
Practical Fault Injection Attacks on Constant Time CSIDH and
Mitigation Techniques

Tinghung Chiu
Virginia Tech

Blacksburg, VA, USA
kennychiu0818@vt.edu

Jason LeGrow
Virginia Tech

Blacksburg, VA, USA
jlegrow@vt.edu

Wenjie Xiong∗
Virginia Tech

Blacksburg, VA, USA
wenjiex@vt.edu

ABSTRACT
Commutative Supersingular Isogeny Diffie-Hellman (CSIDH) is an
isogeny-based key exchange protocol which is believed to be se-
cure even when parties use long-lived secret keys. To secure CSIDH
against side-channel attacks, constant-time implementations with
additional dummy isogeny computations are employed. In this
study, we demonstrate a fault injection attack on the constant-time
real-then-dummy CSIDH to recover the full static secret key. We
prototype the attack using voltage glitches on the victim STM32
microcontroller. The attack scheme, which is based on existing
research which has yet to be practically implemented, involves
getting the faulty output by injecting the fault in a binary search
fashion. Our attack reveals many practical factors that were not
considered in the previous theoretical fault injection attack anal-
ysis, e.g., the probability of a failed fault injection. We bring the
practice to theory and developed new complexity analysis of the
attack. Further, to mitigate the possible binary search attack on
real-then-dummy CSIDH, dynamic random vector CSIDH was pro-
posed previously to randomize the order of real and dummy isogeny
operations. We explore fault injection attacks on dynamic random
vector CSIDH and evaluate the security level of the mitigation. Our
analysis and experimental results demonstrate that it is infeasible
to attack dynamic random vector CSIDH in a reasonable amount of
time when the success rate of fault injection is not consistent over
time.

CCS CONCEPTS
• Security and privacy→ Side-channel analysis and counter-
measures; Tamper-proof and tamper-resistant designs.

KEYWORDS
Fault injection attack, real-then-dummy CSIDH, dynamic random
vector CSIDH, post-quantum cryptography
ACM Reference Format:
Tinghung Chiu, Jason LeGrow, and Wenjie Xiong. 2024. Practical Fault
Injection Attacks on Constant Time CSIDH and Mitigation Techniques.
In Proceedings of the 2024 Workshop on Attacks and Solutions in Hardware
Security (ASHES ’24), October 14–18, 2024, Salt Lake City, UT, USA. ACM,
New York, NY, USA, 12 pages. https://doi.org/10.1145/3689939.3695789

∗Author list in alphabetical order.

This work is licensed under a Creative Commons Attribution-
NonCommercial-ShareAlike International 4.0 License.

ASHES ’24, October 14–18, 2024, Salt Lake City, UT, USA
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-1235-7/24/10.
https://doi.org/10.1145/3689939.3695789

1 INTRODUCTION
Isogeny-based cryptography is a promising branch of post-quantum
cryptography, whose security based on the difficulty of finding cer-
tain structured maps (isogenies) between elliptic curves. These
protocols have extraordinarily small communication overhead com-
pared with most other post-quantum protocols, which makes them
excellent candidates for scenarios when communication complexity
outweighs computation time when determining protocol latency,
such as when communicating over unreliable networks. There have
been two frameworks proposed for isogeny-based key establish-
ment protocols: Supersingular Isogeny Diffie-Hellman (SIDH) [17]
and Commutative SIDH (CSIDH) [13]. For a time, the active at-
tacks [20, 22] on SIDH meant that CSIDH was the only candidate
for isogeny-based static/ephemeral key establishment. Later, total
breaks [12, 31, 37] rendered SIDH-based protocols completely in-
secure, leaving CSIDH—which, despite cryptanalysis [6, 7, 26, 36],
remains secure—as the only isogeny-based option for key establish-
ment. As well, CSIDH is a very flexible protocol, and is currently the
most viable isogeny-based option for many advanced public-key
functionalities [5, 18, 27, 40]. For these reasons, CSIDH is one of the
most ubiquitous and important protocols studied in the isogeny-
based cryptographic literature.

The original implementation of CSIDH was not constant time,
and hence was vulnerable to timing attacks. A series of papers [14,
16, 25, 32, 35] introduced and optimized versions of CSIDH which
use dummy operations to achieve constant running time. In short,
these constant-time implementations of CSIDH always construct
the same number of isogenies, regardless of the value of the secret
key, and the results of the dummy computations are simply dis-
carded. While this does make the protocol constant-time, it has the
unfortunate side effect of creating a new attack possibility: a fault
injection attack. In particular, in the static/ephemeral setting where
one party has a fixed secret key, an attacker can repeatedly initiate
key establishment sessions and introduce faults into the isogeny
computations.When a fault is injected into a real isogeny, we expect
that the output (the shared key) will be incorrect, while injecting a
fault into a dummy isogeny should not disrupt the shared key. In
this way, the attacker can determine the number of real isogenies
of each degree, which is equivalent to determining the static secret
key (possibly up to sign, depending on the implementation).

While fault attacks on static/ephemeral CSIDH have been the
subject of many theoretical studies [2, 10, 14, 29, 30], these works do
not consider many practical aspects of fault injection attacks, such
as the possibility that a fault injected into a real isogeny will fail to
produce faulty output, the probability that injecting an isogeny into
a real or dummy isogeny will cause the program to fail to output
anything at all, or the parameters that must be tuned to improve

https://orcid.org/0009-0002-5369-1290
https://orcid.org/0000-0002-6239-6616
https://doi.org/10.1145/3689939.3695789
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://doi.org/10.1145/3689939.3695789

ASHES ’24, October 14–18, 2024, Salt Lake City, UT, USA Tinghung Chiu, Jason LeGrow, and Wenjie Xiong

fault attack effectiveness (such as when and for how long to inject
faults into isogeny computations). While theory informs the design
and analysis of these fault attacks, significantly more experimental
work must be done in order to understand the impact that these
attacks have on the security of CSIDH in real-world situations.

This paper makes the following contributions:
(1) We demonstrate a voltage glitch attack on real-then-dummy
constant-time CSIDH with signed private keys. We are the first
to describe the complete attack pipeline. We perform extensive
experiments to analyze and optimize this success probability for key
recovery by finding suitable injection time (tuned to each isogeny
degree separately), fault duration, and voltage.
(2) Building on our experimental evidence and considering the
success rate of single fault injection, we identify the gap between
the existing theory and practice, and derive new bounds on the
number of faults required to achieve high success probability when
the isogenies are in real-then-dummy order, or use dynamic random
vector ordering as in [30].
(3) We are the first to bring the theory of [30] to practice, by incor-
porating the dynamic random vector isogeny reordering technique
into our implementation of CSIDH, and trying to launch a fault
attack on this implementation. Our experiments reveal previously
unknown complications that arise when analyzing the results of
fault attacks on CSIDH when isogenies are ordered randomly in
each session. These results suggest that the mitigation techniques
of [30] may be substantiallymore secure then originally believed.
Our dynamic random vector isogeny reordering CSIDH implemen-
tation and voltage glitch attack control code is open-sourced at
https://github.com/bearhw/RandomVector_CSIDH_FI.

2 BACKGROUND
2.1 CSIDH
We provide only a cursory explanation of the relevant background;
for a more complete explanation, see [13, Section 3].

Fix a prime 𝑝 of the form 𝑝 = 4ℓ1ℓ2 · · · ℓ𝑛 − 1 where ℓ1, ℓ2, . . . , ℓ𝑛
are distinct small odd primes—usually, ℓ1, . . . , ℓ𝑛−1 are taken to
be the first 𝑛 − 1 odd primes, and ℓ𝑛 is the smallest prime which
is larger than ℓ𝑛−1 and for which the resulting 𝑝 is itself prime.
Let E𝑝 denote the set of supersingular elliptic curves defined over
F𝑝 and whose F𝑝 -rational endomorphism ring is isomorphic to
O = Z[√−𝑝] (this set is nonempty since it contains, for instance,
𝐸0 : 𝑦2 = 𝑥3 + 𝑥). By [13, Theorem 7], the ideal class group cl(O)
acts freely and transitively on E𝑝 .

By our choice of 𝑝 , there are a number of distinguished ele-
ments of cl(O) that are used in CSIDH. In particular, each prin-
cipal ideal (ℓ𝑖) of O splits as (ℓ𝑖) = 𝔩𝑖 𝔩𝑖 , where 𝔩𝑖 = (ℓ𝑖 , 𝜋 − 1)
and 𝔩𝑖 = (ℓ𝑖 , 𝜋 + 1), where 𝜋 is the Frobenius map. The action
of the corresponding ideal classes [𝔩𝑖] and [𝔩𝑖] ∈ cl(O) can be
computed efficiently using Vélu’s formulas [41], since the required
torsion points can be chosen so that their 𝑥-coordinates are in F𝑝 .
Since (ℓ𝑖) is principal, we have [𝔩𝑖] = [𝔩𝑖]−1 in cl(O). With this
setup, the CSIDH key establishment protocol proceeds as follows:
Alice selects ®𝑒𝐴 ∈ [−𝑏,𝑏]𝑛 , where 𝑏 is a small, predetermined in-
teger chosen to ensure sufficient security of the protocol. Alice
constructs the elliptic curve 𝐸𝐴 = ([ℓ1]𝑒

𝐴
1 [ℓ2]𝑒

𝐴
2 · · · [ℓ𝑛]𝑒

𝐴
𝑛) ∗ 𝐸0,

where 𝐸0 : 𝑦2 = 𝑥3 + 𝑥 . Bob proceeds analogously, choosing ®𝑒𝐵 and
constructing 𝐸𝐵 . Alice and Bob exchange 𝐸𝐴 and 𝐸𝐵 . To construct
the shared key, Alice computes ([ℓ1]𝑒

𝐴
1 [ℓ2]𝑒

𝐴
2 · · ·[ℓ𝑛]𝑒

𝐴
𝑛) ∗ 𝐸𝐵 =

([ℓ1]𝑒
𝐴
1 +𝑒𝐵1 [ℓ2]𝑒

𝐴
2 +𝑒𝐵2 · · ·[ℓ𝑛]𝑒

𝐴
𝑛 +𝑒𝐵𝑛) ∗ 𝐸0 and Bob analogously com-

putes ([ℓ1]𝑒
𝐵
1 [ℓ2]𝑒

𝐵
2 · · · [ℓ𝑛]𝑒

𝐵
𝑛) ∗ 𝐸𝐴 , which is equal to Alice’s key

by the commutativity of cl(O).

