, Bradford Campbell, Branden Ghena,
Daniel B. Giffin, Pat Pannuto, Prabal Dutta, and Philip
Levis. Multiprogramming a 64kb computer safely and
efficiently. In Proceedings of the 26th Symposium on
Operating Systems Principles, SOSP ’17, page 234–251,
2017.

[43] Qingrui Liu, Joseph Izraelevitz, Se Kwon Lee,
Michael L. Scott, Sam H. Noh, and Changhee Jung.
ido: Compiler-directed failure atomicity for nonvolatile
memory. In 2018 51st Annual IEEE/ACM International
Symposium on Microarchitecture (MICRO), pages 258–
270, 2018.

[44] Qingrui Liu and Changhee Jung. Lightweight hardware
support for transparent consistency-aware checkpointing
in intermittent energy-harvesting systems. In 2016 5th
Non-Volatile Memory Systems and Applications Sympo-
sium (NVMSA), pages 1–6. IEEE, 2016.

[45] Qingrui Liu, Changhee Jung, Dongyoon Lee, and De-
vesh Tiwari. Clover: Compiler directed lightweight
soft error resilience. ACM Sigplan Notices, 50(5):1–10,
2015.

[46] Qingrui Liu, Changhee Jung, Dongyoon Lee, and De-
vesh Tiwari. Compiler-directed lightweight checkpoint-
ing for fine-grained guaranteed soft error recovery. In
SC’16: Proceedings of the International Conference for
High Performance Computing, Networking, Storage and
Analysis, pages 228–239. IEEE, 2016.

[47] Brandon Lucia and Benjamin Ransford. A simpler,
safer programming and execution model for intermittent
systems. In Proceedings of the 36th ACM SIGPLAN
Conference on Programming Language Design and Im-
plementation, PLDI ’15, page 575–585, 2015.

[48] Yubo Luo and Shahriar Nirjon. Smarton: Just-in-time
active event detection on energy harvesting systems.
In 2021 17th International Conference on Distributed
Computing in Sensor Systems (DCOSS), pages 35–44,
2021.

[49] Kiwan Maeng, Alexei Colin, and Brandon Lucia. Al-
paca: Intermittent execution without checkpoints. Proc.
ACM Program. Lang., 1(OOPSLA), oct 2017.

[50] Kiwan Maeng and Brandon Lucia. Adaptive dynamic
checkpointing for safe efficient intermittent computing.
In Proceedings of the 13th USENIX Conference on Op-
erating Systems Design and Implementation, OSDI’18,
page 129–144, 2018.

[51] Kiwan Maeng and Brandon Lucia. Supporting peripher-
als in intermittent systems with just-in-time checkpoints.
In Proceedings of the 40th ACM SIGPLAN Conference
on Programming Language Design and Implementa-
tion, PLDI 2019, page 1101–1116, New York, NY, USA,
2019. Association for Computing Machinery.

[52] Kiwan Maeng and Brandon Lucia. Adaptive low-
overhead scheduling for periodic and reactive inter-
mittent execution. In Proceedings of the 41st ACM
SIGPLAN Conference on Programming Language De-
sign and Implementation, PLDI 2020, page 1005–1021,
2020.

[53] Amjad Yousef Majid, Carlo Delle Donne, Kiwan Maeng,
Alexei Colin, Kasim Sinan Yildirim, Brandon Lucia,
and Przemysław Pawełczak. Dynamic task-based inter-
mittent execution for energy-harvesting devices. ACM
Trans. Sen. Netw., 16(1), feb 2020.

[54] Matteo Nardello, Harsh Desai, Davide Brunelli, and
Brandon Lucia. Camaroptera: A batteryless long-
range remote visual sensing system. In Proceedings

of the 7th International Workshop on Energy Harvesting
& Energy-Neutral Sensing Systems, ENSsys ’19, page
8–14, 2019.

[55] Benjamin Ransford, Jacob Sorber, and Kevin Fu. Me-
mentos: System support for long-running computation
on rfid-scale devices. ASPLOS XVI, page 159–170,
2011.

[56] Emily Ruppel and Brandon Lucia. Transactional concur-
rency control for intermittent, energy-harvesting com-
puting systems. PLDI 2019, page 1085–1100, 2019.

[57] Alanson P. Sample, Daniel J. Yeager, Pauline S.
Powledge, Alexander V. Mamishev, and Joshua R.
Smith. Design of an rfid-based battery-free pro-
grammable sensing platform. IEEE Transactions on
Instrumentation and Measurement, 57(11):2608–2615,
2008.

