
1

Leaking Information Through Cache LRU States
in Commercial Processors and Secure Caches

Wenjie Xiong, Stefan Katzenbeisser, Jakub Szefer

Abstract—The Least-Recently Used (LRU) cache replacement policy and its variants are widely deployed in modern processors. This
paper shows in detail that the LRU states of caches can be used to leak information: any access to a cache by a sender will modify the
LRU state, and the receiver is able to observe this through a timing measurement. This paper presents LRU timing-based channels
both when the sender and the receiver have access to shared memory, e.g., shared library, and when they are separate processes
without shared memory. In addition, the new LRU timing-based channels are demonstrated on both Intel and AMD processors in
scenarios where the sender and the receiver are sharing the cache in both hyper-threaded setting and time-sliced setting. The
transmission rates of the LRU channels can be up to 600Kbps per cache set in the hyper-threaded setting. Different from the majority
of existing cache channels which require the sender to trigger cache misses, the new LRU channels work with the sender only having
cache hits, making the channel faster and stealthier. This paper further discusses the effectiveness of the new LRU channels against a
number of secure cache designs. Especially, the LRU channels are demonstrated to work against two representative secure caches,
Partition-Locked (PL) cache and Random Fill (RF) cache, in the gem5 simulator, showing possible vulnerabilities in the secure cache
designs in which the security of the replacement state is not protected properly.

Index Terms—Processor Caches, Covert Channels, Cache Replacement Policy, LRU

F

1 INTRODUCTION

S IDE channels and covert channels in processors have
been gaining renewed attention in recent years [1]. Many

of these channels leverage timing information. To date,
researchers have shown numerous timing-based channels
in caches, e.g., [2], [3], as well as other parts of the pro-
cessor, such as the shared functional units in simultaneous
multithreading (SMT) processors, e.g., [4], [5], [6], [7], [8].
The canonical example of timing channels are channels in
caches, where timing reveals information about cache states,
e.g., a fast access due to a cache hit and a slow access due to
a cache miss. These side channels and covert channels can
be used to leak information, such as cryptographic keys,
e.g., [9]. Further, many of the variants of the recent Spectre
and Meltdown attacks also use covert channels, in addition
to transient execution, to exfiltrate data, e.g., [10], [11], [12].

In processor caches, the order in which the cache lines
are evicted depends on the cache replacement policy. Nor-
mally, different variants of the Least-Recently Used (LRU)
policy are implemented in modern processors, such as Tree-
PLRU [13] or Bit-PLRU [14]. In a cache, the LRU state is
maintained for each cache set, and it is used to determine
which cache line in the cache set should be evicted when
there is a cache miss causing a cache replacement. The LRU
state is updated on every cache accesses to indicate which
cache line in the set was just accessed. Thus, both cache hits
and misses cause updates to the LRU state of cache lines.

The basis of the new LRU timing-based channels pre-
sented in this paper is that different LRU states result in

• W. Xiong and J. Szefer are with the Department of Electrical Engineering,
Yale University, New Haven, CT, 06511.
E-mail: wenjie.xiong@aya.yale.edu, jakub.szefer@yale.edu

• S. Katzenbeisser is with University of Passau, Passau, Bayern, Germany.
E-mails: stefan.katzenbeisser@uni-passau.de

timing differences in future memory accesses. Based on the
message to be transmitted, the sender first accesses some
memory location, which will update the LRU states. Then,
the receiver tiggers a cache replacement, which depends on
the LRU state. The receiver further measures the timing of a
memory access to learn the previous LRU states and infers
the sender’s access pattern. Note that the LRU states get
updated even if the sender only causes cache hits, which is
different from most other cache side channels where a cache
replacement (i.e., a cache miss) by the sender is required
to change the cache state [2], [3]. The attacks in this paper
are stealthier compared to the prior work because they do
not require a cache miss by the sender. The new attacks
can also bypass defenses such as based on performance
counters [15], where behavior of cache missies is monitored.
Moreover, lack of required misses for the sender benefits
the transient execution attacks such as Spectre and Melt-
down [10], [11], as only a small speculation window is
required for the sender to trigger a cache hit.

In this paper, the new LRU timing-based channels are
demonstrated and evaluated in-depth. Two algorithms are
designed to build LRU timing channels: both with and with-
out shared memory between the sender and the receiver,
making the LRU channels practical in a variety of attack
scenarios. We give the details of the cache replacement state
during attacks in a set-associative cache to highlight the
novelty of the proposed channels. The LRU timing channels
are demonstrated in several different commercial proces-
sors. The bandwidth and the error rates of the channels are
evaluated to show the effectiveness of of the new attacks.

The new LRU timing-based channels are also a threat
to many of the existing secure cache proposals, which in
turn are often included as part of secure processor archi-
tectures. Numerous secure caches [16], [17], [18], [19], [20],

2

[21], [22], [23], [24], [25] have been presented, and they
aim to either partition or randomize the victim’s and the
attacker’s cache accesses to defend against cache timing-
based side channels. However, many of the secure caches
have not considered the LRU states and are vulnerable to
the new LRU channel. This paper demonstrates that the
LRU channels are effective against the Partition-Locked (PL)
cache [17] and the Random Fill (RF) cache [22] in the gem5
simulator. This paper further categorizes other secure caches
and discusses the effectiveness of different secure caches
in defending against the proposed LRU channels. This
paper is an extension of our conference paper [26] with the
following new contributions:

• We extended the evaluation of the LRU covert-
channel attacks using Hamming Distance. Compared
to the Edit Distance that was evaluated in [26], we
show Hamming Distance is more practical consider-
ing existing error correction algorithms.

• We evaluated the LRU channels in one additional se-
cure cache design, the Random Fill (RF) cache, using
the gem5 simulator, showing that randomized caches
may fail to defend against the proposed channels.

• In addition to simulation-based evaluation, we qual-
itatively analyzed the effectiveness of the channels in
a number of secure cache proposals leveraging dif-
ferent strategies. The analysis shows mixed results.
Only certain secure cache proposals protect against
our channels leveraging the cache replacement state.

We open sourced the code of our covert-channel attacks at
caslab.csl.yale.edu/code/cache-lru-attack/.

2 BACKGROUND

2.1 Timing-Based Cache Channels
In side channel attacks, the attacker (receiver) tries to learn
the victim’s information by observing the side effects of the
victim’s execution. In covert channel attacks, the sender (or
a trojan in the victim code) intentionally sends messages to
the receiver. In both attacks, a communication channel is
required to be built across security boundaries.

There are typically two types of timing-based side and
covert channels. One type leverages contention, for exam-
ple, port contention [4], [7], or contention in the cache
bank1 [5], [6]. This type of channels require the sender and
the receiver to execute concurrently as two hyper-threads to
cause contention. The other type leverages the states, e.g.,
tag state in the cache [2] or the cache coherence state [3].
Channels using cache states leverage the fact that whether a
cache line is available in the cache or not affects the timing
of the cache operations. The sender and the receiver do not
have to be two concurrent hyper-threads. They can be part
of one thread or share the cache in a time-sliced setting.
All the existing cache timing-based channels using states,
however, require a cache miss by the sender to change the
cache state when the sender is sending information. For
example, in Flush+Reload attacks [2], the sender will need to
access the cache line that was previously flushed to memory

1. To increase the cache bandwidth, the Intel L1 cache is composed of
multiple banks, where each bank serves part of a cache line. Each bank
can only serve one access request at a time.

by the receiver. Thus, the access will cause a cache miss.
Meanwhile, any cache access, both cache hit or miss, can
trigger the new LRU attack.

Usually a side or covert channel leveraging cache state
includes the following three phases. 1. Initialization Phase:
First, a sequence of memory accesses is performed so that
the cache state is (partially) known to the receiver. 2. En-
coding Phase: To send information, the sender accesses one
or more memory locations to change the cache state. The
pattern of memory accesses depends on the information to
be sent. A light-weight encoding phase is desired, especially
for side channel attacks, where the attacker does not have
control of the victim code. If the encoding phase only needs
one memory access, a single secret-dependent access could
make a piece of software vulnerable. 3. Decoding Phase:
The receiver then observes the time required to access the
memory location to learn the cache state.

2.2 Cache Replacement Policy

When a cache line is accessed but it is not in the cache (i.e.,
a cache miss), the cache line will be fetched into the cache
set. In this case, another cache line needs to be evicted from
the cache set to make room for the incoming cache line. The
replacement policy selects a cache way from the set to evict,
known as the victim way. The replacement algorithm uses
some state to store the history of accesses to cache ways in
each set. In the L1 cache, the LRU policy and its variants are
most widely used because they give a high cache hit rate. In
the last level cache (LLC), due to the reduced data locality,
other replacement policies can be used [27], [28].

LRU: The LRU algorithm keeps track of the age of cache
lines. If a cache replacement is needed on a cache miss,
the least recently used cache way (i.e., oldest way) will be
selected to be the victim way and will be evicted. In an N -
way cache, log(N) bits are used per cache line per way to
store the age of the line, requiring a total of Nlog(N) bits
for each cache set.