2.2 Constant-Time Implementations of CSIDH
with Dummy Isogenies

In a naïve implementation of the protocol described in Section 2.1,
Alice would compute exactly ∥®𝑒𝐴∥1 = |𝑒𝐴1 |+|𝑒

𝐴
2 |+· · ·+|𝑒

𝐴
𝑛 | isogenies

to construct the shared secret. In this case, Alice’s computation time
would leak information about her secret key ®𝑒𝐴; if she constructs
the shared secret relatively quickly, it’s likely that ∥®𝑒𝐴∥1 is small,
for instance. The standard mitigation technique is to ensure that
Alice always computes exactly 𝑏 isogenies of each degree: she
computes the |𝑒𝐴

𝑖
| isogenies of degree ℓ𝑖 as usual, but also computes

𝑏 − |𝑒𝐴
𝑖
| more isogenies of degree ℓ𝑖 , whose outputs she ignores.

These additional isogenies are called “dummy” isogenies.
Real-then-Dummy Implementation.Meyer, Campos, and Reith
were the first to implement CSIDH with dummy isogenies [32]. In
this implementation, all |𝑒𝑖 | real isogenies of degree ℓ𝑖 are computed
first, followed by all 𝑓𝑖 = 𝑏 − |𝑒𝑖 | dummy isogenies of degree ℓ𝑖 . We
call this the real-then-dummy setting; the algorithm is depicted in
Algorithm 1 in the Appendix. LeGrow and Hutchinson [30] showed
that, in a model where fault injections in real isogenies always
causes a faulty key, an attacker can learn |𝑒𝐴

𝑖
| using log2 (𝑏+1) faults

using a binary search approach, and so can learn the magnitudes
of all key values using 𝑛

⌈
log2 (𝑏 + 1)

⌉
faults in total.

Reordered Isogenies. LeGrow and Hutchinson [30] proposed vari-
ants of constant-time CSIDH in which the order of real and dummy
isogeny is randomized, preventing the binary search method de-
scribed in Algorithm 2 in Appendix A. In particular, they consider
two regimes for reordering the isogenies, which they call fixed and
dynamic. In the fixed regime, the ordering of the real and dummy
isogenies is encoded in a vector—the decision vector—which is cho-
sen when the private key is sampled and is fixed for all time. In the
dynamic regime, the decision vector is chosen fresh and uniformly
at random each time key establishment is initiated. These isogeny
reordering techniques introduce minimal overhead. While the fixed
decision vector has only a small impact on the number of faults
required for a successful fault injection attack, dynamic reordering
has a more dramatic impact: the number of faults required for a
successful attack increases from Θ(log𝑏) to Θ(𝑏2 log𝑏). Although
this is an exponential increase from the original attack, the param-
eter 𝑏 is polynomial in the security parameter, and so these attacks
still run in polynomial time.

2.3 Fault Injection Attacks
A fault injection attack is an active attack where the attacker in-
tentionally induces a fault on the device during the execution of
security-critical operations. The attacker can analyze the faulty
outputs caused by the fault during the operation, resulting in com-
promising security measures or extracting sensitive information
such as a secret key.

https://github.com/bearhw/RandomVector_CSIDH_FI

Practical Fault Injection Attacks on Constant Time CSIDH and Mitigation Techniques ASHES ’24, October 14–18, 2024, Salt Lake City, UT, USA

Inducing a Fault. The fault injection attacks typically pose the
target device in an operation condition that is not normal, so the de-
vice may enter some unstable state to have errors in the execution.
There are a number of fault injection methods, such as electro-
magnetic pulse [19, 33], laser [38, 39], voltage glitch [3, 8], DRAM
row hammer [23, 34], etc. In the experiments of this paper, we use
voltage glitches to induce faults, which are easy and inexpensive
to set up. It has shown that voltage glitches have relatively high
resolution in time.

Meanwhile, the unstable state does not guarantee errors, i.e., the
fault injection may not always yield an error in the execution. The
attacker may need to try several times to induce an actual error.
In this paper, we define faulty rate (𝑝 𝑓) as the probability the
attacker successfully induces an actual error in the execution on
an attempt to induce a fault. Also, the unstable state might trigger
other errors in the system or trigger a protection mechanism to
reset the whole system, and the victim execution might not be
complete to generate the desired faulty output. We define reset
rate (𝜌) as the probability the attacker triggers the system reset
or crash in an attempt to induce a fault. Although in this paper
we demonstrate a fault injection attack with voltage glitches, the
unstable nature also exists in other type of fault injection attacks.
Fault Analysis. The most widely used fault analysis method is
differential fault attack (DFA). In the attack, the cryptographic op-
eration is executed twice, once to generate the correct output and
once with an induced fault at a certain instruction or memory loca-
tion to generate a faulty output. The attacker then uses the faulty
and the correct output to extract the key [28].

Statistical Fault Attack (SFA) is another fault analysis method.
The attacker induces faults in all the execution runs, and analyzes
the distribution of the faulty outputs [21]. As a special case, the
output can be whether the execution failed or not, i.e., depending on
the secret an actual fault does not result in a faulty execution output
and can be seen as a “safe error”. One example of such an attack
is the constant time RSA implementation [42]. Due to the dummy
operation in constant-time CSIDH, CSIDH can be vulnerable to
safe error, and this is the focus of this paper.

It is possible that the attacker intends to inject a fault but the
execution is not actually perturbed, i.e., the faulty rate is less than
one. In DFA, this is not an issue, because the attacker can observe
a faulty output when a fault is induced successfully. If the attacker
does not observe a faulty output, the attacker can simply retry the
fault injection until a faulty output is observed. However, in SFA,
the attacker’s observation is directly affected by the faulty rate of
the fault injection, and the attacker has to take the faulty rate into
consideration during the faulty analysis. In this paper, we consider
the results of the empirical results of real fault injection (i.e., faulty
rate and reset rate) into the fault analysis process.

3 RELATEDWORKS
Attack Models of Fault Attacks on CSIDH. Most theoretical
analyses of fault attacks on CSIDH [2, 29, 30] use the following
abstract model of fault injection: an attacker is able to disrupt
an isogeny computation in such a way that the output curve is
uniformly random, rather than the correct curve. There are several
models of howmuch information can be obtained about the isogeny

can be disrupted; for instance, in the the weak “shotgun at the
CSIDH” model of [10], the attacker knows nothing about the degree
of the isogeny which is disrupted or in which round it occurs. In
this weak attack model, the attacker is only able to learn aggregate
information about the proportion of isogenies that are real, reducing
the feasible keyspace slightly. Most works consider the stronger,
but still quite reasonable attack model in which an attacker can
disrupt an isogeny of known or chosen degree in a given round.
While the theoretical analysis consider the case when the fault
injection is perfect (i.e., a fault injected into a real isogeny always
yields incorrect output, 𝑝 𝑓 = 1), our experiments demonstrate that
this is not a realistic model. A particular consequence of this is
that some proposed fault attack countermeasures—particularly the
“dynamic random vector” proposal of [30]—are more effective than
the original analysis suggests.
Empirical fault attacks on CSIDH. The first published work
which contains experimental results is [10], in which the authors
use voltage glitches to corrupt isogeny output. Our attack is dif-
ferent from [10] in the following fundamental ways: (1) In their
attacks other than their weak attack model 1, the attacker can in-
duce error accurately at certain critical instructions of a desired
isogeny, but we assume a more realistic scenario that the attacker
only knows when the isogeny operation starts. Our assumption is
more realistic, because if an attacker can know all the instructions
being executed, the attacker can already identify if the isogeny is
real without fault injection. (2) The experiments of [10] are lim-
ited: the keyspace size is significantly reduced to only 32, fault
injection is tested only for two prime isogeny degrees 3 and 5,
only the real-then-dummy isogeny order is considered, and only
the final percentage of faulty output is reported—the complete at-
tack pipeline is not analyzed. We conduct extensive experiments to
analyze the confidence and complexity of the attack and explore
mitigation such as randomly reordered isogenies. (3) In their the-
ory analysis, they assume the attacker can reliably induce a fault
without considering the success rate of fault injection. The only
other experimental work is [11], which uses voltage glitches to
corrupt a specific assignment instruction of certain variables used
in isogeny computations, to cause faulty output if there is an fault
in the dummy isogeny and correct output for real isogeny. The
work of [11] suffers from the same drawbacks as [10], and only
shows experimental results for attack single isogeny operations
instead of a complete CSIDH operation.
Countermeasures of fault attacks on CSIDH. There have been
a number of theoretical works studying both fault injection at-
tacks and their countermeasures in the context of CSIDH. The first
work to consider fault attack and their countermeasures is [14],
where the “dummy-free” method is introduced (and later optimized
in [16]). This technique uses a modified keyspace, and essentially
replaces dummy isogenies with pairs of real isogenies that can-
cel one another out. The modified keyspace results in a protocol
with a running time roughly double that of a similar implementa-
tion which uses dummy isogenies. This method totally prevents
fault attacks, in principle. In 2023 LeGrow proposed the two-curve
method [29]. Like the dummy-free method of [14], all isogenies
computed in this setting are real. Isogenies which would have been
real in the naïve implementation are performed as usual, while
isogenies which would have been dummy are applied to a second

ASHES ’24, October 14–18, 2024, Salt Lake City, UT, USA Tinghung Chiu, Jason LeGrow, and Wenjie Xiong

Table 1: A summary of existing fault attack countermeasures.
The bold ones are studied in this paper

Implementation Latency
(Mcycles)

Public Key
Size (Bytes) Generic? Fault attack

prevention

Variable time [13] 106 64 ✓ ✗

Optimized constant time [25] 229 64 ✓ ✗

Optimized dummy-free [14, 16] 431 64 ✓ ✓
Two-curve method [29] 417 128 ✓ ✓
Consistency checks [10] 2451 64 ✗ ✓2

Pseudo 𝑦-coordinates [2] 2421 64 ✓ ✓2

Reordered isogenies [30] 2291 64 ✓ ✓✗3

1Estimated.
2In a less general fault model.
3Fault attack complexity is significantly increased, but attacks are not fully prevented.

curve; in the end, both curves are used to construct a shared secret
key. This protocol introduces less computational overhead than
the dummy-free method, but the communication complexity of the
protocol doubles.