[58] Anshu Shukla, Shilpa Chaturvedi, and Yogesh Simmhan.
Riotbench: An iot benchmark for distributed stream pro-
cessing systems. Concurrency and Computation: Prac-
tice and Experience, 29(21), October 2017.

[59] Milijana Surbatovich, Limin Jia, and Brandon Lucia.
Automatically enforcing fresh and consistent inputs in
intermittent systems. In Proceedings of the 42nd ACM
SIGPLAN International Conference on Programming
Language Design and Implementation, PLDI 2021, page
851–866, 2021.

[60] Milijana Surbatovich, Naomi Spargo, Limin Jia, and
Brandon Lucia. A type system for safe intermittent
computing. Proc. ACM Program. Lang., 7(PLDI), jun
2023.

[61] Hoang Truong, Shuo Zhang, Ufuk Muncuk, Phuc
Nguyen, Nam Bui, Anh Nguyen, Qin Lv, Kaushik
Chowdhury, Thang Dinh, and Tam Vu. Capband:
Battery-free successive capacitance sensing wristband
for hand gesture recognition. In Proceedings of the 16th
ACM Conference on Embedded Networked Sensor Sys-
tems, SenSys ’18, page 54–67, New York, NY, USA,
2018. Association for Computing Machinery.

[62] Joel Van Der Woude and Matthew Hicks. Intermittent
computation without hardware support or programmer
intervention. In Proceedings of the 12th USENIX Con-
ference on Operating Systems Design and Implementa-
tion, OSDI’16, page 17–32, 2016.

[63] Harrison Williams, Xun Jian, and Matthew Hicks. For-
get failure: Exploiting sram data remanence for low-
overhead intermittent computation. ASPLOS ’20, page
69–84, 2020.

[64] Kasım Sinan Yıldırım, Amjad Yousef Majid, Dimitris
Patoukas, Koen Schaper, Przemyslaw Pawelczak, and
Josiah Hester. Ink: Reactive kernel for tiny batteryless
sensors. In Proceedings of the 16th ACM Conference
on Embedded Networked Sensor Systems, SenSys ’18,
page 41–53, 2018.

[65] Eren Yıldız, Lijun Chen, and Kasim Sinan Yıldırım. Im-
mortal threads: Multithreaded event-driven intermittent
computing on Ultra-Low-Power microcontrollers. In
16th USENIX Symposium on Operating Systems De-
sign and Implementation (OSDI 22), pages 339–355.
USENIX Association, July 2022.

[66] Jianping Zeng, Jongouk Choi, Xinwei Fu, Ajay Pad-
dayuru Shreepathi, Dongyoon Lee, Changwoo Min, and
Changhee Jung. Replaycache: Enabling volatile caches-
for energy harvesting systems. In MICRO-54: 54th An-
nual IEEE/ACM International Symposium on Microar-
chitecture, MICRO ’21, page 170–182, New York, NY,
USA, 2021. Association for Computing Machinery.

[67] Pei Zhang, Christopher M. Sadler, Stephen A. Lyon,
and Margaret Martonosi. Hardware design experiences
in zebranet. In Proceedings of the 2nd International
Conference on Embedded Networked Sensor Systems,
SenSys ’04, page 227–238, New York, NY, USA, 2004.
Association for Computing Machinery.

[68] Yuchen Zhou, Jianping Zeng, Jungi Jeong, Jongouk
Choi, and Changhee Jung. Sweepcache: Intermittence-
aware cache on the cheap. In Proceedings of the 56th An-
nual IEEE/ACM International Symposium on Microar-
chitecture, pages 1059–1074, 2023.

A Artifact Appendix

Abstract

IntOS is an intermittent multithreaded embedded RTOS based
on FreeRTOS for research. It features transactions with re-
play and bypasses to enable cheap crash consistency. The
kernel and user applications are all written in the Rust pro-
gramming language. The Rust type system is used to enforce
safe programming rules defined by the framework to guar-
antee crash consistency and Persistent Memory safety. Cur-
rently, we support three platforms: QEMU, Apollo 4 Blue
Plus, MSP430FR5994.

Scope

This artifact contains code to build the crash-safe INTOS ker-
nel and benchmark/user app to run on intermittent computing
platforms(e.g. MSP430FR5994). Users can use the artifact

to reproduce the results in the paper. For evaluation of func-
tionality, please just follow the instructions for QEMU. This
artifact is for research purposes only.