Pseudo Least-Recently Used (PLRU): The “true” LRU
algorithm is expensive in terms of latency (to update LRU
states) and area (to store the age of all cache lines). So often
a variant called Pseudo Least-Recently Used (PLRU) that
uses simpler states is used instead. Tree-PLRU [13] policy
and Bit-PLRU [14] policy are two commonly used PLRU
policies. Both use O(N) bits to store the relative age of the
cache lines. In PLRU policy, it is not guaranteed that the
least recently used line will be evicted, but on average a less
recently used cache line will be selected.

3 THREAT MODEL AND ASSUMPTIONS

We assume N -way set-associative caches and further as-
sume the cache uses an LRU, Tree-PLRU, or Bit-PLRU
replacement algorithm which evicts the least recently used
cache line. Like all other side or covert channels, the LRU
timing-based channel involves two parties: the sender and
the receiver. Following techniques used in [29], [30], we
assume the two parties are co-located on the same core and
share the L1 cache, as shown in Figure 1, either in an SMT
machine as two hyper-threads running in parallel or as two
threads time-sharing the core. The LRU states of the shared

caslab.csl.yale.edu/code/cache-lru-attack/

3

S R
Sender Receiver

Core

L1	cache

L2	cache

Phase
Initialization:
Encoding:
Decoding:

Set	0
Set	1

Set	M-1

… … …

way	0	– way	(N-1) LRU
state

Set	LRU	state	to	a	known	state
Sender	changes	the	LRU	state
Receiver	measures	 the	LRU	state

Fig. 1: Cache organization and the phases of the new LRU
timing-based side and covert channels.

cache can be influenced by the sender and observed by the
receiver. Existing attacks, such as side channels [6], [7], [8] or
Spectre attacks using Branch Target Buffer (BTB) or Return
Stack Buffer (RSB) [10], [31], show that sharing of the same
physical core is practical and poses a real threat in modern
computer systems.

In this paper, we focus on the LRU states in the L1 cache.
LRU channels in the other levels of caches are also possi-
ble. However, depending on the cache architecture, for the
sender to update the LRU states of the lower level of caches,
a miss in the higher cache level is required, e.g., the sender’s
hits to L1 or L2 caches will not change the replacement
state in the LLC. Especially, L1 is directly accessed by the
processor pipeline and L1 LRU state is updated on every
memory access. Thus, attacks using the LRU states of L1
are stealthier. Furthermore, timing channels in LRU states
in L2 or LLC can be detected or protected by existing cache
side channel detection or protection techniques in L1 and
prefetching the secure-relevant data to L1.

For all types of attacks, we assume the receiver can
extract useful information from the memory access pattern
of the sender, which modifies the LRU states.

4 LRU TIMING-BASED CHANNELS

Our new LRU timing-based channels leverage the LRU
states of cache sets. In this section, we discuss how the LRU
state in one cache set can be used to transfer information,
which is referred to as the target set.

The LRU state for each set contains several bits, thus
it is possible to transfer more than one bit per target set.
However, limited by the fact that any access to the set will
change the LRU state, we focus on letting the receiver only
measure the set once. Especially, the receiver can observe
the timing of one memory access which can only have two
results: a cache hit or a cache miss. Thus, at most one bit can
be transferred per cache set at one time.

To transfer information using an LRU channel, we use
three phases like in other cache channels (in Section 2.1).
The main difference is in the third step, where the receiver
first accesses one or more memory locations mapping to
the target set. These accesses potentially trigger a cache
replacement and cause a cache line to be evicted based on
the LRU state. The receiver then observes the timing of
accessing the memory location to learn if the cache line is
evicted and thus infer what the LRU state was.

Algorithm 1: LRU Channel with Shared Memory
line 0–N : cache lines mapping to the target set
m: a 1-bit message to transfer on the channel
d: a parameter of the receiver
Receiver’s Operations:
// Step 0: Initialization Phase
for i = 0; i < d; i = i+ 1 do

Access line i;
end
sleep; // To allow the sender to run here for encoding
// Step 2: Decoding Phase
for i = d; i < N + 1; i = i+ 1 do

Access line i;
end
Access line 0 and measure the latency of the access;

Sender’s Operations:
// Step 1: Encoding Phase
if m = 1 then

Access line 0;
else

Do not access line 0;
end

4.1 LRU Channel with Shared Memory

Algorithm 1 shows a communication protocol using the
LRU cache states assuming shared memory. The sender and
the receiver first agree on the target cache set they will use
to transfer information. We use the term line 0–N to denote
N+1 different cache lines that map to the target set. This can
be achieved by using data in N+1 different physical addresses
with the same cache index bits but different tag bits. Note
that line n (where n ∈ [0, N]) refers to a cache line with a
certain physical address and not a specific cache entry, and
the name does not imply certain literal physical address n.
line n could be placed in any cache way in the set.

In Algorithm 1, the sender and the receiver both need to
use the same physical address (or physical addresses within
the cache line) to access cache line 0 in the cache. This can be
achieved by a memory location in a shared dynamic linked
library, as in [2]. Further, m is a 1-bit message to be sent, and
d is a parameter indicating how the receiver’s accesses are
split between the initialization and decoding phase. Then, a
channel can be built following Algorithm 1.

Figure 2 (left) shows an example of the states in the
target cache set during an LRU covert channel attack using
Algorithm 1, where N = 8 and d = 8. In the initialization
phase, the receiver accesses 8 cache lines to set the LRU state
of the cache set to a known state. In the encoding phase, the
sender’s access changes the LRU state depending on the
message to be sent. In this step, the cache line accessed by
the sender might already be in the cache, and the sender
might always get cache hit in this step. In the decoding
phase, the receiver first accesses a cache line that is not
previously in the cache, e.g., line 8 here, to trigger a cache
replacement. The cache line to be evicted is chosen based on
the LRU state. The receiver then measures the time required
to access cache line 0, to judge if line 0 got evicted. If the
sender accessed line 0 in the encoding phase, an L1 cache hit
will be observed by the receiver, otherwise, an L1 cache miss
will be observed. Note that in PLRU policy, it is possible that

4

The receiver triggers a cache replacement by accessing line 4-7
and measures the timing of accessing cache line 0

least recent -> most recent

1)

2)

3)

The sender accesses line 0. No access.

The receiver triggers a cache replacement by accessing line 8
And measures the timing of accessing cache line 0

The receiver sets the initial LRU state by accessing lines 0-7.

Sending bit 0:Sending bit 1:

(Cache hit for line 0) (Cache miss for line 0)

cache line to be replaced

1)

2)

3)

The sender accesses line 8. No access.

The receiver sets the initial LRU state by accessing lines 0-3.

Sending bit 0:Sending bit 1:

(Cache miss for line 0) (Cache hit for line 0)

LRU channel with shared memory LRU channel without shared memory

Fig. 2: States of a cache set during the LRU covert channel attacks. The numbers indicate cache lines of different addresses in the
target set. Background colors indicate the age of the cache lines, with lighter color indicating more recent used cache lines. The
arrow shows the cache line to be evicted under True-LRU policy if a cache replacement happens.

Algorithm 2: LRU Channel without Shared Memory
line 0–N : cache lines mapping to the target set
m: a 1-bit message to transfer on the channel
d: a parameter of the receiver
Receiver’s Operations:
// Step 0: Initialization Phase
for i = 0; i < d; i = i+ 1 do

Access line i;
end
sleep; // To allow the sender to run here for encoding
// Step 2: Decoding Phase
for i = d; i < N ; i = i+ 1 do

Access line i;
end
Access line 0 and measure the latency of the access;

Sender’s Operations:
// Step 1: Encoding Phase
if m = 1 then

Access line N ;
else

Do not access target set;
end

line 0 is not evicted even though it is the least recently used
cache line. We will discuss the difference between PLRU and
LRU in Section 4.3.

Comparing Algorithm 1 with Flush+Reload attacks [2],
both require shared memory, but the LRU channel does not
require an explicit flush, and line 0 might always be in the
cache, i.e., the sender might only have cache hits.

4.2 LRU Channel without Shared Memory
In Algorithm 2, the sender and the receiver do not need
to access any shared memory location. The sender and the
receiver can map memory accesses to the target set by using
proper virtual memory addresses in their own memory
spaces. For performance reasons, L1 cache is usually virtual-
indexed and physical-tagged (VIPT). For example, for an L1
cache with 64 sets with a cache line size of 64 bytes, bits
6–11 of the address decide the cache set. The receiver can

make sure lines 0–(N−1) map to the same set as line N by
using memory locations with bits 6–11 of the virtual address
identical to line N . Then, the sender and the receiver can
build a channel following Algorithm 2.

Figure 2 (right) shows an example of the states in the
target cache set in an LRU covert channel attack using
Algorithm 2, where N = 8 and d = 4. In this example,
the sender and the receiver do not share memory. The
receiver has access to cache lines 0–7, and the sender has
access to cache line 8. In the encoding phase, a potential
access to line 8 will change the LRU state, which causes
the receiver to observe different cache lines in the cache set
in the decoding phase. The receiver will observe different
timing when accessing line 0 in the last step.