Taking a different approach, the authors of [10] propose to thwart
fault attacks not by removing dummy isogenies, but by adding ad-
ditional consistency checks to the isogeny computations. These
checks cause the protocol to abort if an isogeny is tampered with,
regardless of whether it is real or dummy. This is a very lightweight
countermeasure, introducing only between 5% and 7% overhead.
Unfortunately, this countermeasure is not generic, and in particu-
lar, it is not compatible with the

√
élu technique1 which has been

used to speed up isogeny computations in CSIDH considerably [4].
Similarly, in [2], the authors consider a fault attack model in which
an attacker is explicitly targetting the IsSquare function which is
present inmost CSIDH implementations—while the authors provide
countermeasures for these fault attacks, this is also not a generic
model of fault attack on CSIDH. These countermeasures and their
properties are summarized in Table 1.

Table 1 explains why fault injection attack countermeasures for
CSIDH have not seen widespread adoption: the methods that pre-
vent fault injection attacks introduce substantial overhead, while
the methods which are efficient either do not apply to all implemen-
tations of CSIDH, or merely mitigate (rather than fully prevent)
fault injection attacks. In this paper, we study the two constant-time
implementations with low latency, bold in Table 1. Especially, we
leverage empirical results to analyze the security level of Reordered
isogenies [30], which has almost no performance overhead.

4 THE ATTACK MODEL
In the static/ephemeral setting, Alice has a long-lived public key

𝐸𝐴 = [∏𝑛
𝑖=1 ℓ

𝑒𝐴
𝑖

𝑖
] ∗𝐸0 which she uses for a key encapsulation mech-

anism in the style of Elgamal. In particular, suppose that Bob wishes
to communicate with Alice using a symmetric-key cryptosystem.
To establish a shared session key with Alice, he will choose an
ephemeral CSIDH secret ®𝑒𝐵 , construct the corresponding ephemeral
public key 𝐸𝐵 and shared secret 𝐸𝐵𝐴 . He then chooses a uniformly
random key 𝑘 ∈ {0, 1}𝜅 and sends (𝐸𝐵, 𝑠 = ℎ(𝑀 (𝐸𝐵𝐴)) ⊕ 𝑘) to
Alice, where 𝑀 (𝐸𝐵𝐴) ∈ F𝑝 is the Montgomery coefficient of 𝐸𝐵𝐴
and ℎ : {0, 1}∗ → {0, 1}𝜅 is a cryptographic hash function. Upon re-
ceiving (𝐸𝐵, 𝑠) from Bob, Alice constructs 𝐸𝐴𝐵 using her long-lived
1Pronounced “square root Vélu,” this improves on Vélu’s formulas, reducing the com-
plexity of computing an ℓ-isogeny from Θ̃(ℓ) operations in F𝑝 to �̃� (

√
ℓ) .

secret key, and hence recovers 𝑘 = 𝑠 ⊕ ℎ(𝑀 (𝐸𝐴𝐵))—Alice and Bob
now have the shared key 𝑘 .

An attacker Eve who wants to learn Alice’s long-lived secret
proceeds as follows: Eve repeatedly establishes session keys with
Alice as described above and injects faults into Alice’s computa-
tions. Upon receiving the first message from Alice, if Eve tires to
inject a fault when Alice constructs the shared curve, then with
overwhelming probability she will recover the incorrect symmetric
key, and Eve can detect this by decrypting Alice’s first message,
since the decrypted message will, with overwhelming probability,
not be semantically meaningful. With the attack described in the
next section, Eve can eventually learn Alice’s long-lived secret ®𝑒𝐴 .

The following statements describe the assumptions that the at-
tacker requires to recover the secret key from the target device:

Offline profiling: We assume the attacker Eve has physical ac-
cess to the target device used by the victim Alice for the voltage
glitch attack. To find the appropriate parameters for fault injec-
tion, Eve must be able to profile the CSIDH execution on the target
device or a device of the same model.

Knowing the parameters of CSIDH: We assume that adversary
knows the system parameters; in particular, the key bound 𝑏, and
the order in which the isogenies will be computed in each round.
This information is not sensitive, and so it may be public. But it
also does not need to be public—indeed, two parties participating
in key establishment need not use the same key bound and isogeny
ordering. Even if this information is not published, the attacker can
reverse engineer these parameters. For simplicity, we assume that
the adversary simply knows this information. The parameter of
CSIDH is not a secret of the algorithm. Meanwhile, the attacker
can do the reverse engineering or compare the execution time of
each degree isogeny after profiling the target device to know the
order of prime numbers and the max value of each degree isogeny.

Triggering CSIDH key exchange repeatedly: As the secret key
recovery necessitates multiple shared secrets, the attacker should
be able to trigger CSIDH key exchanges repeatedly with the target
device. e.g., Eve can repeatedly establish session key with Alice.

Knowing when CSIDH key exchange starts: Since the attacker
can trigger CSIDH key exchange, we assume the execution would
start immediately, and the attacker can use that as a reference time
for fault injection.

Injecting faults during isogeny execution: The attacker will in-
duce faults by voltage glitches or other fault injection methods,
potentially resulting in obtaining a faulty shared secret to recover
the secret key. We assume the attacker knows when isogeny com-
putation starts by profiling the CSIDH execution. In contrast with
prior works [10, 11], we do not assume the attacker can or must
accurately inject fault into specific instructions.

Observing if CSIDH key exchange fails: The attacker can repeat-
edly participate in key establishment sessions with Alice, and de-
termine whether Alice has constructed the correct shared curve.

5 ATTACK SCHEME
The basic idea of dummy-based constant time CSIDH secret key
recovery by fault injection attack is based on observing whether
induced fault will impact the shared secret. Assuming the attacker
can induce the fault during the isogeny operation of each degree.

Practical Fault Injection Attacks on Constant Time CSIDH and Mitigation Techniques ASHES ’24, October 14–18, 2024, Salt Lake City, UT, USA

The final shared secret will not be impacted if the induced fault
occurs during the dummy isogeny operation. Otherwise, when
the fault occurs during the real isogeny operation, the faulty cal-
culated curve will be propagated, and the attacker will obtain a
different shared secret. Then, the attacker can infer the number of
real isogeny operations in each degree, which is Alice’s secret ®𝑒𝐴 .
Therefore, we first focus on inducing the fault during the isogeny
operation.

5.1 Voltage Glitches during Isogeny Operation
There are several parameters that the attack requires to achieve
the goal of inducing the fault by voltage glitch during the isogeny
operation: (1) Injection Time: The point in the algorithm in which
we inject the fault. (2) Duration: The duration of time the voltage
is lowered. (3) Voltage: The extent to which the voltage is changed
during the glitch. The voltage and duration of the glitch have an
impact on the number of instructions that are disrupted. These
parameters will directly affect the accuracy of the recovery key and
must be determined appropriately.

5.1.1 Empirical Study of Fault Injection on Isogeny Operations.
While previous theoretical fault analysis assumes fault injection
in any part of the real isogeny should induce fault in the out-
put [2, 10, 14, 29, 30], here, we study the effects of voltage glitches
in different parts of the real isogeny empirically. We conduct test
on a microcontroller, more details about the injection setup can be
found in Section 6.1. We use the glitch duration and voltage that
results in the best faulty rate to test different injection positions.
Our fault injects position focuses on the main for-loop operation,
which accounts for 92% of the isogeny operation. We divide the
execution time of the for loop inside the isogeny operation into a
hundred points, from 0% to 99% execution time, and take 10 trials
for each point. The fault injection results for degree 353 and 359
are shown in Figure 1 and Figure 2. The results of more degrees
can be found in Figure 5 in the appendix.

There are three possible outputs when inducing the fault during
the isogeny operation. If the shared secret get tampered by the fault,
we call it faulty output. Another is correct output, that the fault
does not change the shared secret. The last one is reset, where the
board does not output a shared secret within a reasonable time due
to the system failure.

In Figure 1 and Figure 2 the 𝑥-axis indicates the injection time
being the percentage of the execution time of for-loop, and the
𝑦-axis the percentage of faulty output and reset. Figure 1 is the
result of fine-grained search on different degree isogeny operations,
which we use to determine the injection time. It shows that the
distribution of faulty and reset rates is highly different between
each degree of isogeny operation. Moreover, Figure 2 shows that
the results of fine grain search may be different between different
rounds of profiling, even though inducing the fault on the same
degree isogeny operation.

5.1.2 Challenges for Injecting Faults in the Isogeny. In our voltage
glitch experiments, we observed the following features that made
key recovery using fault injection attacks challenging:
The faulty rate for real isogeny is not high. In the previous
theoretical papers which analyze fault injection attacks on CSIDH,

0 20 40 60 80 100
0

25

50

75

100

De
gr

ee
 3

59

 R
at

e
(%

)

Faulty Reset

0 20 40 60 80 100
Inject Time (%)

0

25

50

75

100

De
gr

ee
 3

53

 R
at

e
(%

)

Figure 1: Faulty and reset rate when inducing faults on real
isogenies of degrees 359 and 353.