Contents
The artifact contains Rust written kernel, user library code,
and the benchmarks used in the paper. The general ker-
nel code is under the src/ directory. The user library is in
src/user. Benchmarking code is under src/benchmarks.
Platform/Architecture-related code is in src/arch and
src/board directory. A simple demo app is hosted under
src/app.

Hosting
The artifact is hosted in https://github.com/yiluwusbu/IntOS.
The branch is master and the commit version is a916c16

Requirements
The OS we use is Ubuntu 22.04. For evaluating the function-
ality and debugging, QEMU(for ARM) is sufficient. For eval-
uating the performance, you need to get the MSP430FR5994
or Apollo 4 Blue Plus development board.

Run with Docker
We provide a docker image for users to run the system with
QEMU. If you use docker, please skip the dependency/-
toolchain installation sections. To build the docker image,
run:
docker build -t rtosdev .
Then, run the docker:
docker run -v $(pwd):/repo -it rtosdev bash

Install System Dependency
sudo apt install curl wget p7zip-full
libncurses5 libncursesw5 build-essential
qemu-system-arm

Install Rust Toolchain
curl --proto ’=https’ -tlsv1.2 -sSf
https://sh.rustup.rs | sh -s -- -y
Set the compiler version:
rustup toolchain add nightly-2022-04-01

Install MSP430 Toolchain
Download and install the msp430-gcc toolchain from TI’s
website. For detailed commands, see README.md in the
github repo.

https://github.com/yiluwusbu/IntOS

Install ARM Toolchain
Install JLink flasher/debugger and the ARM gcc toolchains:

1. Download the Segger JLink tools (v7.92) on your plat-
form from their website

2. Download ARM (arm-none-eabi) toolchain (version
12.3.Rel1) from the official ARM website

Compile INTOS
You can compile the OS and benchmarks/example applica-
tions using the provided Python script:
./compile.py --board [qemu|apollo4bp|msp430fr5994]
--bench [app name] [--run (for qemu)]
Example:
./compile.py --board qemu --bench bc --run

Configuration Parameters
To list all the available benchmarks and custom compilation
flags, you can run:
./compile.py -h
Table 3 describes the benchmarks we use in this work. To
enable timer daemon, you can pass --timer_daemon

Power Failure Injection
To inject soft power failure to the system at a given frequency,
you can use the following command:
./compile.py --board [board name] --bench [app
name] --fail --pf_freq [frequency: e.g. 1ms]
[--run (for qemu)]
Example:
./compile.py --board qemu --bench bc --fail
--pf_freq 1ms --run

Run Demo App
We give a simple example of two tasks communicating us-
ing a Queue (i.e. IPC). The full code can be found in the
app/demo.rs file.
To run the demo:
./compile.py --board qemu --app demo --run

Flash and Run App on MSP430FR5994
You can install the TI’s Uniflash or CCSTUDIO IDE to flash
the application binary (located under target/msp430-none-
elf/release/) onto the board.

The application/OS will print debug/perf related informa-
tion through the UART interface to the host machine. The
default Baud Rate is 115200. To view the printed message,

you can use any Serial Monitor tools to view the printed mes-
sage. For example, on Linux/Win, you can install the Serial
Monitor Plugin. Termite is another handy tool you can use.

Flash and Run App on Apollo4 Blue Plus
Use GDB and JLink to load and run the application.

1. In one terminal, run JLinkGDBServer -if SWD
-device AMA4B2KP-KXR

2. In another terminal run arm-none-eabi-gdb -x
apollo.gdb <path/to/binary>

After the binary is loaded onto the board, enter ’c’ to run.
The application will print message to the gdb interface and
port 2333 (TCP/IP) .

	Introduction
	Background
	Intermittent Computing
	Embedded Operating Systems
	Transactions for Non-volatile Memory

	Related Work
	Overview of IntOS
	Multithreading and Transactions
	Replay-and-Bypass
	Persistent Embedded OS
	IntOS Program Example

	Replay-and-Bypass Recovery
	Single Thread Crash Consistency
	Multi-Threads Crash Consistency

	IntOS Programming Model
	Optimization
	Loop Optimization
	Linked List Optimization
	Undo-Logging Optimization

	Discussion
	Implementation
	Evaluation
	Without Power Failures on MSP430
	With Power Failures on MSP430
	Optimization Effectiveness on MSP430
	Experiments with Apollo 4
	IntOS Programming Overhead

	Conclusion
	Artifact Appendix