Compared to Algorithm 1, there will be more noise in the
channel by Algorithm 2, as any access to the target set can
cause line 0 to be evicted. The noise is due to the absence of
shared memory, and other cache side channel attacks (e.g.,
Prime+Probe channel [9]) also have this source of noise.

Comparing Algorithm 2 with Flush+Reload attacks, no
shared memory is required. Comparing Algorithm 2 with
Prime+Probe attacks [9], in Prime+Probe, the receiver will
access the whole set in both the prime and the probe phases,
and the sender will have a miss between the two phases.
Meanwhile, in Algorithm 2, the receiver does not access the
whole set in either phase. The receiver only needs to mea-
sure the time of one memory access in LRU channel rather
than the time of N memory accesses in the Prime+Probe
attack. Moreover, during a covert channel attack, cache
misses on the sender’s cache line N are not necessary. If
the sender keeps accessing the same cache line N , then the
sender’s line N might be in the cache throughout the attack.
This makes the attack stealthy if only the cache misses of the
sender are monitored for defense.

In parallel to this paper, covert channels leveraging the
replacement policy in LLC were proposed in [32]. However,
[32] requires shared memory between the sender and the
receiver, which is not necessary in our Algorithm 2. In
addition, [32] requires use of the clflush instruction, which
is forbidden in some environments, such as JavaScript.

5

rdtscp
movl %eax , %e s i
movq (%rbx) , %rax //L1 h i t
movq (%rax) , %rax //L1 h i t
movq (%rax) , %rax //L1 h i t
movq (%rax) , %rax //L1 h i t
movq (%rax) , %rax //L1 h i t
movq (%rax) , %rax //L1 h i t
movq (%rax) , %rax //L1 h i t
movq (%rax) , %rax // t a r g e t address to measure
rdtscp
subl %es i , %eax

Fig. 3: Pointer chasing algorithm used to measure time.

4.3 PLRU vs. LRU Replacement Policy

In true LRU, the least recently used way is always chosen as
the victim. However, in PLRU, fewer bits are used to record
the access history in the cache, and it is not guaranteed
that the least recently used way will be evicted. Thus,
when the receiver triggers a replacement and measures the
timing, there is uncertainty in the observed timing. This will
cause an error when the receiver tries to infer the sender’s
access pattern. In [26], an in-house simulator is used to
simulate the Tree-PLRU and Bit-PLRU replacement policies.
The results show that with an initialization phase, the least
recently used way will be evicted with high probability,
especially after several rounds of accesses. In Section 5, we
empirically show that the channel works on commercial
processors using Tree-PLRU replacement policy.

4.4 Challenge: Distinguishing an L1 Hit from an L1
Miss

The major challenge for the receiver is to measure the
memory access time precisely and to distinguish an L1 cache
hit (< 5 CPU cycles) from an L2 cache hit (10–20 CPU
cycles). We use a pointer chasing algorithm and a dedicated
data structure to measure one memory access precisely. In
the pointer chasing algorithm in Figure 3, a linked list,
where each element stores the address of the next element,
is required. The register rbx points to the head of the linked
list. Since the address of the mov instruction depends on the
data fetched from the previous mov instruction, all eight
accesses are serialized. Here, to avoid building a linked list
in the sender’s memory, we use a linked list of 7 elements
in the receiver’s own memory space, and let the 7th element
be the memory address to be measured. In this way, when
measuring latency with the pointer chasing algorithm in
Figure 3, it will first access 7 local elements and the target
address at the end. Before running the measurement, the
receiver can fetch the first 7 local elements to L1 cache,
so the first 7 accesses will always hit in L1, and the total
time measurement depends on whether the 8th element is
in L1 cache or not. With the method in Figure 3, we can
distinguish if the 8th element is in the L1 cache using the
time observation on the machines we tested. The size of the
linked list does not have to be 7. However, if the size is
small, the noise due to lfence will affect the measurements.
On the other hand, if the size is large, there will be noise in
accessing the elements in the linked list.

Algorithm 3: Covert Channel Protocol
m: k-bit message to be sent on the channel
Ts: sender’s sending period
Tr : receiver’s sampling time
TSC: current time stamp counter, obtained by rdtscp
Sender’s Code:
for i = 0; i < k; i = i+ 1 do

for an amount time Ts do
Step 1: Encoding Phase, encoding m[k]

end
end

Receiver’s Code:
while True do

Step 0: Initializion Phase
while TSC < Tlast + Tr do

nothing;
end
Tlast =TSC
Step 2: Decoding Phase

end

TABLE 1: Specifications of the tested CPU models.

Model Intel
Xeon
E5-2690

Intel
Xeon
E3-1245
v5

AMD
EPYC
7571

Microarchitecture Sandy
Bridge

Skylake Zen

Number of cores 8 4 N/Aa

L1D size 32KB 32KB 32KB
L1D associativity 8-way 8-way 8-way
Frequency 3.8GHz 3.9GHz 2.5GHz
OS 16.04.1 Ubuntu

aWe use the AMD processor on Amazon AWS EC2 platform. The
CPU model is specific for Amazon AWS. One core was leased for
our experiments.

5 EVALUATION

To evaluate the transmission rate of the LRU channel, we
evaluate it as a covert channel using one target set in the
L1 data cache. As shown in Algorithm 3, the sender sends
each bit of message m for Ts CPU cycles, by running the
sender’s operations (in Algorithm 1 or 2) for Ts in a loop for
each bit in the message that the sender wants to send. We
calculate the transmission rate by the total number of bits
sent divided by the time (measured by the time command in
Linux). Thus, Ts decides the transmission rate. The receiver
runs the receiver’s operations (in Algorithm 1 or 2) every Tr

CPU cycles in a loop and measures the latency using pointer
chasing discussed in Section 4.4.

The evaluation is conducted on both Intel and AMD
processors. The specifications of the tested CPU models are
listed in Table 1. We evaluated both LRU Channels with
shared memory and without shared memory presented in
Section 4 under both hyper-threaded sharing and time-
sliced sharing settings.

To evaluate the errors in the transmission channel, dif-
ferent metrics can be used. In a previous evaluation of
LRU covert channels [26] and other covert channels [1],
the Edit Distance (ED) (a.k.a., Levenshtein distance) is used,
which considers bit flips, bit insertions, and bit deletions.
However, in practice, most error correction codes (e.g., BCH

6

0 25 50 75 100 125 150 175 200
Receiver's Observation Sequence

30

40

50

60

La
te

nc
y

(c
yc

le
s) 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

0 25 50 75 100 125 150 175 200
Receiver's Observation Sequence

30

40

50

60

La
te

nc
y

(c
yc

le
s) 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0

Fig. 4: Example sequences of the receiver’s observation when
the sender is sending 0 and 1 alternatively on Intel Xeon E5-
2690 with a transmission rate of 480Kbps using (top) Algo-
rithm 1 with Tr=600, Ts=6000, and d=8 and (bottom) Algo-
rithm 2 with Tr=600, Ts=6000 and d=4. The blue dots show
the latencies observed by the receiver, the red dot line shows
the threshold of the L1 cache hit, and the light blue dot line
shows the moving average of 10 measurements.

code, Goppa code, etc.) can only correct bit flips, but not bit
insertions or bit deletions. Thus, the Hamming Distance (HD),
which only considers bit flips in the received sequence, is
the appropriate metric for practical error correction. In this
paper, we evaluate the error rates in the channels using HD.

5.1 LRU Covert Channels in Intel Processors

5.1.1 LRU Channels in Hyper-Threaded Sharing

For the hyper-threading case, we tested the covert channel
when the sender and the receiver are sharing the same
physical core as two hyper-threads. Each of the sender and
the receiver is a process (i.e., a separate program) in Linux.

LRU Channel with Shared Memory: In Algorithm 1,
shared memory is needed between the sender and the
receiver processes, e.g., achieved by a shared library. Fig-
ure 4 (top) shows the traces observed by the receiver when
the sender is sending 0 and 1 alternatively. When the sender
is sending bit 1, the access time of line 0 by the receiver
is shorter, as is discussed in Section 4.1. The results on
Intel Xeon E5-2690 are shown in Figure 4. The evaluation
on E3-1245 v5 shows similar results, except that the two
processors have different thresholds for L1 hit and miss
latencies. This is due to different latencies for L1 and L2
cache access in the two processors. Also, the two processors
are running at different frequencies, and thus, even with the
same Ts = 6000, the transmission rate is 480Kbps for E5-
2690 and 580Kbps for E3-1245 v5.

In the evaluation, the sender process sends a
128-bit random binary string repeatedly. We eval-
uate Tr = {600, 1000, 3000} cycles, and Ts =
{4500, 6000, 12000, 30000} cycles. The receiver’s operations
of Algorithm 1 in total takes about 560 cycles, including
logging of the results, and thus, Tr>560. Because the CPUs
have 8-way set-associative caches and the maximum pos-
sible d is 8, we test parameters d = {1, 2, 3, 4, 5, 6, 7, 8}.