0 20 40 60 80 100
Inject Time (%)

0

50

100

Fa
ul

ty
 R

at
e

(%
)

Faulty Reset

Figure 2: Faulty rate of isogenies of degree 359.

the models assume that the injecting a fault into a real isogeny
always yields incorrect output (i.e., the faulty rate is 100%). However,
Figure 1 shows that at most injection points in an isogeny, injecting
a fault will not cause faulty output with high probability—indeed,
most injection points have a 0% faulty rate and a high reset rate,
which will make the fault injection attack have less accuracy of
recovery key and increasing the time required for the end-to-end
attack.
Fault injection parameters depend on isogeny degree. Fig-
ures 1 and 5 show profiling results for isogeny computations of five
different degrees. The faulty rates distributions are very different
among the different degrees, meaning that the attacker must profile
each isogeny degree separately.
The reset rate is not low. A fault could make a system unrespon-
sive, in which case the attacker has to retry. The reset rate is related
to the number of fault injections (and hence time consumption) of
an end-to-end attack. As shown in Figures 1 and 5, the board resets
frequently—especially if the fault injection point is not chosen well.
The attacker should consider faulty and reset rates when choosing
the appropriate variables for inducing faults.
The faulty rate is not necessarily consistent across time.While
isogenies of different degrees have different appropriate variables,
even the same degree isogeny operations may have different faulty
rates over time. Figure 2 shows the result fine-grained search for
optimal fault injection parameters on isogenies of degree 359—note
the differences from Figure 1, which is a different round of testing.
The degree-359 result in Figure 1 has more points with high faulty
and reset rate when inducing the fault after 60% execution time.

ASHES ’24, October 14–18, 2024, Salt Lake City, UT, USA Tinghung Chiu, Jason LeGrow, and Wenjie Xiong

However, the result in Figure 2 has more points high faulty and reset
rate when inducing the fault before 40%. The difference between
the two results indicates that the attacker may obtain different
appropriate variables across time, increasing the attack difficulty.
Determining appropriate fault injection parameters. Figure 1
shows that the attacker needs to carefully choose the injection
time to achieve high faulty rate. In addition to the injection time,
attackers also need to profile to find the optimal glitch parameters
such as voltage and duration.

5.2 End-to-end Attack
The following two sections describe the end-to-end attack on real-
then-dummy CSIDH and dynamic random vector CSIDH. We split
the end-to-end attack into two phases, the profiling phase and the
online phase. The profiling phase is the phase that extracts the
appropriate variables we have indicated important in the previous
section, and the online phase is the phase that processes the fault
injection attack on the victim device.

5.2.1 Real-then-Dummy CSIDH.

Profiling phase: To determine the parameters for voltage glitches,
the attacker should profile the fault injection parameters on the
profiling device, which has an identical structure to the victim
device. In our experiments, we never observe a faulty output if a
fault is injected in a dummy isogeny, and thus the faulty rate on
the real isogeny is the metric we want to optimize for. To profile
the real isogeny operation, the possible complexity of searching the
best variables could be 𝑡𝑑 · 𝑣 ·𝑁𝑑𝑣 · 𝐼 ·𝑁𝐼 , where 𝑡𝑑 is the number of
duration we test, 𝑣 is the number of voltage values we test, 𝐼 is the
number of injection time points, 𝑁𝑑𝑣 is the number of the trials we
conduct at each (voltage, duration) pair, and 𝑁𝐼 is the number of
the trials we conduct at each injection time.

However, we found the duration and voltage are relatively inde-
pendent of the injection time, which has different effects on fault
injection attacks. Therefore, we search them independently. The
number of total required tests to obtain the appropriate variables is
𝑡𝑑 · 𝑣 · 𝑁𝑑𝑣 + 𝐼 · 𝑁𝐼 .

Attack phase: After determining the appropriate parameters for
inducing faults in the isogeny operations, the attacker can induce
faults on the target device, and determine the secret key by observ-
ing the outputs. In real-then-dummy CSIDH, the order of real and
dummy isogeny operations are fixed, and dummy isogeny opera-
tions follow the real isogeny operations. The attacker can recover
the key entry magnitude |𝑒𝑖 | by repeatedly inducing the fault with
the binary search method during the isogeny operations to deter-
mine in which round the first dummy isogeny operation occurs, as
depicted in Figure 3. The complete algorithm is in Algorithm 3 in the
appendix. If the private key uses unsigned integers, this is sufficient
to recover the private key. If the private key uses signed integers,
the attacker can use meet-in-the-middle approach to recover the
signs of the 𝑒𝑖 ’s [30, Section 3.3].

In contrast with the theoretical analysis of [30], in practice we
should account for the probability 𝑝 𝑓 that injecting a fault into a
real isogeny will lead to an incorrect shared secret. When 𝑝 𝑓 < 1,
we will repeatedly inject faults into a single isogeny across mul-
tiple key establishment sessions. When we observe an incorrect

Figure 3: Binary search for the secret key.

output, we know that the isogeny was real, while if we observe
no incorrect outputs after some number 𝑘 of trials, we believe that
the isogeny is dummy. In this way we always correctly identify
dummy isogenies, and correctly identify real isogenies with proba-
bility 1 − (1 − 𝑝 𝑓)𝑘 . To determine |𝑒 𝑗 | using binary search requires⌈
log2 𝑏

⌉
rounds of this process, and so the attack correctly recovers

|𝑒 𝑗 | with probability (1− (1−𝑝 𝑓)𝑘) ⌈log2 𝑏⌉ in the worst case. When
recovering 𝑛 key magnitudes, the success probability reduces to
(1 − (1 − 𝑝 𝑓)𝑘)𝑛⌈log2 𝑏⌉ ; overall, we must take

𝑘 >

ln
(
1 − (1 − 𝜀)

1
𝑛⌈ log2 𝑏⌉

)
ln(1 − 𝑝 𝑓)

to achieve success probability 1 − 𝜀 in recovering the entire key
magnitudes—for our observed 𝑝 𝑓 ∈ [0.427, 0.714] and CSIDH pa-
rameters 𝑛 = 74, 𝑏 = 5 (in the signed setting), we see that 𝑘 = 10
injections per isogeny suffices to achieve success probability 1

2 . In
our experiments with 𝑛 = 2, it suffices to take 𝑘 = 4.

Complexity of the attack: We use the expected total number of
fault injections required (denoted by𝑇) to represent the complexity.
For each fault injection, a complete CSIDH key exchange needs to
be run. With 𝑘 fixed, 𝑇 satisfies 𝑛𝛼

1−𝜌
⌈
log2 𝑏

⌉
≤ 𝑇 ≤ 𝑛𝑘

1−𝜌
⌈
log2 𝑏

⌉
,

where 𝜌 is the probability that injecting a fault causes the hardware
to reset and 𝛼 = 𝑝 𝑓

∑𝑘−1
𝑗=1 𝑗 · (1 − 𝑝 𝑓) 𝑗−1 + 𝑘 (1 − 𝑝 𝑓)𝑘−1 is the

expected number of faults that will be injected into a real isogeny,
until it is either correctly identified as real or incorrectly identified
as dummy. For our observed 𝑝 𝑓 ∈ [0.427, 0.714], 𝜌 = 0.209, and
CSIDH parameters 𝑛 = 74, 𝑏 = 5 we take 𝑘 = 10 to achieve suc-
cess probability 1

2 . In this regime expected total number of fault
injections required satisfies 2506 ≤ 𝑇 ≤ 10622. In our experiments
with 𝑛 = 2 and 𝑘 = 4, the expected total number of fault injections
required satisfies 69 ≤ 𝑇 ≤ 114.

5.2.2 End-to-end Attack on dynamic random vector CSIDH.

Profiling phase: The same as in Section 5.2.1.

Attack phase: The order of real and dummy isogeny operations is
not fixed in dynamic random vector CSIDH (Algorithm 2 in appen-
dix), and each CSIDH will use a fresh random order 𝑉 . This means
the attacker can not recover the absolute value |𝑒𝑖 | by locating the
first dummy isogeny operation like in real-then-dummy CSIDH.

Practical Fault Injection Attacks on Constant Time CSIDH and Mitigation Techniques ASHES ’24, October 14–18, 2024, Salt Lake City, UT, USA

Nonetheless, the attacker can recover the absolute value |𝑒𝑖 | by in-
jecting multiple faults and analyzing the ratio of correct and faulty
shared secrets, whose value depends on |𝑒𝑖 |. After recovering the
value of |𝑒𝑖 |, if the private key is signed integers, the attacker can
use a meet-in-the-middle approach to find the signs of it.

In [30], the authors prove that if the the key value 𝑒 𝑗 is chosen
between 0 and 𝑏, and fault injection is perfect—that is, if injecting a
fault in a real isogeny always yields incorrect output, and injecting a
fault in a dummy isogeny always yields correct output 𝑝 𝑓 = 1—then
2𝑏2 ln 2

𝛿
faults are sufficient to learn the value of 𝑒 𝑗 with probability

1 − 𝛿 . In particular, if an attacker observes 𝑓 incorrect outputs and
𝑐 correct outputs, and 𝑓 + 𝑐 > 2𝑏2 ln 2

𝛿
, then 𝑒 𝑗 =

⌈
𝑏

𝑓

𝑓 +𝑐

⌋
with

probability at least 1−𝛿 . Unfortunately, this analysis does not apply
in a straightforward fashion in the setting where the fault injection
is imperfect. In particular, in our experiments, we observe that while
injecting a fault into a dummy isogeny, we always observe correct
output, the converse is not true—that is, injecting a fault into a real
isogeny may still yield correct output. This creates two problems:
first, our estimate for the key value (as a function of the number of
faults injected and the number of incorrect outputs observed) must
be updated; and second, the number of faults required to achieve a
given level of confidence will change.

To begin, we rephrase the original formula used to estimate 𝑒 𝑗 .
If we inject faults into 𝑡 isogenies and see 𝑓 incorrect outputs and 𝑐
correct outputs, the reason that we estimate 𝑒 𝑗 =

⌈
𝑏

𝑓

𝑓 +𝑐

⌋
is because

we believe that 𝑓 of the isogenies were real, and 𝑐 were dummy. If 𝑟
and 𝑑 are the number of real and dummy isogenies into which we
inject faults, respectively, then of course in expectation, 𝑟

𝑟+𝑑 =
𝑒 𝑗
𝑏
.

In the setting of perfect faults, we know that 𝑟 = 𝑓 and 𝑑 = 𝑐 , but
in the setting of imperfect fault, we require new estimates. Let 𝑝 𝑓
be the probability that injecting a fault into a real isogeny yields an
incorrect output, and 𝑞 be the probability that injecting a fault into a
dummy isogeny yields correct output. Assuming that a sufficiently
large number of faults are injected, we expect

{
𝑓 ≈ 𝑝 𝑓 · 𝑟 + (1 − 𝑞) · 𝑑
𝑐 ≈ (1 − 𝑝 𝑓) · 𝑟 + 𝑞 · 𝑑

=⇒
{
𝑟 ≈ 1

𝑝𝑓 +𝑞−1 (𝑞 · 𝑓 − (1 − 𝑞) · 𝑐)

𝑑 ≈ 1
𝑝𝑓 +𝑞−1

(
−(1 − 𝑝 𝑓) · 𝑓 + 𝑝 𝑓 ·𝑐

)
Thus, in this setting, we estimate 𝑒

𝑏
≈ 𝑟

𝑟+𝑑 =
𝑞 ·𝑓 −(1−𝑞) ·𝑐
(𝑝𝑓 +𝑞−1) · (𝑓 +𝑐) . In

practice, we have 𝑞 = 1, which yields the much simpler formula
𝑒 𝑗
𝑏
≈ 𝑓

𝑝𝑓 (𝑓 +𝑐) , and we use this formula to estimate key values
in our attacks in this setting. With this new formula, much the
same analysis as in [30] applies. For fixed values of 𝑒 𝑗 and 𝑝 𝑓 ,
the probability that injecting a fault into an isogeny of degree ℓ𝑗
yields incorrect output is 𝑝𝑓 𝑒 𝑗

𝑏
, and so in 𝑇 total injections, the

expected number of incorrect outputs is E[𝑓] = 𝑝𝑓 𝑡𝑒 𝑗

𝑏
. The naïve

estimate 𝑒 𝑗 =
⌈
𝑏𝑓
𝑝𝑓 𝑡

⌋
is correct as long as

���𝑓 − 𝑝𝑓 𝑡𝑒 𝑗

𝑏

��� < 𝑝𝑓 𝑇

2𝑏 , which
by Hoeffding’s inequality [24] holds with probability at least

P

[����𝑓 − 𝑝 𝑓 𝑡𝑒 𝑗

𝑏

���� < 𝑝 𝑓𝑇

2𝑏

]
≥ 1 − 2 exp

(
−𝑇
2

(
𝑝 𝑓

𝑏

)2)
.

Complexity of the attack: To achieve success probability 1 − 𝛿 in
determining 𝑒 𝑗 , it suffices to inject 𝑇 ≥ 2𝑏2

𝑝2
𝑓

ln 2
𝛿
faults into degree-

ℓ𝑗 isogenies; to achieve success probability 1 − 𝜀 of recovering
𝑛 key values correctly, it suffices to inject 𝑛𝑇 ≥ 2𝑛𝑏2

𝑝2
𝑓

ln 2
1− 𝑛
√
1−𝜀

faults in total. In our experiments, we consider 𝑏 = 5 and observe
𝑝 𝑓 ∈ [0.427, 0.714]. In the full CSIDH-512 setting we have 𝑛 = 74,
and so this formula implies that 1.09×105 successful fault injections
(i.e., fault injections that do not lead to a board reset) are required
to recover the entire secret key magnitudes with probability 1

2 . In
our experimental setup we take 𝑛 = 2, for which 1053 successful
faults are required.

6 EXPERIMENTAL EVALUATION
6.1 Physical Setup
Our experiments use STM32F407, a 32-bit microcontroller (MCU)
with ARM Cortex-M4 processor as the victim device. We use a
voltage glitch controller from Riscure and develop a Python script
to communicate with the controller from the host PC (instead of
the inspector software from Riscure), which arming the voltage
glitch to the board results in injecting the fault. The physical setup
for our experiments is shown in Figure 4.

Controller

Glitch out Glitch Amplifier

Target MCU
Power UART

PC

Control signal

GPIO

Figure 4: The physical setup for our fault injection attack.

Our constant time CSIDH is based on the C implementation in
[10]. In our implementation, the isogeny operations are calculated
randomly, i.e., the points are generated by Elligator [32]. Due to the
time consumption of CSIDH on the target board, we demonstrate
the attack on a toy CSIDH parameter set with a key space of size 112,
which shortened the time required for experiments. Our private key
range is [−5, 5], and we use only two small prime degree isogenies:
359 and 353. All the experiments run under the above setting, and
the average time consumption of executing one CSIDH is around
150 seconds. Note that previous experiment works [10, 11] focus on
a key space of size 32; in particular, those works consider only one
round of CSIDH, and so do not need to implement binary search
for key recovery.

6.2 Profiling Phase
Duration and voltage. We profile the duration and voltage of the
voltage glitch setup. The duration of 175ns and voltage of 1.85v
give the bast faulty rate, and is used in all of our experiments. More
details of the profiling can be found in the appendix-B.

ASHES ’24, October 14–18, 2024, Salt Lake City, UT, USA Tinghung Chiu, Jason LeGrow, and Wenjie Xiong

Table 2: Results of injecting faults during real isogeny
operations in toy CSIDH. C, F, and R respectively denote
the number of correct outputs, the number of incorrect
outputs, and the number of resets. Our parameters are
marked with *.

Degree Injection
Time (%)

Round 1 Round 2 Round 3 Round 4 Round 5

C F R C F R C F R C F R C F R

14 26 6 18 25 17 8 50 0 0 49 0 1 0 33 17
359 41* 29 13 8 7 13 30 16 31 3 41 5 4 26 18 6

91 41 1 8 43 7 0 20 17 13 47 0 3 37 2 11
31 32 0 18 37 5 8 38 2 10 41 1 8 49 0 1

353 52 0 14 36 1 5 44 1 25 24 1 20 29 20 18 12
60* 15 19 16 33 8 9 2 47 1 4 24 22 0 3 47

Table 3: Result of injecting faults during dummy isogeny
operations in Toy CSIDH.

Degree Injection
Time (%)

Round 1 Round 2 Round 3 Round 4 Round 5

C F R C F R C F R C F R C F R

14 0 0 50 1 0 49 0 0 50 0 0 50 5 0 45
359 41* 41 0 9 38 0 12 40 0 10 40 0 10 31 0 19

91 27 0 23 13 0 37 8 0 42 14 0 36 31 0 19
31 43 0 7 39 0 11 50 0 0 0 0 50 26 0 24

353 52 26 0 24 47 0 3 47 0 3 11 0 39 49 0 1
60* 16 0 34 36 0 14 25 0 25 41 0 9 45 0 5

Injection time. To determine the appropriate injection time, we
used fine-grained search with 100 candidate injection time points,
inducing 10 faults to measure the faulty rate of each point in the
profiling phase. The results are shown in Figure 1 in Section 5.1.1.
For our end-to-end attack, we randomly pick one points that have
the highest faulty rate in the profiling phase. Specifically, we use
41% for degree 359 and 60% for degree 353.
Faulty rate and reset rate of the chosen fault parameter in
the profiling phase. To test how reliable the profiling result will
be in real attacks after the profiling, we test the three points that
have the highest faulty rate in the profiling. We inject faults at the
chosen injection time in repeated runs to evaluate the faulty rate
and reset rate in isogeny operations. We take 50 trials for each point
and test five rounds in total. The interval time between each round
is more than an hour. Table 2 is the result of inducing faults during
real isogeny operation, and Table 3 is the result of inducing faults
during dummy isogeny operation.

The results of inducing the fault during the isogeny operations
are different across time. For example, we did not get any faulty
output, with injection time 14% for degree 359, in Round 3 of real
isogeny operation, but we obtained 33 faulty outputs and 17 reset
with the same injection time in Round 5. Therefore, we calculated
the success rate and the number of required tests with the average
value and deviation of faulty rate and reset rate, provided in Table 4.
The injection time we used in the experiments is 41% in degree-
359, which has, on average, a 42.7% faulty rate and 20.4% reset
rate inducing the fault during real isogeny operations, and has,
on average, a 0% faulty rate and 24% reset rate inducing the fault
during dummy isogeny operations. For degree-353, the injection
time we used in the experiments is 60%, which has, on average, a
71.4% faulty rate and 38% reset rate inducing the fault during real
isogeny operations, and has, on average, a 0% faulty rate and 34.8%
reset rate inducing the fault during dummy isogeny operations.

Table 4: Average value and deviation of Table 2 and Table 3.
F and R respectively denote the fault rate and the reset rate.

Degree Injection
Time(%)

Real Dummy

F R F R

avg dev avg dev avg dev avg dev

14 0.318 0.372 0.176 0.153 0 0 0.976 0.039
359 41* 0.427 0.209 0.204 0.201 0 0 0.240 0.073

91 0.135 0.169 0.140 0.097 0 0 0.628 0.176
31 0.039 0.051 0.164 0.116 0 0 0.368 0.352

353 52 0.844 0.193 0.580 0.217 0 0 0.280 0.301
60* 0.714 0.302 0.380 0.313 0 0 0.348 0.213

Note that the faulty rate and reset rate could depend on the
injection setup and victim device. Comparing the faulty rate with
[10] (32.8% with key value [−1, 1], where all isogenies are real),
our experiment has a higher faulty rate on real isogenies, which is
42.7% on average. Thus, we believe our results are reasonable.

During profiling and testing on a single isogeny, we never get
any faulty output when we inject the fault in a dummy isogeny
operation. However, in our end-to-end attack, we occasionally get
faulty output for dummy isogeny as well. Our complexity equa-
tion still considers the faulty rate of inducing the fault during a
dummy isogeny operation, thus the attacker can adopt the analysis
to another fault attacks.
Choice of 𝑘 for end-to-end attack. The success rate of key recov-
ery using our attack technique is (1− (1−𝑝 𝑓)𝑘)𝑛⌈log2 𝑏⌉ . The lower
bound of 𝑘 which achieves a 50% success rate is 4. We set 𝑘 = 5 to
increase the success rate. With 𝑘 = 5 and faulty rate 𝑝 𝑓 = 0.427,
the estimated success rate of recovering the key is 86.2% in theory.

6.3 End-to-End Attack Result
6.3.1 Real-then-dummy CSIDH. After the profiling phase, we test
the binary search fault injection attack on real-then-dummy CSIDH.
We launch binary search attacks ten times in total with different
key values. To test whether the isogeny operation is real or dummy,
we take 5 trials for each testing isogeny operation (value of 𝑘 in
algorithm 3 is 5). Table 5 is the result of fault injection attack on
real-then-dummy CSIDH based on binary search algorithm with
key value [1,1] and [4,4]. In terms of the success rate of the attacks.
Most of the attacks can at least partially recover the key. When
true key is [4,4], smaller key values are recovered sometimes, this
indicates some real isogenies are treated as dummy isogeny. That
means in some attacks the faulty rate is lower than expected.