TABLE 2: Bit flip direction.

1 to 0 0 to 1
Algorithm 1 46.8% 53.2%
Algorithm 2 63.0% 37.0%

Also, the 128-bit string is sent at least 30 times to obtain
average errors.

Figure 5 (top) shows the error rates of the channel versus
the different transmission rates (i.e., different values of Ts).
Error rates are evaluated by both Edit Distance (ED) and
Hamming Distance (HD). When calculating the ED, the re-
ceived signal is cropped into 128-bit strings, and compared
with the original string with an offset that minimizes the
distance. When calculating the HD, the received sequence
is cropped into 1024-bit strings. We use a 32-bit sliding
window to identify the start of chunks. The first 32 bits in
the string to be transmitted is a fixed synchronization string
to help the receiver align the start of the sequence. Then, the
HD between the 1024-bit received string and the original
string is calculated. We also evaluate different chunk sizes
and synchronization string lengths (i.e., sliding window
sizes). Smaller chunk sizes give better error rate results,
but the overhead due to synchronization string becomes
larger. Smaller synchronization string sizes might result in
larger errors due to possible failures to align the strings.
As shown in Figure 5 (top), the error rates evaluated by
HD of 1024-bit chunk and 32-bit synchronization string only
give slightly larger error rates than that evaluated with ED2.
This indicates that there are not many bit insertions or bit
deletions in the received bit string, especially for the optimal
Tr = 1000. If the sender uses a 32-bit synchronization string
in every 1024 bits (3% overhead), the receiver is able to
decode the signal practically. With an error rate of less than
5% for Tr = 1000, error correction codes can be applied.
In addition, Table 2 shows the type of error in Algorithm 1.
There are both 1-to-0 flips and 0-to-1 flips, and the two types
of errors occur with similar frequency. In Algorithm 1 both
types of errors might occur because PLRU does not always
choose to evict the least recently used cache line in the set.

As shown in Figure 5 (top), for Algorithm 1, d does not
affect the error rates much on the E5-2690. This is because,
in hyper-threaded sharing, the sender process and the re-
ceiver process execute in parallel. The sender operation can
happen when the receiver is executing any part of his or
her operation, and d only makes the sender operation more
likely to happen in the sleep part of the receiver’s operation.
Tr = 1000 gives slightly better error rates than Tr = 600.
This might be because more interleaving between the two
threads due to greater Tr and the receiver can observe more
sender’s activity in one measurement. As Tr increases to
3000 cycles, the error rates increase. In general, the error
rates increase as the transmission rate increases (i.e., Ts

decreases). This is because a greater Ts or a smaller Tr will
result in more measurements for each of the bit transmitted,
and the noise can be canceled out by taking the average of
the measurements.

2. For the same string pair, ED should be always smaller than HD.
However, when we process HD and ED, the received sequences are
chunked slightly differently, and thus, for some cases HD becomes
smaller than ED.

7

100 200 300 400 500 600
0%

5%

10%

15%

20%
Er

ro
r R

at
e

Tr=600 cycles

100 200 300 400 500 600

Transmission Rate (Kbps)

Tr=1000 cycles

100 200 300 400 500 600

Tr=3000 cycles d=1,ED
d=2,ED
d=3,ED
d=4,ED
d=5,ED
d=6,ED
d=7,ED
d=8,ED
d=1,HD
d=2,HD
d=3,HD
d=4,HD
d=5,HD
d=6,HD
d=7,HD
d=8,HD

100 200 300 400 500 600
0%

5%

10%

15%

20%

Er
ro

r R
at

e

Tr=600 cycles

100 200 300 400 500 600

Transmission Rate (Kbps)

Tr=1000 cycles

100 200 300 400 500 600

Tr=3000 cycles d=1,ED
d=2,ED
d=3,ED
d=4,ED
d=5,ED
d=6,ED
d=7,ED
d=8,ED
d=1,HD
d=2,HD
d=3,HD
d=4,HD
d=5,HD
d=6,HD
d=7,HD
d=8,HD

Fig. 5: Transmission error rate evaluated using Edit Distance (in dotted line) and Hamming Distance (in solid line) as a function of
the transmission rate (different Ts) for different Tr on Intel Xeon E5-2690 using (top) Algorithm 1 and (bottom) Algorithm 2. d is
a parameter of the receiver in Algorithm 1 and Algorithm 2.

LRU Channel without Shared Memory: In Algorithm 2,
shared memory between the sender and the receiver is not
required. Figure 4 (bottom) shows the traces observed by
the receiver. When the sender is sending bit 1, the access
time of line 0 by the receiver is longer, due to the sender’s
access to the same set.

For Algorithm 2, we also evaluate the same set of values
of Tr , Ts, and d. Figure 5 (bottom) shows the error rates
versus the different transmission rates (different values of
Ts) on E5-2690. The error rates evaluated by HD are similar
to that of ED, showing there are not many bit insertions
or bit deletions. Compared to the LRU channel with shared
memory, the LRU channel without shared memory has more
noise. In Tree-PLRU, when the sender accesses the set, the
receiver may not observe a miss in the end, resulting in a
false 0. Also, any access to the same set (by the other part of
the program or other processes on the core) may result in a
false 1. However, these errors usually occur consecutively in
time. So the receiver can detect the noise if observing a long
sequence of all 1 or all 0. We exclude those traces to obtain
Figure 5.

When d = {2, 4, 6}, the error rates are large on E5-2690,
especially for large Tr . This is because even d makes the
Tree-PLRU point to another side of the sub-tree, and the
receiver will not evict line 0 during decoding. Table 2 shows
the frequency of the two types of errors. 1-to-0 flips are more
frequent in Algorithm 2. This reaffirms the observation that
the receiver may not evict line 0 in some cases.

5.1.2 LRU Channels in Time-Sliced Sharing

When the sender and receiver are sharing the same core in
a time-sliced sharing setting, the two processes still share
the same L1 cache. To evaluate the covert channel in a time-
sliced sharing setting, we programmed the sender process to
always send 1 or 0, and the receiver to measure the time of
accessing line 0 every Tr . Figure 6 shows the percentage of

Fig. 6: Percentage of cache hits observed by the receiver on Intel
Xeon E5-2690, when the sender is sending (left) 0 and (right) 1
using Algorithm 1 under time-sliced sharing.

cache hits received for different d and Tr when the sender is
sending 0 or 1 using Algorithm 1 on both CPUs tested. Each
data point comes from 1000 measurements.

As shown in Figure 6, with proper parameters, the
receiver can distinguish between the sender sending 0 and 1.
For example, if d = 8 and Tr = 108 cycles, the receiver will
observe almost 100% of L1 cache misses when the sender
is sending 0, and the receiver will observe about 30% of
L1 cache hits when the sender is sending 1 on both Intel
processors. The receiver does not observe hits with a higher
probability, because in time-sliced sharing, each process uses
the core for a certain period of time. When the receiver
monitors the sender in a loop, multiple loop iterations will
run within a time-slice period, and only the first iteration
will reflect the sender’s behavior, the other iterations in
the time period run without interleaving with the sender.
Nevertheless, the receiver can still recognize the message the
sender is sending by the percentage of cache hits received.
Assuming that 10 measurements are needed when Tr = 108

to differentiate 30% from <5%, the transmission rate is
about 2.4bps.

Compared to hyper-threaded sharing, much larger Tr is
needed here to have interaction between the two threads

8

(about 108 cycles for both processors tested). However, if
Tr is too large, the distinguishability decreases, as other
processes might be scheduled during Tr. As shown in
Figure 6, d = 8 and d = 7 gives the best distinguishability
between the sender sending 0 and 1. This is because Tr is
large, and the time for the receiver’s operations becomes
small compared to the sleep time. Thus, a context switch is
more likely to happen during the sleep time. In Algorithm 1,
a greater d leads to fewer accesses to the target set after the
sleep, and thus, line 0 is less likely to be evicted during
decoding. Such evicted line 0 may result in a false 0.

We also tried Algorithm 2 but failed to observe any
signal from the measurement. We think the reason is that
Tr should be large to allow interference between the sender
and the receiver, however, any other processes running
during Tr could pollute the target set and introduce a lot
of noise.

5.2 LRU Covert Channels in AMD Processors
In this section, we evaluate the channel on AMD processors,
which have a different L1 cache design and time stamp
counter from Intel processors.

5.2.1 utag in AMD L1 Cache
To save power, AMD L1 cache has a special linear address
utag and way-predictor (see 2.6.2.2 in [33]). The utag is a hash
of the linear address. For a load, while the physical address
is looked up in TLB, the L1 cache uses the hash of the
linear address (i.e., virtual address) to match the utag and
determines which cache way to use in the cache set. When
the physical address is available after address translation,
only that cache way will be looked up instead of all 8 ways.
So, when the physical address of a load matches a cache line
in the cache, if the utag of that way is of a different linear
address unless the hash of two linear addresses conflicts,
a latency of an L1 miss will be observed, even though the
physical address matches and data is in L1.

This limits the use of our Algorithm 1 across processes
using different address spaces. If the sender process accesses
line 0, the utag of line 0 will be updated with the linear
address of line 0 in the sender’s address space. When the
receiver accesses line 0 and measures the time, unless the
hash of the linear address of line 0 in the sender’s process
and in the receiver’s process conflicts, the receiver will al-
ways observe an L1 cache miss latency no matter if the line 0
is in L1 or not. However, the hash of utag is not designed for
security and can be reverse-engineered [34]. Furthermore, as
long as the sender and the receiver are in the same address
space, the LRU channel using Algorithm 1 still exists. For
example, it can be used to transfer information in the case
of escaping the sandbox in JavaScript [10].

5.2.2 Evaluation of LRU Channels in AMD Processors
We evaluate the characteristics of the LRU covert channel
on an AMD EPYC 7571 processor on Amazon AWS EC2
platform. Figure 7 (top) shows the trace observed by the
receiver, when the receiver and the sender are two threads
in the same address space (using pthreads in C) running
in a hyper-threaded sharing using Algorithm 1. Due to the
coarse granularity of the readout value of the time stamp

Fig. 7: Example sequences of receiver’s observation when the
sender is sending 0 and 1 alternatively using (top) Algorithm 1
and (bottom) Algorithm 2 on AMD EPYC 7571. For Algorithm
1, Tr = 1000, Ts = 105, d = 8, and the transmission rate is
22Kbps. For Algorithm 2, Tr = 1000, Ts = 105, d = 4, and the
transmission rate is 25Kbps.

counter in AMD, it is hard to identify the signal from
the raw measurements (blue dots). Thus, we evaluate the
moving average. The light blue dot line in Figure 7 shows
the moving average of the latency of 97 measurements,
where the 97 is the best fit period of sending one bit for
this trace3. When the sender is sending 0 and 1 alternatively,
the moving average is a wave-like pattern. The receiver
can decode the message using a threshold for the moving
average, red dotted line in Figure 7. By measuring the
total time taken by the receiver to gather the trace and the
period of each bit received, the effective transmission rate
is 22Kbps. Due to the coarser-granularity of the AMD time
stamp counter and lower frequency, the transmission rate of
the channel is about one order of magnitude lower than that
in Intel processors.

We also tested Algorithm 2 under hyper-threaded shar-
ing on AMD EPYC 7571. Figure 7 (bottom) shows a trace
observed by the receiver. The receiver and the sender are
two programs (in different memory space). Similarly, the
light blue dot line shows the moving average of the latency
of 85 measurements, where the 85 is the best fit, resulting in
an effective transmission rate of 25Kbps. When the sender is
sending 0 and 1 alternatively, the moving average is a wave-
like pattern. The measured latency in Figure 7 (top) and
(bottom) are quite different. This might due to the processor
running at a different frequency for power saving at the time
of measurement.

5.3 Comparing the Evaluated LRU Channels
Table 3 compares the transmission rate per cache set of
the channels tested under different configurations. Hyper-
threading gives a much higher transmission rate than

3. The fact that the period does not equal to Ts/Tr indicates that
threads do not get scheduled evenly. This might be due to the Amazon
EC2 platform, as we observe similar phenomenon on Intel processors
on EC2.

9

TABLE 3: Transmission rate of the evaluated LRU channels.

Intel AMD

Hyper-Threaded Algorithm 1 ∼500Kbps ∼20Kbps
Algorithm 2 ∼500Kbps ∼20Kbps

Time-Sliced Algorithm 1 ∼2bps ∼0.2bps
Algorithm 2 – –

TABLE 4: Cache miss rate of Spectre V1 attack.

F+R
(mem)

F+R
(L1)

L1 LRU
Alg.1

L1 LRU
Alg.2

Intel Xeon
E5-2690

L1D 2.75% 4.73% 4.19% 4.75%
L2 7.58% 0.07% 0.11% 0.09%
LLC 98.15% 0.87% 0.72% 0.87%

Intel Xeon
E3-1245 v5

L1D 2.86% 4.84% 4.13% 4.86%
L2 7.39% 0.49% 0.71% 0.45%
LLC 91.17% 1.83% 0.74% 0.96%

time-sliced sharing because of more interference between
the sender and the receiver. Under hyper-threading, Al-
gorithm 1 and Algorithm 2 have a similar transmission
rate. The transmission rate is comparable to other timing
channels in caches [1], [3]. However, recall that Algorithm 2
is easily affected by noise due to activities of other programs,
but the noise is easy to filter, because the noise activity is
usually of a different frequency. The LRU channel on AMD
processors is about one order of magnitude slower than on
Intel processors, due to the coarser-granularity of readout
value of timestamp counter and lower clock frequency.

6 EVALUATION OF LRU CHANNELS IN TRANSIENT
EXECUTION ATTACKS

Transient execution attacks, e.g., Spectre, leverage transient
execution to access a secret and a covert channel to pass the
secret to the attacker [10], [11], [12]. Currently, most proof-
of-concept codes of transient execution attacks use the cache
Flush+Reload covert channel. Here we demonstrate that our
LRU covert channel also works in a Spectre attack to retrieve
the secret.

Note that here the secret contains more than 1 bit, and
multiple cache sets are used to encode the secret. In practice,
63 cache sets are used (both Intel and AMD processors tested
have 64 sets, the remaining one set is for the 7 elements in
the pointer chasing algorithm as discussed in Section 4.4).

The Flush+Reload covert channel needs one memory
access depending on the secret as the sender’s operation.
Meanwhile, as shown in both algorithms in Section 4, the
sender’s operation in the LRU channels also only needs
one memory access whose target set depends on the secret.
Thus, the victim code using the LRU channel can be iden-
tical to the disclosure gadget in the Flush+Reload channel.
When demonstrating transient execution attack using the
LRU channels, we take the Spectre variant 1 attack sample
code [10] and keep the victim (sender) code the same,
and change the attacker (receiver) code to use the L1 LRU
channels as the disclosure primitive instead. We are able
to launch the Spectre attack using the LRU channels (both
Algorithm 1 and 2) to observe the secret. Table 4 shows the
cache miss rate (including both the victim and the attacker)
during a Spectre attack.

Comparing to the Flush+Reload channel, the advantage
of the LRU disclosure primitive is the short encoding time

!"#$%&$'()
*+

,%-

!$++-%&.'#('/&0"-%1&

+2&3%45"#%/%2(&4+5'#6

.'#('/&5+#7%1)

518-(9'($+:(&

3%45"#%/%2(

;41"(%&3%45"#%/%2(&

-("(%&+<&.'#('/

*+3/"5&518-(=

;41"(%&5+#7 0'(

'< '(&'- " 5+#7&3%>

*+3/"5&$'(=

;41"(%&5+#7 0'('< '(&

'- " 5+#78:25+#7&3%>

5+#7%1)
,%-

*+

,%-

*+

*+3/"5&$'(=

!"#$"%#&'()%*#

+*',)-*.*$%#/%)%*0

;41"(%&5+#7 0'('< '(&

'- "2&:25+#7&3%>

%21

Fig. 8: PL cache replacement logic flow-chart. White boxes
show the original PL cache design in [17]. Blue boxes show the
new PL logic added in our simulation to defend the LRU attack.

(i.e., the sender’s operations), and thus, a smaller specula-
tive window is required, which may make the attack more
dangerous and harder to defend.

7 LRU COVERT CHANNELS IN SECURE CACHES

Many secure cache designs have been proposed to de-
fend against conventional and transient execution attacks.
Partitioning or randomization are the two main leveraged
techniques. In this section, we first show how these two
types of secure caches might fail to defend side and covert
channel in cache replacement states using simulation, and
provide a security analysis of different secure caches.

7.1 Partitioning

Some secure cache designs prevent certain cache line shar-
ing between the victim and the attacker using partitioning,
e.g., [16], [17], [18], [19], [35]. The goal of cache partitioning
is to prevent the cache state that is changed by one party
to be observable to another party. Partitioned caches require
information from software about which cache line need to
be isolated from others. The partitioning can be either static
or dynamic. Current proposals focus mainly on the data
and tag of a cache line. However, the cache replacement
state might still be shared between different users in such
secure caches, leaving the possibility of a covert channel as
we show in this work.

Partition-Locked (PL) cache [17] is an example of a se-
cure cache leveraging partitioning with small performance
and area overhead. Each cache line is extended with one
lock bit. When a cache line is locked, the line will not be
evicted by any cache replacement until unlocking to protect
the line, as shown in Figure 8. If a locked line is chosen as
victim to be replaced, the replacement will not happen, and
the incoming line will be sent to the pipeline without being
cached. In this way, when a line is locked, the cache line state
will not be changed until unlocking. PL cache is shown to
be effective against Flush+Reload, Prime+Probe, etc.