For true key [1,1], the average number of group actions (𝑇 in
Section 5.2.1) is 62 times, including a minimal value of 38 times
and a maximum value of 103 times. The number of group actions is
affected by the reset rate. For example, in the ninth trial of key value
[1,1], it took 66 group actions because there were fewer resets than
in the tenth trial, which took 94 group actions. In Table 5, comparing
the attack when the true key is [1,1] with the case when the true
key is [4,4], we observed a lower average value of the number of
group actions, which is 42 times. This is because key [4,4] has more
real isogeny computations and real isogenies are identified more
quickly on average than dummy isogeies—to determine that an
isogeny is dummy, the attacker needs to run CSIDH 𝑘 times, but

Practical Fault Injection Attacks on Constant Time CSIDH and Mitigation Techniques ASHES ’24, October 14–18, 2024, Salt Lake City, UT, USA

Table 5: Fault injection attack on real-then-dummy CSIDH
results with true key [1, 1] (left) and [4, 4] (right).
Trial Recovered Key 𝑇

1 [1, 1] Correct 62
2 [1, 1] Correct 71
3 [0, 1] Partial Recovery 103
4 [1, 1] Correct 38
5 [1, 1] Correct 40
6 [0, 1] Partial Recovery 46
7 [1, 1] Correct 48
8 [1, 1] Correct 48
9 [1, 1] Correct 66
10 [1, 1] Correct 94

Trial Recovered Key 𝑇

1 [4, 2] Partial Recovery 49
2 [1, 4] Partial Recovery 28
3 [2, 4] Partial Recovery 17
4 [4, 2] Partial Recovery 35
5 [0, 2] Incorrect 49
6 [4, 4] Correct 78
7 [3, 3] Incorrect 51
8 [4, 4] Correct 27
9 [4, 3] Partial Recovery 44
10 [3, 3] Incorrect 45

Table 6: Key recovery for dynamic random vector CSIDH.
Key
Value

Degree-359 Degree-353
𝑇

Faulty Rate Recovered 𝑒𝑖 Faulty Rate Recovered 𝑒𝑖

(1,1) 0.120 2 (Incorrect) 0.105 1 (Correct) 1090
(2,2) 0.355 5 (Incorrect) 0.295 3 (Incorrect) 1196
(3,3) 0.445 6 (Incorrect) 0.680 5 (Incorrect) 1043
(4,4) 0.615 8 (Incorrect) 0.325 3 (Incorrect) 869
(5,5) 0.890 11 (Incorrect) 0.910 7 (Incorrect) 996

for a real isogeny the attack will finish in at most 𝑘 iterations, since
we stop as soon as one faulty output is observed.

Considering the reset rate 𝜌 = 0.209, the estimated expected
total number 𝑇 of fault injections required is 69 ≤ 𝑇 ≤ 114, which
is calculated by 𝑛𝛼

1−𝜌
⌈
log2 𝑏

⌉
≤ 𝑇 ≤ 𝑛𝑘

1−𝜌
⌈
log2 𝑏

⌉
, as in Section 5.2.1.

In our experiment, with key values [1,1] and [4,4], we observed
𝑇 = 62 and 𝑇 = 42, respectively. The faulty rate and reset rate in
the profiling do not exactly match those in the real attacks. Still,
our experimental results are close to the estimated 𝑇 values.

6.3.2 Dynamic Random Vector CSIDH. To recover the secret key
of dynamic random vector CSIDH, we induced the fault during the
first isogeny operation of each degree repeatedly, and use |𝑒 𝑗 | =⌈
𝑏

𝑓

𝑝𝑓 (𝑓 +𝑐)

⌋
to guess the possible secret key value. We processed the

fault injection attack on different secret key values to measure the
accuracy of fault injection attack on dynamic random vector CSIDH,
and evaluate the security level of this mitigation. The results of
this experiment appear in Table 6. For each degree isogeny, we
run 200 trials of injecting faults into a real isogeny of that degree,
retrying whenever the board resets. For instance, |𝑒353 | of key value
(1,1), the possible secret key value is 𝑒353 =

⌈
5 · 0.1050.714

⌋
= 1, which

is correct. |𝑒359 | of key value (5,5), the possible secret key value is
𝑒359 =

⌈
5 · 0.89

0.427
⌋
= 11, which is incorrect2. The success rate of the

attack on dynamic random vector CSIDH is 20%, and the average
time consumption is 14273 seconds. According to the high deviation
of faulty rate in Table 4, it is reasonable that the success rate of the
attack on dynamic random vector CSIDH is lower than the attack on
real-then-dummy CSIDH. The attack method of dynamic random
vector CSIDH is based on the statistic of the number of faulty output
and correct output. Therefore, if the faulty rate is not stable, the
success rate of the attack on dynamic random vector CSIDH is low.
2Obviously, 𝑒 𝑗 = 11 is not a reasonable guess at the key entry, since 𝑏 = 5. Our
analysis in Section 5.2.2 does account for this; as long as a sufficient number of
faults are successfully injected, if the probability 𝑝 that injecting a fault into a real
isogeny yields an incorrect output is constant and estimated accurately, then the
estimate 𝑒 𝑗 =

⌈
𝑏

𝑓

𝑝 (𝑓 +𝑐)

⌋
will be correct (and in particular, not larger than 𝑏) with

high probability.

7 DISCUSSION
Aside from CSIDH alternatives designed to prevent side-channel
and fault injection attacks, there are other proposals designed to
make CSIDH faster or more secure against traditional attacks [1,
9, 15]. Our attacks will apply essentially without modification to
SQALE [15] and “high security CSIDH” [9] with dummy isogenies.
CTIDH [1] is more difficult to attack because isogenies of different
degrees are batched and cannot be distinguished by timing infor-
mation. Nevertheless, the attack we implement here applies in a
limited way, reducing the key entropy of CTIDH-512 from 2256 to
at most 2174 (likely significantly less). We leave implementations
of our attack in these CSIDH variant settings as future work.

8 CONCLUSION
Wehave demonstrated the fault injection attack on real-then-dummy
CSIDH based on binary search, as described in [30], for the first
time. We conducted substantial tests and analysis to find optimized
parameters in the context of our physical setup. Compared with
prior work, our experiment achieves a higher success rate in key
recovery in substantially more realistic conditions (e.g., with re-
alistic key magnitudes). Our results demonstrate that efficacy of
these fault attacks is very sensitive to the attack parameters, and
so extensive profiling is crucial to fault attack success.

Beyond our attacks on the standard real-then-dummyCSIDH, we
for the first time implemented dynamic random vector CSIDH [30],
and evaluated its security against fault injection attacks. According
to our experiment results (q.v. Section 6.3), dynamic random vec-
tor CSIDH is a more effective fault attack prevention mechanism
than initially believed since imperfect fault injection success rates
make it difficult to estimate the number of real isogenies. These
experimental results demonstrate the significant gap between the
theory of fault attacks on CSIDH and the practical aspects of launch-
ing them.

ACKNOWLEDGEMENTS
This paper was supported in part by the Commonwealth Cyber
Initiative (CCI), an investment in the advancement of cyber R&D, in-
novation, and workforce development. For more information about
CCI, visit www.cyberinitiative.org. This project is also partially
supported by the National Science Foundation (NSF) under grant
CCF-2153748, and by the Air Force Office of Scientific Research
under award number FA9550-22-1-0548. Any opinions, findings,
and conclusions or recommendations expressed in this material are
those of the author(s) and do not necessarily reflect the views of
the United States Air Force.

REFERENCES
[1] Gustavo Banegas, Daniel J Bernstein, Fabio Campos, Tung Chou, Tanja Lange,

Michael Meyer, Benjamin Smith, and Jana Sotáková. 2021. CTIDH: faster constant-
time CSIDH. IACR Transactions on Cryptographic Hardware and Embedded Sys-
tems 2021, 4 (2021), 351–387.

[2] Gustavo Banegas, Juliane Krämer, Tanja Lange, Michael Meyer, Lorenz Panny,
Krijn Reijnders, Jana Sotáková, and Monika Trimoska. 2023. Disorientation faults
in CSIDH. In Annual International Conference on the Theory and Applications of
Cryptographic Techniques. Springer, 310–342.

[3] Noemie Beringuier-Boher, Kamil Gomina, David Hely, Jean-Baptiste Rigaud,
Vincent Beroulle, Assia Tria, Joel Damiens, Philippe Gendrier, and Philippe
Candelier. 2014. Voltage Glitch Attacks on Mixed-Signal Systems. In 2014 17th

www.cyberinitiative.org.

ASHES ’24, October 14–18, 2024, Salt Lake City, UT, USA Tinghung Chiu, Jason LeGrow, and Wenjie Xiong

Euromicro Conference on Digital System Design. 379–386. https://doi.org/10.1109/
DSD.2014.14

[4] Daniel J Bernstein, Luca De Feo, Antonin Leroux, and Benjamin Smith. 2020.
Faster computation of isogenies of large prime degree. Open Book Series 4, 1
(2020), 39–55.

[5] Ward Beullens, Shuichi Katsumata, and Federico Pintore. 2020. Calamari and
Falafl: logarithmic (linkable) ring signatures from isogenies and lattices. In Inter-
national Conference on the Theory and Application of Cryptology and Information
Security. Springer, 464–492.

[6] Jean-François Biasse, Annamaria Iezzi, and Michael J Jacobson Jr. 2018. A note
on the security of CSIDH. In International Conference on Cryptology in India.
Springer, 153–168.

[7] Xavier Bonnetain and André Schrottenloher. 2020. Quantum security analysis of
CSIDH. In Advances in Cryptology–EUROCRYPT 2020: 39th Annual International
Conference on the Theory and Applications of Cryptographic Techniques, Zagreb,
Croatia, May 10–14, 2020, Proceedings, Part II 30. Springer, 493–522.