But the LRU state will still be updated on accesses to
the locked cache line, and the update will affect the LRU
states of other lines. Figure 9 shows an example of the LRU
covert channel attack in PL cache using Algorithm 2, where
N = 8 and d = 4. First, the sender locks line 8, as required
by PL cache to enforce protection. Then, the sender and the
receiver execute Algorithm 2. If the sender accesses line 8,

10

The receiver triggers a cache replacement by accessing line 4-7
and measures the timing of accessing cache line 0

1)

2)

3)

The sender accesses line 8. No access.

The receiver sets the initial LRU state by accessing lines 0-3.

Sending bit 0:Sending bit 1:

(Cache miss for line 0) (Cache hit for line 0)

LRU channel in PL cache

0) The sender locks his line 8.

(uncached access for line 4)

Fig. 9: Cache states in PL cache in LRU covert channel attacks.

Fig. 10: Simulation result of the LRU attack with Algorithm 2
in gem5 with (top) original PL cache design and (bottom)
new PL cache design which locks the LRU state to defend the
LRU attack.

older cache lines will be evicted and a cache miss will be
observed by the receiver. Otherwise, line 8 will be chosen as
the line to be evicted. However, line 8 is locked, so the new
cache line will be accessed uncached. In this example, even
though the sender’s cache line is locked, sender’s access
will still change the LRU state, which gives the receiver
the ability to infer the sender’s access pattern by observing
memory access time.

We implement the PL cache using PLRU replacement
algorithm in the gem5 simulator, and test the LRU attack
illustrated in Figure 9. As shown in Figure 10 (top), with the
original design, the receiver can still receive the secret by
observing the time of accessing line 0. In this demonstration,
the receiver is monitoring 32 cache sets and observes a cache
miss in the cache set the sender accesses. Thus, the receiver
learns the access pattern of the sender, e.g., set 17 here.

To mitigate the LRU channel, the LRU state should be
locked when the cache line is locked. The changes to logic of
PL cache are shown in the blue boxes in Figure 8. In this way,
the receiver will always observe a cache hit, and thus not
learn any information, as confirmed in Figure 10 (bottom).

7.2 Randomization
Randomization is another method to mitigate cache covert
and side channels. In a random fill (RF) cache [22], the
cache line to be fetched into cache is chosen randomly
to decouple the cache state and the access pattern. As
shown in Figure 11, in RF cache, a cache hit is identi-
cal to that in a normal cache. A cache miss will cause

Cache hit?
No

Yes
ld/st without
replacement

Fetches a cache line in
neighborhood window

(RF_start, RF_size)

Normal hit
(update cache
replacement

state)

end

Addr:

Address being accessed

RF window

Fig. 11: RF cache replacement logic flow-chart and RF window.

0 5 10 15 20

Round

0.0

0.2

0.4

0.6

0.8

1.0

Fi
ll

Ef
fic

ie
nc

y

RF_window=0KiB
RF_window=512B
RF_window=2KiB
RF_window=4KiB

RF_window=8KiB
RF_window=16KiB
RF_window=32KiB

Fig. 12: Probability of a cache line being filled in RF cache in
gem5 simulator.

the data to be sent to the pipeline directly without being
cached, and then, a cache line in the neighborhood win-
dow will be fetched into cache instead of the cache line
being accessed. The neighborhood RF window is defined
by [addr−RF_start, addr−RF_start+RF_size]. The RF
window can be reconfigured by changing the value of
registers RF_start and RF_size. The idea behind RF
window is that a data in the neighborhood window might
be accessed in the future due to locality, so the performance
benefits from future cache hits.

However, in the RF cache, the randomization is in the
data fetch. Once a cache line is in the cache, the RF cache
works as a normal set-associative cache. If there is a cache hit
by the sender, the cache replacement state will be updated.
If there is a cache replacement, the cache replacement state
will be used to chose a cache line to evict. Hence, if the
receiver can initialize the cache set in a controlled manner
by prefilling the cache with desired cache lines, the LRU
side or covert channel is still possible in the RF cache.

We implement the RF cache logic in the L1 cache in
the gem5 simulator. To test the probability of a cache line
being fetched into cache, we access 32 consecutive cache
lines in each round, and measure the time to see if the cache
line is in the cache. We test different RF sizes, and always
center the RF window to the cache line being accessed, i.e.,
RF_start= 1

2RF_size. Figure 12 shows the probability
of a cache line being filled into the RF cache, dubbed “fill
efficiency”, after n rounds of accesses. The results show that
more rounds of accesses give higher fill efficiency, because

11

0 5 10 15 20 25 30

Array index

18

20

22

24

26

28

La
te

nc
y

(c
yc

le
s)

secret=17

RF_window=512B
RF_window=2KiB
RF_window=4KiB

RF_window=8KiB
RF_window=16KiB
RF_window=32KiB

0 5 10 15 20 25 30

Array index

18

20

22

24

26

28

La
te

nc
y

(c
yc

le
s)

secret=17

RF_window=512B
RF_window=2KiB
RF_window=4KiB

RF_window=8KiB
RF_window=16KiB
RF_window=32KiB

Fig. 13: Simulation result of the LRU attack in RF cache with
Algorithm 1 in gem5 simulator with (top) 5 rounds of cache fill
and (bottom) 10 rounds.

more rounds of accesses cause more cache misses and
trigger more RF cache fetching. For a normal set-associative
cache (RF_size=0), the fill efficiency will reach 100% in
round 1. A small RF window result in high fill efficiency,
because the desired cache lines will be fetched with higher
probability in each random fill. High fill efficiency indicates
better performance when the workload’s memory access has
locality. However, higher fill efficiency also means that the
attacker can fill the cache in a controlled manner.

Because the LRU channel does not require the sender
to cause cache replacement to trigger cache state updates,
the RF cache is still vulnerable. We demonstrate the LRU
covert channel in the RF cache. The operation is the same
as introduced in Section 4, but the initialization step now
requires several rounds to prefill the desired cache lines and
the last step requires to access a cache line several times to
trigger cache replacement in the target cache set. Figure 13
shows the result of the attack using Algorithm 1. The results
are the average of observed latency generated from 100
different random seeds. The receiver can infer the sender’s
access pattern of the sender, e.g., accessing set 17 here,
especially when the RF_size is less than 4KiB. The top
figure shows the result when the receiver fills the cache with
5 rounds of accesses, and the bottom shows 10 rounds of
accesses. More rounds of cache fill and smaller RF window
size give more difference in the time observation between
the sender sending 0 and 1, which is consistent with the fill
efficiency result in Figure 12. Also, a small RF window in
general gives smaller access timing, as there could be more
cache hits of line 0.

The noise in RF cache LRU channel comes from two
sources. Firstly, the receiver’s multiple rounds of access does
not guarantee that the desired cache line to be fetched into
cache. For example, if line 0 is not fetched in the first step, it
is likely to always get a cache miss regardless of the sender’s
access. Secondly, random fills of other accesses will cause
unexpected cache lines to be fetched or cache replacement
states to be updated. For example, in the decoding phases,

the receiver accesses a new cache line multiple times, which
might fetch the line 0 or update the line 0 as the most
recently used line, causing cache hit in the observation. Our
experimental results in Figure 13 show that RF_size of at
least 8KiB (128 cache lines) is required to inject enough noise
to the channel. However, when RF_size is 32 cache lines,
performance in terms of instructions per cycle (IPC) can be
decreased as much as 30% for certain workloads, as reported
by [22]. This means the RF cache will introduce significant
performance overhead to mitigate the LRU channel.

On the other hand, compared to a normal set-associative
cache, RF fill cache requires the sender to have multiple
rounds of accesses to set the initial cache replacement state.
This makes the LRU channel without shared memory (e.g.,
Algorithm 2) less practical, because either the receiver needs
to have access to the cache line that is accessed by the sender
(i.e., shared memory space) for initialization or the sender
needs to fetch the cache line in the initialization, resulting in
more effort on the sender’s side.

7.3 Secure Cache Designs and Cache Replacement
Covert Channels

In addition to the quantitative analysis in Section 7.1 and
Section 7.2, we qualitatively analyze all remaining known
secure caches. We summarize a number of secure caches
and whether LRU side and covert channels exist in Table 5.

We consider external attacks where the sender and the
receiver reside in different security domains. There are also
internal attacks where all the operations are done by the
sender and the receiver only observes the timing of the
sender program. However, internal attacks are not mitigated
by many of the secure caches even for existing cache chan-
nels, and thus, it is hard to compare the internal attacks
leveraging cache replacement state on the secure caches.

Moreover, the secure cache designs focus on different
levels of caches. While in this paper, we demonstrate the
LRU channel only in L1 cache, there is evidence that side
and covert channel can be built in other levels of caches [32].
In Table 5, we analyze whether a channel leveraging cache
replacement state could be built in each secure cache design.