[8] Robert Buhren, Hans-Niklas Jacob, Thilo Krachenfels, and Jean-Pierre Seifert.
2021. One glitch to rule them all: Fault injection attacks against amd’s secure
encrypted virtualization. In Proceedings of the 2021 ACM SIGSAC Conference on
Computer and Communications Security. 2875–2889.

[9] Fabio Campos, Jorge Chavez-Saab, Jesús-Javier Chi-Domínguez, Michael Meyer,
Krijn Reijnders, Francisco Rodríguez-Henríquez, Peter Schwabe, and Thom Wig-
gers. 2023. Optimizations and Practicality of High-Security CSIDH. Cryptology
ePrint Archive, Paper 2023/793. https://eprint.iacr.org/2023/793

[10] Fabio Campos, Matthias J Kannwischer, Michael Meyer, Hiroshi Onuki, and
Marc Stöttinger. 2020. Trouble at the CSIDH: protecting CSIDH with dummy-
operations against fault injection attacks. In 2020 Workshop on Fault Detection
and Tolerance in Cryptography (FDTC). IEEE, 57–65.

[11] Fabio Campos, Juliane Krämer, and Marcel Müller. 2021. Safe-error attacks on
SIKE and CSIDH. In International Conference on Security, Privacy, and Applied
Cryptography Engineering. Springer, 104–125.

[12] Wouter Castryck and Thomas Decru. 2023. An Efficient Key Recovery Attack on
SIDH. In Advances in Cryptology - EUROCRYPT 2023 - 42nd Annual International
Conference on the Theory and Applications of Cryptographic Techniques, Proceed-
ings, Part V (Lecture Notes in Computer Science, Vol. 14008), Carmit Hazay andMar-
tijn Stam (Eds.). Springer, 423–447. https://doi.org/10.1007/978-3-031-30589-4_15

[13] Wouter Castryck, Tanja Lange, Chloe Martindale, Lorenz Panny, and Joost Renes.
2018. CSIDH: an efficient post-quantum commutative group action. In Advances
in Cryptology–ASIACRYPT 2018: 24th International Conference on the Theory and
Application of Cryptology and Information Security, Brisbane, QLD, Australia,
December 2–6, 2018, Proceedings, Part III 24. Springer, 395–427.

[14] Daniel Cervantes-Vázquez, Mathilde Chenu, Jesús-Javier Chi-Domínguez, Luca
De Feo, Francisco Rodríguez-Henríquez, and Benjamin Smith. 2019. Stronger and
Faster Side-Channel Protections for CSIDH. In Progress in Cryptology – LATIN-
CRYPT 2019, Peter Schwabe and Nicolas Thériault (Eds.). Springer International
Publishing, Cham, 173–193.

[15] Jorge Chávez-Saab, Jesús-Javier Chi-Domínguez, Samuel Jaques, and Francisco
Rodríguez-Henríquez. 2022. The SQALE of CSIDH: sublinear Vélu quantum-
resistant isogeny actionwith low exponents. Journal of Cryptographic Engineering
12, 3 (2022), 349–368.

[16] Jesús-Javier Chi-Domínguez and Francisco Rodríguez-Henríquez. 2022. Optimal
strategies for CSIDH. Advances in Mathematics of Communications 16, 2 (2022),
383–411. https://doi.org/10.3934/amc.2020116

[17] Luca De Feo, David Jao, and Jérôme Plût. 2014. Towards quantum-resistant cryp-
tosystems from supersingular elliptic curve isogenies. Journal of Mathematical
Cryptology 8, 3 (2014), 209–247. https://doi.org/doi:10.1515/jmc-2012-0015

[18] Luca De Feo and Michael Meyer. 2020. Threshold schemes from isogeny assump-
tions. In Public-Key Cryptography–PKC 2020: 23rd IACR International Conference
on Practice and Theory of Public-Key Cryptography, Edinburgh, UK, May 4–7, 2020,
Proceedings, Part II 23. Springer, 187–212.

[19] Amine Dehbaoui, Jean-Max Dutertre, Bruno Robisson, Philippe Orsatelli, Philippe
Maurine, and Assia Tria. 2012. Injection of transient faults using electromagnetic
pulses Practical results on a cryptographic system. IACR ePrint Archive.

[20] Samuel Dobson, Steven D. Galbraith, Jason LeGrow, Yan Bo Ti, and Lukas
Zobernig. 2020. An adaptive attack on 2-SIDH. International Journal of Computer
Mathematics: Computer Systems Theory 5, 4 (2020), 282–299.

[21] Thomas Fuhr, Éliane Jaulmes, Victor Lomné, and Adrian Thillard. 2013. Fault
attacks on AES with faulty ciphertexts only. In 2013 Workshop on Fault Diagnosis
and Tolerance in Cryptography. IEEE, 108–118.

[22] Steven D Galbraith, Christophe Petit, Barak Shani, and Yan Bo Ti. 2016. On the
security of supersingular isogeny cryptosystems. In Advances in Cryptology–
ASIACRYPT 2016: 22nd International Conference on the Theory and Application

of Cryptology and Information Security, Hanoi, Vietnam, December 4-8, 2016, Pro-
ceedings, Part I 22. Springer, 63–91.

[23] Daniel Gruss, Clémentine Maurice, and Stefan Mangard. 2016. Rowhammer. js:
A remote software-induced fault attack in javascript. In Detection of Intrusions
and Malware, and Vulnerability Assessment: 13th International Conference, DIMVA
2016, San Sebastián, Spain, July 7-8, 2016, Proceedings 13. Springer, 300–321.

[24] Wassily Hoeffding. 1994. Probability inequalities for sums of bounded random
variables. The collected works of Wassily Hoeffding (1994), 409–426.

[25] Aaron Hutchinson, Jason LeGrow, Brian Koziel, and Reza Azarderakhsh. 2020.
Further Optimizations of CSIDH: A Systematic Approach to Efficient Strategies,
Permutations, and Bound Vectors. In Applied Cryptography and Network Security,
Mauro Conti, Jianying Zhou, Emiliano Casalicchio, and Angelo Spognardi (Eds.).
Springer International Publishing, Cham, 481–501.

[26] David Jao, Jason LeGrow, Christopher Leonardi, and Luis Ruiz-Lopez. 2020. A
subexponential-time, polynomial quantum space algorithm for inverting the CM
group action. Journal of Mathematical Cryptology 14, 1 (2020), 129–138.

[27] Shuichi Katsumata, Yi-Fu Lai, Jason T. LeGrow, and Ling Qin. 2023. CSI-Otter:
Isogeny-based (partially) blind signatures from the class group action with a
twist. In Annual International Cryptology Conference. Springer, 729–761.

[28] Chong Hee Kim and Jean-Jacques Quisquater. 2007. Fault attacks for CRT based
RSA: New attacks, new results, and new countermeasures. In IFIP International
Workshop on Information Security Theory and Practices. Springer, 215–228.

[29] Jason T LeGrow. 2023. A faster method for fault attack resistance in
static/ephemeral CSIDH. Journal of Cryptographic Engineering 13, 3 (2023).

[30] Jason T LeGrow and Aaron Hutchinson. 2021. (Short Paper) Analysis of a strong
fault attack on static/ephemeral CSIDH. In International Workshop on Security.
Springer, 216–226.

[31] Luciano Maino, Chloe Martindale, Lorenz Panny, Giacomo Pope, and Benjamin
Wesolowski. 2023. A Direct Key Recovery Attack on SIDH. In Advances in
Cryptology - EUROCRYPT 2023 - 42nd Annual International Conference on the
Theory and Applications of Cryptographic Techniques, Lyon, France, April 23-27,
2023, Proceedings, Part V (Lecture Notes in Computer Science, Vol. 14008), Carmit
Hazay and Martijn Stam (Eds.). Springer, 448–471. https://doi.org/10.1007/978-
3-031-30589-4_16

[32] Michael Meyer, Fabio Campos, and Steffen Reith. 2019. On lions and elligators: An
efficient constant-time implementation of CSIDH. In Post-QuantumCryptography:
10th International Conference, PQCrypto 2019, Chongqing, China, May 8–10, 2019
Revised Selected Papers 10. Springer, 307–325.

[33] Nicolas Moro, Amine Dehbaoui, Karine Heydemann, Bruno Robisson, and Em-
manuelle Encrenaz. 2013. Electromagnetic Fault Injection: Towards a Fault Model
on a 32-bit Microcontroller. In 2013 Workshop on Fault Diagnosis and Tolerance in
Cryptography. 77–88.

[34] Koksal Mus, Yarkın Doröz, M Caner Tol, Kristi Rahman, and Berk Sunar. 2023.
Jolt: Recovering tls signing keys via rowhammer faults. In 2023 IEEE Symposium
on Security and Privacy (SP). IEEE, 1719–1736.

[35] Hiroshi Onuki, Yusuke Aikawa, Tsutomu Yamazaki, and Tsuyoshi Takagi. 2019.
(Short Paper) A faster constant-time algorithm of CSIDH keeping two points. In
Advances in Information and Computer Security: 14th International Workshop on
Security, IWSEC 2019, Tokyo, Japan, August 28–30, 2019, Proceedings 14. Springer,
23–33.

[36] Chris Peikert. 2020. He gives C-sieves on the CSIDH. In Annual international
conference on the theory and applications of cryptographic techniques. Springer,
463–492.

[37] Damien Robert. 2023. Breaking SIDH in Polynomial Time. In Advances in Cryp-
tology - EUROCRYPT 2023 - 42nd Annual International Conference on the Theory
and Applications of Cryptographic Techniques, Proceedings, Part V (Lecture Notes
in Computer Science, Vol. 14008), Carmit Hazay and Martijn Stam (Eds.). Springer,
472–503. https://doi.org/10.1007/978-3-031-30589-4_17

[38] Joaquin Rodriguez, Alex Baldomero, Victor Montilla, and Jordi Mujal. 2019. LLFI:
Lateral Laser Fault Injection Attack. In 2019 Workshop on Fault Diagnosis and
Tolerance in Cryptography (FDTC). 41–47.

[39] Sergei P Skorobogatov and Ross J Anderson. 2003. Optical fault induction attacks.
In Cryptographic Hardware and Embedded Systems-CHES 2002: 4th International
Workshop. Springer, 2–12.