There are two techniques used in the secure cache de-
signs: partitioning and randomization. Partitioning could be
between both data look up and eviction, or only eviction.
Also, partitioning can be static or dynamic, as shown in
Table 5. The lesson we learn from PL cache is that when
we partition a cache, the cache replacement state (and other
cache states) should also be partitioned. Otherwise, not all
covert channels or side channels are closed in the partition.
However, it is not trivial to partition the cache replacement
state, especially when the partitioning is dynamic. Thus,
DAWG [21] proposed a method partition the PLRU states
dynamically. Meanwhile, in some of the partitioned cache
designs, only the eviction is isolated between security do-
mains, i.e., program in different secure domain can access
each other’s cache partition, but cannot trigger eviction of
cache line of another partition. However, eviction is not
the root cause of the attacks leveraging cache replacement
states, and thus, the attacks can not be mitigated.

Randomization can be applied to the three basic opera-
tions in cache: lookup (e.g., which cache entries a cache line

12

TABLE 5: LRU channels in existing secure cache designs.

Features Example Designs Secure against LRU
channels?

Partition
between
security
domains

Statically partition all access SecVerilog cache [19], CATalyst [36], Sanctum cache
(Yes) [35], [37], InvisiSpec (Yes) [25]

Only if the
replacement state is
partitioned.1Dynamically partition all access PL cache [17], NoMo cache [18], DAWG (Yes) [21]

Partition only evictions (Dynamically) SHARP cache [20], Relaxed Inclusion Caches [38] No

Randomi-
zation

Randomize address to cache entry
mapping

New cache [23], RP cache [17], Time-Secure Caches [39],
CEASER cache [40], Skewed-CEASER [41],
ScatterCache [42]

Yes

Randomize cache fetch RF cache [22], No
Randomize cache
replacement/invalidation Non Deterministic cache [24], CleanupSpec [43] Yes

1 “Yes” next to the specific cache design means the replacement state is partitioned properly.

can map to), fetch (e.g., when and which cache line to be
fetched into cache), and invalidation/eviction (e.g., when
and which cache line to be invalidated/evicted from the
cache). The mapping between the line addresses and the
cache entries or sets can be randomized (Row 4 in Table 5).
Some of the designs (e.g., scattercache [42]) even completely
remove the concept of a cache set and a random replacement
policy is used. The LRU side and covert channel assume the
sender and the receiver to share the same cache set. Because
the receiver (and the sender) cannot map the addresses to
the target cache set to build a channel, these caches are safe
against cache replacement side and covert channels. As for
the idea of randomizing the cache fetch, RF cache is the
only proposal so far. We show in Section 7.2 that RF is not
effective in defending the LRU channel. Randomization in
cache replacement and eviction is also proposed. In this case
there is not replacement state, and thus, no side channel.

In addition to the conventional covert channels, security
improvements and designs have been recently proposed
to defend transient execution attacks, such as Spectre and
Meltdown [10], [11], [12]. Some defenses, e.g., [44], [45],
prevent memory accesses in case of unsafe transient execu-
tion, and thus, prevent our channels from being leveraged
as part of transient execution attacks. Some other defenses
mitigate the covert channel in cache replacement states
using partitioning (e.g., DAWG [21], InvisiSpec [25]) and
use a random replacement policy (e.g., CleanupSpec [43]).
However, many other designs do not consider covert chan-
nels in the replacement state and our covert channels remain
unprotected.

8 CONCLUSION

We presented novel timing-based channels leveraging the
cache LRU replacement states. We designed two protocols
to transfer information between processes using the LRU
states for both cases when there is shared memory between
the sender and the receiver and when there is no shared
memory, and demonstrated the LRU channels on real-world
commercial processors. The LRU channels require access
(cache hit or miss) from the sender, while all existing
state-based timing-based cache side and covert channels
always need the sender to trigger a cache replacement (a
cache miss). Thus, the LRU channel has shorter encoding
time, lower cache miss rate for the sender, and requires a
smaller speculation window in transient attack scenarios.
We conducted a detailed evaluation on the proposed covert

channels using both ED and HD. We also showed the new
LRU channels also affect the current secure cache designs,
such as PL cache and RF cache.

ACKNOWLEDGEMENTS

We would like to acknowledge Amazon for providing AWS
Cloud Credits for Research. This work was supported by
NSF grants 1651945 and 1813797, and through SRC award
number 2844.001.

REFERENCES

[1] J. Szefer, “Survey of microarchitectural side and covert channels,
attacks, and defenses,” Journal of Hardware and Systems Security,
vol. 3, no. 3, pp. 219–234, 2019.

[2] Y. Yarom and K. Falkner, “FLUSH+ RELOAD: a high resolution,
low noise, L3 cache side-channel attack,” in USENIX Security
Symposium (USENIX), 2014, pp. 719–732.

[3] F. Yao, M. Doroslovacki, and G. Venkataramani, “Are Coher-
ence Protocol States Vulnerable to Information Leakage?” in In-
ternational Symposium on High Performance Computer Architecture
(HPCA), 2018, pp. 168–179.

[4] Z. Wang and R. B. Lee, “Covert and side channels due to processor
architecture,” in Annual Computer Security Applications Conference
(ACSAC), 2006, pp. 473–482.

[5] Y. Yarom, D. Genkin, and N. Heninger, “CacheBleed: a timing
attack on OpenSSL constant-time RSA,” Journal of Cryptographic
Engineering, vol. 7, no. 2, pp. 99–112, 2017.

[6] A. Moghimi, J. Wichelmann, T. Eisenbarth, and B. Sunar, “Mem-
jam: A false dependency attack against constant-time crypto
implementations,” International Journal of Parallel Programming,
vol. 47, no. 4, pp. 538–570, 2019.

[7] A. C. Aldaya, B. B. Brumley, S. ul Hassan, C. P. Garcı́a, and
N. Tuveri, “Port contention for fun and profit,” in Symposium on
Security and Privacy (S&P), 2019, pp. 870–887.

[8] D. Evtyushkin, D. Ponomarev, and N. Abu-Ghazaleh, “Jump over
ASLR: Attacking branch predictors to bypass ASLR,” in Interna-
tional Symposium on Microarchitecture (MICRO), 2016, pp. 1–13.

[9] D. A. Osvik, A. Shamir, and E. Tromer, “Cache attacks and coun-
termeasures: the case of AES,” in Cryptographers’ Track at the RSA
Conference, 2006.

[10] P. Kocher, J. Horn, A. Fogh, D. Genkin, D. Gruss, W. Haas,
M. Hamburg, M. Lipp, S. Mangard, T. Prescher, M. Schwarz, and
Y. Yarom, “Spectre attacks: Exploiting speculative execution,” in
Symposium on Security and Privacy (S&P), 2019, pp. 1–19.

[11] M. Lipp, M. Schwarz, D. Gruss, T. Prescher, W. Haas, A. Fogh,
J. Horn, S. Mangard, P. Kocher, D. Genkin, Y. Yarom, and M. Ham-
burg, “Meltdown: Reading Kernel Memory from User Space,” in
USENIX Security Symposium (USENIX), 2018, pp. 973–990.

[12] C. Canella, J. Van Bulck, M. Schwarz, M. Lipp, B. Von Berg,
P. Ortner, F. Piessens, D. Evtyushkin, and D. Gruss, “A system-
atic evaluation of transient execution attacks and defenses,” in
USENIX Security Symposium (USENIX), 2019, pp. 249–266.

[13] K. So and R. N. Rechtschaffen, “Cache operations by MRU
change,” IEEE Transactions on Computers, vol. 37, no. 6, pp. 700–
709, 1988.

13

[14] A. Malamy, R. N. Patel, and N. M. Hayes, “Methods and appara-
tus for implementing a pseudo-LRU cache memory replacement
scheme with a locking feature,” 1994, US Patent 5,353,425.

[15] T. Zhang, Y. Zhang, and R. B. Lee, “Cloudradar: A real-time
side-channel attack detection system in clouds,” in International
Symposium on Research in Attacks, Intrusions, and Defenses (RAID),
2016, pp. 118–140.

[16] R. B. Lee, P. Kwan, J. P. McGregor, J. Dwoskin, and Z. Wang,
“Architecture for protecting critical secrets in microprocessors,”
in ACM SIGARCH Computer Architecture News, vol. 33, no. 2, 2005,
pp. 2–13.

[17] Z. Wang and R. B. Lee, “New cache designs for thwarting software
cache-based side channel attacks,” in ACM SIGARCH Computer
Architecture News, vol. 35, no. 2, 2007, pp. 494–505.

[18] L. Domnitser, A. Jaleel, J. Loew, N. Abu-Ghazaleh, and D. Pono-
marev, “Non-monopolizable caches: Low-complexity mitigation
of cache side channel attacks,” Transactions on Architecture and Code
Optimization, vol. 8, no. 4, 2012.

[19] D. Zhang, A. Askarov, and A. C. Myers, “Language-based con-
trol and mitigation of timing channels,” ACM SIGPLAN Notices,
vol. 47, no. 6, pp. 99–110, 2012.