[40] Erkan Tairi, Pedro Moreno-Sanchez, and Matteo Maffei. 2021. Post-quantum
adaptor signature for privacy-preserving off-chain payments. In International
Conference on Financial Cryptography and Data Security. Springer, 131–150.

[41] Jacques Vélu. 1971. Isogénies entre courbes elliptiques. Comptes-Rendus de
l’Académie des Sciences 273 (1971), 238–241.

[42] Sung-Ming Yen and Marc Joye. 2000. Checking before output may not be enough
against fault-based cryptanalysis. IEEE Transactions on computers 49, 9 (2000),
967–970.

https://doi.org/10.1109/DSD.2014.14
https://doi.org/10.1109/DSD.2014.14
https://eprint.iacr.org/2023/793
https://doi.org/10.1007/978-3-031-30589-4_15
https://doi.org/10.3934/amc.2020116
https://doi.org/doi:10.1515/jmc-2012-0015
https://doi.org/10.1007/978-3-031-30589-4_16
https://doi.org/10.1007/978-3-031-30589-4_16
https://doi.org/10.1007/978-3-031-30589-4_17

Practical Fault Injection Attacks on Constant Time CSIDH and Mitigation Techniques ASHES ’24, October 14–18, 2024, Salt Lake City, UT, USA

APPENDICES
A CSIDH SUBROUTINES
Here we present the standard real-then-dummy implementation
of the class group action used in most existing implementations of
CSIDH, and the random vector generation process we use in our
dynamic random vector variant.

Algorithm 1 shows the Real-then-dummy constant time CSIDH.
Real isogenies are computed on lines 12-14 conduct the real isoge-
nies; once 𝑒𝑖 becomes zero (updated on line 14), 𝑓𝑖 = 𝑏 − |𝑒𝑖 | dummy
isogenies will be computed.

Algorithm 1 Real-then-dummy constant time class group action

Input: 𝐸𝐴 : 𝑦2 = 𝑥3 +𝐴𝑥2 + 𝑥,𝐴 ∈ F𝑝 ; (𝑒1, . . . , 𝑒𝑛), 𝑒 ∈ {−𝑏, . . . , 𝑏}
Output: 𝐸𝐴′ = [𝔩1]𝑒1 · · · [𝔩𝑛]𝑒𝑛 ∗ 𝐸𝐴

1: Set 𝑓𝑖 = 𝑏 − |𝑒𝑖 |, 𝑖 ∈ 1, . . . , 𝑛
2: while 𝑒𝑖 ≠ 0 or 𝑓𝑖 ≠ 0 do
3: Set 𝑆 = {𝑖 | 𝑒𝑖 ≠ 0 𝑜𝑟 𝑓𝑖 ≠ 0}
4: Set 𝑘 =

∏
𝑖∈𝑆 ℓ𝑖

5: Generate 𝑃0 ∈ 𝐸𝐴 [𝜋 − 1] and 𝑃1 ∈ 𝐸𝐴 [𝜋 + 1] by Elligator
6: 𝑃0 ← [(𝑝 + 1)/𝑘]𝑃0 and 𝑃1 ← [(𝑝 + 1)/𝑘]𝑃1
7: for 𝑖 ∈ 𝑆 do
8: Set 𝑠 equal to the sign bit of 𝑒𝑖
9: 𝐾 = [𝑘/ℓ𝑖]𝑃𝑠
10: 𝑃1−𝑠 ← [ℓ𝑖]𝑃1−𝑠
11: if 𝐾 ≠ ∞ then
12: if 𝑒𝑖 ≠ 0 then
13: Compute a real ℓ𝑖−isogeny 𝜑 :
14: 𝐸𝐴→𝐸𝐴′ with ker(𝜑) = ⟨𝐾 ⟩
15: 𝐴← 𝐴′, 𝑃0 ← 𝜑 (𝑃0), 𝑃1 ← 𝜑 (𝑃1), 𝑒𝑖 ← 𝑒𝑖 − 1 + 2𝑠
16: else
17: Compute dummy isogeny.
18: 𝑃𝑠 ← [ℓ𝑖]𝑃𝑠 , 𝑓𝑖 ← 𝑓𝑖 − 1
19: end if
20: end if
21: 𝑘 ← 𝑘/ℓ𝑖
22: end for
23: end while
24: return 𝐸𝐴′

Algorithm 2 Generate Random Vector
Input: 𝑏, the number of isogenies of each degree to be compute,𝑊 the
vector of secret key values, 𝑆 number of isogeny degrees used.
Output: 𝑉 the matrix which encodes the order of real and dummy
isogenies.

1: Allocate matrix𝑉 of size 𝑏 × 𝑆 and initialize𝑉 to 0
2: for 𝑖 from 0 to 𝑆 − 1 do
3: for 𝑗 from 0 to𝑊 [𝑖] − 1 do
4: randomIndex← random number between 0 and 𝑏 [𝑖] − 1
5: while𝑉 [𝑖] [randomIndex] = 1 do
6: randomIndex← random number between 0 and 𝑏 [𝑖] − 1
7: end while
8: 𝑉 [𝑖] [randomIndex] ← 1
9: end for
10: end for
11: return𝑉

B BINARY SEARCH ALGORITHM
Algorithm 3 details the binary search algorithmwe use to efficiently
recover the secret key in real-then-dummy CSIDH.

Algorithm 3 Binary search for recovering a static CSIDH secret
key in the real-then-dummy setting

Input: 𝑏 = max𝑖 {𝑒𝑖 },𝑇 the injection time, 𝑐 the isogeny index, 𝑘 the
number of tests to determine whether an isogeny is real or dummy
isogeny.
Output: Private key absolute value |𝑒𝑖 |

1: 𝑙𝑜𝑤 ← −1, ℎ𝑖𝑔ℎ ← len(𝑏)
2: while 𝑙𝑜𝑤 < ℎ𝑖𝑔ℎ do
3: 𝑚𝑖𝑑 ← ⌊(𝑙𝑜𝑤 + ℎ𝑖𝑔ℎ)/2⌋
4: 𝑖 ← 0
5: while 𝑖 < 𝑘 do
6: 𝑜𝑢𝑡𝑝𝑢𝑡 ← inject_fault(𝑐,𝑇)
7: if 𝑜𝑢𝑡𝑝𝑢𝑡 ≠ correct output then
8: break // finish test when we get a faulty output
9: else
10: 𝑖 ← 𝑖 + 1
11: end if
12: end while
13: if 𝑜𝑢𝑡𝑝𝑢𝑡 ≠ correct output then
14: 𝑙𝑜𝑤 ←𝑚𝑖𝑑 //real isogeny, keep search right
15: else
16: ℎ𝑖𝑔ℎ ←𝑚𝑖𝑑 //dummy isogeny, keep search left
17: end if
18: if ℎ𝑖𝑔ℎ − 𝑙𝑜𝑤 = 1 and 𝑜𝑢𝑡𝑝𝑢𝑡 = faulty then
19: if 𝑜𝑢𝑡𝑝𝑢𝑡 = faulty then
20: return𝑚𝑖𝑑
21: else
22: return𝑚𝑖𝑑 − 1
23: end if
24: end if
25: end while
26: return 0

C PROFILING GLITCH PARAMETERS
To determine the appropriate glitch duration and voltage, we fixed
the injection time and compared the faulty rate with different dura-
tions and voltages. We profile 19 durations from 140ns to 230ns, the
six voltage levels from 1.8v to 2.2v with each entry taking 50 trials.
Of course, the optimal duration and voltage might vary on different
board. Figure 6 is the heatmap of faulty rate (i.e., 𝑝 𝑓 =

𝑓

𝑓 +𝑐) as a
function of duration and voltage, and Figure 7 is the heatmap of
reset rate. We choose 175ns and 1.85v, which have the highest value
in Figure 6 to ensure a high faulty rate for increasing the accuracy
of the key recovery and the lowest value in Figure 7 to reduce the
time consumption which is affected by reset rate.

Following the analysis of Section 5.2.1, our experiment requires
6700 (= 19×6×50+100×10) trials. Assuming the during the profiling
the attacker can read the intermediate value to identify faults early
before the whole CSIDH, such profiling takes 18 hours. The attacker
can increase the number of tests to extract more precise variables
for voltage glitches, but of course this will increase profiling time.

ASHES ’24, October 14–18, 2024, Salt Lake City, UT, USA Tinghung Chiu, Jason LeGrow, and Wenjie Xiong

0 20 40 60 80 100
0

50

100

De
gr

ee
 5

3
 R

at
e

(%
)

faulty Reset

0 20 40 60 80 100
0

50

100

De
gr

ee
 4

7
 R

at
e

(%
)

0 20 40 60 80 100
Inject Time (%)

0

50

100

De
gr

ee
 4

3
 R

at
e

(%
)

Figure 5: Faulty and reset rate when inducing the faults on
real isogenies of various degrees.

140 150 160 170 180 190 200 210 220 230
Duration (ns)

2.2

2.1

2.0

1.9

1.85

1.8

Vo
l (

v)

x

Faulty Rate of Duration and Voltage

0

20

40

60

80

100

Figure 6: The rate of faulty output as a function of glitch
voltage and duration. Our parameters are marked with X.

140 150 160 170 180 190 200 210 220 230
Duration (ns)

2.2

2.1

2.0

1.9

1.85

1.8

Vo
l (

v)

x

Reset Rate of Duration and Voltage

0

20

40

60

80

100

Figure 7: The probability of reset as a function of glitch volt-
age and duration. Our parameters are marked with X.

	Abstract
	1 Introduction
	2 Background
	2.1 CSIDH
	2.2 Constant-Time Implementations of CSIDH with Dummy Isogenies
	2.3 Fault Injection Attacks

	3 Related Works
	4 The Attack Model
	5 Attack Scheme
	5.1 Voltage Glitches during Isogeny Operation
	5.2 End-to-end Attack

	6 Experimental Evaluation
	6.1 Physical Setup
	6.2 Profiling Phase
	6.3 End-to-End Attack Result

	7 Discussion
	8 Conclusion
	References
	A CSIDH Subroutines
	B Binary search algorithm
	C Profiling Glitch Parameters