[20] M. Yan, B. Gopireddy, T. Shull, and J. Torrellas, “Secure Hierarchy-
Aware Cache Replacement Policy (SHARP): Defending Against
Cache-Based Side Channel Attacks,” in Annual International Sym-
posium on Computer Architecture (ISCA), 2017, pp. 347–360.

[21] V. Kiriansky, I. Lebedev, S. Amarasinghe, S. Devadas, and J. Emer,
“DAWG: A defense against cache timing attacks in speculative ex-
ecution processors,” in International Symposium on Microarchitecture
(MICRO), 2018, pp. 974–987.

[22] F. Liu and R. B. Lee, “Random fill cache architecture,” in Interna-
tional Symposium on Microarchitecture (MICRO), 2014, pp. 203–215.

[23] F. Liu, H. Wu, K. Mai, and R. B. Lee, “Newcache: Secure cache
architecture thwarting cache side-channel attacks,” IEEE Micro,
vol. 36, no. 5, pp. 8–16, 2016.

[24] G. Keramidas, A. Antonopoulos, D. N. Serpanos, and S. Kaxiras,
“Non deterministic caches: A simple and effective defense against
side channel attacks,” Design Automation for Embedded Systems,
vol. 12, no. 3, pp. 221–230, 2008.

[25] M. Yan, J. Choi, D. Skarlatos, A. Morrison, C. Fletcher, and J. Tor-
rellas, “InvisiSpec: Making Speculative Execution Invisible in the
Cache Hierarchy,” in International Symposium on Microarchitecture
(MICRO), 2018, pp. 428–441.

[26] W. Xiong and J. Szefer, “Leaking information through cache LRU
states,” in International Symposium on High Performance Computer
Architecture (HPCA), 2020, pp. 139–152.

[27] A. Jaleel, K. B. Theobald, S. C. Steely Jr, and J. Emer, “High per-
formance cache replacement using re-reference interval prediction
(RRIP),” in ACM SIGARCH Computer Architecture News, vol. 38,
no. 3. ACM, 2010, pp. 60–71.

[28] M. K. Qureshi, A. Jaleel, Y. N. Patt, S. C. Steely, and J. Emer,
“Adaptive insertion policies for high performance caching,” ACM
SIGARCH Computer Architecture News, vol. 35, no. 2, pp. 381–391,
2007.

[29] T. Ristenpart, E. Tromer, H. Shacham, and S. Savage, “Hey, you,
get off of my cloud: exploring information leakage in third-party
compute clouds,” in Conference on Computer and Communications
Security (CCS), 2009, pp. 199–212.

[30] Y. Zhang, A. Juels, M. K. Reiter, and T. Ristenpart, “Cross-tenant
side-channel attacks in PaaS clouds,” in Conference on Computer and
Communications Security (CCS), 2014, pp. 990–1003.

[31] G. Maisuradze and C. Rossow, “ret2spec: Speculative execution
using return stack buffers,” in Conference on Computer and Commu-
nications Security (CCS), 2018, pp. 2109–2122.

[32] S. Briongos, P. Malagón, J. M. Moya, and T. Eisenbarth,
“RELOAD+REFRESH: Abusing Cache Replacement Policies to
Perform Stealthy Cache Attacks,” in USENIX Security Symposium,
2020, pp. 1967–1984.

[33] Software Optimization Guide for AMD Family 17h Processors,
https://developer.amd.com/wordpress/media/2013/12/55723
SOG Fam 17h Processors 3.00.pdf, accessed Feb. 2019.

[34] M. Lipp, V. Hadžić, M. Schwarz, A. Perais, C. Maurice, and
D. Gruss, “Take a way: Exploring the security implications of
amd’s cache way predictors,” in 15th ACM ASIA Conference on
Computer and Communications Security (ASIACCS), 2020.

[35] V. Costan, I. Lebedev, and S. Devadas, “Sanctum: Minimal hard-
ware extensions for strong software isolation,” in USENIX Security
Symposium (USENIX), 2016, pp. 857–874.

[36] F. Liu, Q. Ge, Y. Yarom, F. Mckeen, C. Rozas, G. Heiser, and R. B.
Lee, “Catalyst: Defeating last-level cache side channel attacks in
cloud computing,” in International symposium on high performance
computer architecture (HPCA), 2016, pp. 406–418.

[37] T. Bourgeat, I. Lebedev, A. Wright, S. Zhang, and S. Devadas,
“Mi6: Secure enclaves in a speculative out-of-order processor,”
in International Symposium on Microarchitecture (MICRO), 2019, pp.
42–56.

[38] M. Kayaalp, K. N. Khasawneh, H. A. Esfeden, J. Elwell, N. Abu-
Ghazaleh, D. Ponomarev, and A. Jaleel, “RIC: Relaxed inclusion
caches for mitigating LLC side-channel attacks,” in 54th Design
Automation Conference (DAC), 2017, pp. 1–6.

[39] D. Trilla, C. Hernandez, J. Abella, and F. J. Cazorla, “Cache side-
channel attacks and time-predictability in high-performance criti-
cal real-time systems,” in 55th Annual Design Automation Conference
(DAC), 2018, pp. 1–6.

[40] M. K. Qureshi, “CEASER: Mitigating Conflict-Based Cache At-
tacks via Encrypted-Address and Remapping,” in International
Symposium on Microarchitecture (MICRO), 2018, pp. 775–787.

[41] M. K. Qureshi, “New attacks and defense for encrypted-address
cache,” in ACM/IEEE 46th Annual International Symposium on Com-
puter Architecture (ISCA), 2019, pp. 360–371.

[42] M. Werner, T. Unterluggauer, L. Giner, M. Schwarz, D. Gruss, and
S. Mangard, “Scattercache: thwarting cache attacks via cache set
randomization,” in 28th USENIX Security Symposium, 2019, pp.
675–692.

[43] G. Saileshwar and M. K. Qureshi, “Cleanupspec: An undo ap-
proach to safe speculation,” in International Symposium on Microar-
chitecture (MICRO), 2019, pp. 73–86.

[44] O. Weisse, I. Neal, K. Loughlin, T. F. Wenisch, and B. Kasikci,
“NDA: Preventing speculative execution attacks at their source,”
in International Symposium on Microarchitecture (MICRO), 2019, pp.
572–586.

[45] J. Yu, M. Yan, A. Khyzha, A. Morrison, J. Torrellas, and C. W.
Fletcher, “Speculative taint tracking (STT): A comprehensive pro-
tection for speculatively accessed data,” in International Symposium
on Microarchitecture (MICRO), 2019, pp. 954–968.

Wenjie Xiong (S’17) received her Ph.D. degree from the department
of Electrical Engineering at Yale University in 2020 and her B.Sc. in
Microelectronics and Psychology from Peking University in 2014. She is
currently a postdoctoral researcher at Facebook. Her research interests
comprise Physically Unclonable Functions and side-channel attacks and
defenses.

Stefan Katzenbeisser (S’98–A’01–M’07–SM’12) received the Ph.D. de-
gree from the Vienna University of Technology, Austria. After working as
a Research Scientist with the Technical University of Munich, Germany,
he joined Philips Research as a Senior Scientist in 2006. After holding
a professorship for Security Engineering at the Technical University
of Darmstadt, he joined University of Passau in 2019, heading the
Chair of Computer Engineering. His current research interests include
embedded security, data privacy and cryptographic protocol design.

Jakub Szefer (S’08–M’13–SM’19) received B.S. with highest honors
in Electrical and Computer Engineering from University of Illinois at
Urbana-Champaign, and M.A. and Ph.D. degrees in Electrical Engineer-
ing from Princeton University where he researched secure hardware
architectures. He is currently an Associate Professor in the Electrical En-
gineering department at Yale University, where he leads the Computer
Architecture and Security Laboratory (CASLAB). His research interests
are at the intersection of computer architecture, hardware security, and
FPGA security.

https://developer.amd.com/wordpress/media/2013/12/55723_SOG_Fam_17h_Processors_3.00.pdf
https://developer.amd.com/wordpress/media/2013/12/55723_SOG_Fam_17h_Processors_3.00.pdf

	Introduction
	Background
	Timing-Based Cache Channels
	Cache Replacement Policy

	Threat Model and Assumptions
	LRU Timing-based Channels
	LRU Channel with Shared Memory
	LRU Channel without Shared Memory
	PLRU vs. LRU Replacement Policy
	Challenge: Distinguishing an L1 Hit from an L1 Miss

	Evaluation
	LRU Covert Channels in Intel Processors
	LRU Channels in Hyper-Threaded Sharing
	LRU Channels in Time-Sliced Sharing

	LRU Covert Channels in AMD Processors
	utag in AMD L1 Cache
	Evaluation of LRU Channels in AMD Processors

	Comparing the Evaluated LRU Channels

	Evaluation of LRU Channels in Transient Execution Attacks
	LRU Covert Channels in Secure Caches
	Partitioning
	Randomization
	Secure Cache Designs and Cache Replacement Covert Channels

	Conclusion
	References
	Biographies
	Wenjie Xiong
	Stefan Katzenbeisser
	Jakub Szefer

