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Evaluation of Cache Attacks on Arm Processors
and Secure Caches

Shuwen Deng, Nikolay Matyunin, Wenjie Xiong, Stefan Katzenbeisser, Jakub Szefer

Abstract Timing-based side and covert channels in processor caches continue to be a threat to modern computers. This work shows
for the rst time, a systematic, large-scale analysis of Arm devices and the detailed results of attacks the processors are vulnerable to.
Compared to x86, Arm uses different architectures, microarchitectural implementations, cache replacement policies, etc., which affects
how attacks can be launched, and how security testing for the vulnerabilities should be done. To evaluate security, this paper presents
security benchmarks speci cally developed for testing Arm processors and their caches. The benchmarks are evaluated with sensitivity
tests, which examine how sensitive the benchmarks are to having a correct con guration in the testing phase. Further, to evaluate a large
number of devices, this work leverages a novel approach of using a cloud-based Arm device testbed for architectural and security
research on timing channels and runs the benchmarks on 34 different physical devices. In parallel, there has been much interest in
secure caches to defend the various attacks. Consequently, this paper also investigates secure cache architectures using proposed
benchmarks. Especially, this paper implements and evaluates secure PL and RF caches, showing the security of PL and RF caches, but
also uncovers new weaknesses.

Index Terms Processor Caches, Side Channels, Covert Channels, Security, Arm, Secure Caches
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1 INTRODUCTION through three cloud-based device farms: the Visual Studio App

Over the last two decades, many timing-based attacks in procedsgpter [12], the Amazon AWS Device Farm [13], and the Firebase
caches have been exploited to show that it is possible to extrd@gt Lab [14]. For the three cloud-based device farms, we develop
sensitive information across the logic boundaries establishedB§ rst cloud-based cache security testing platform. We further
the software and even hardware protection mechanisms, e.g., §¢}elop and perform sensitivity tests to evaluate how incorrect
[21, [3], [4], [5], [6]. Even though a variety of secure processofache con guration information (resulting from miscon guration or
architectures have been proposed [7], the caches in the propo@dRalicious misinformation) affects the results of the benchmarks,
are still vulnerable to timing channel attacks. Further, most recen@jd Which types of tests are most affected by incorrect cache
Spectre [8] and Meltdown [9] attacks have been presented, whig® gurations. As a result, we demonstrate that many of the tests
attack commercial processors. Many of their variants depend GRd attacks), especially for address-only-based and set-or-address-
cache timing covert channels to extract information. They expldised vulnerabilities (explained in Section 7), do not require precise
speculative execution to access sensitive data and then makekipgavledge of the cache con guration. On the other hand, this
of cache covert channels to actually extract the data. In most'Bfans that attackers can attack the system even when the cache
the attacks, cache channels are thus critical to actually make @& guration is unknown  hiding or intentionally misleading an
attacks work. attacker about the cache con guration is not a useful defense that
Despite cache timing channel threats, most of the research R&§ can use.
previously focused on x86 processors. Speci cally, there is no Compared to our prior conference paper [11], the benchmarking
previous, systematic evaluation of Arm devices, despite dger effortin this paper presents new insights and a number of new solu-
billion Arm processors being sold [10]. tions we developed to effectively analyze the Arm processors. Arm
Consequently, this work lIs the research gap by analyzingses thedig.LITTLEarchitecture, which has heterogeneous caches
the security of Arm processors through new security benchma@®d CPUs; we are the rst to consider this aspect (Section 4.1)
developed for testing timing channels in Arm processor cach@gd the rst to show thdig.LITTLEarchitectures provide a larger
The benchmarks are built to evaluate 88 types of vulnerabiliti@§ack surface by systematically evaluating different cross-core and
previous|y Categorized for processor caches in our Confererﬁfgss-cpu vulnerabilities in these devices (SeCtion 62) Our work
paper [11]. To gain an understanding of the scope of the vulnifther considers the pseudo-random replacement policy for caches
abilities in Arm, this work provides the rst, large-scale studyS€d by Arm, while our prior paper [11] only considered LRU on
of Arm processors, by testing over 34 different physical devic&§6- The replacement policy affects the eviction and probing steps
used for48 out of the88 types of vulnerabilities and requires new
S. Deng, W. Xiong and J. Szefer are with the Department of ElectricdPProaches for testing.
Engineering, Yale University, New Haven, CT, 06511. Understanding the threats on Arm further requires overcoming
an'kmug"sizefer @')Scé‘:l‘é"ig-l?eng@ya'e-ed“' wenjie.xiong@aya.yale.edinymber of challenges. Cycle-accurate timings are not accessible
N. Métyunin is with Technical University of Darmstadt, Darmstadt, Hess\é/,ithout root access on Arm, while x86 provides accurate assembly
Germany. E-mail: matyunin@seceng.informatik.tu-darmstadt.de instructions to record timing (e.grdtscp ). Our benchmarks
S. Katzenbeisser is with University of Passau, Passau, Bayern, Germaiigsely resemble real attacks by, for example, not assuming root
E-mail: stefan.katzenbeisser@uni-passau.de privileges, but using code that can get reliable timing in user-level
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programs. Our cache timing attack benchmarks use automatically- PL cache and problems with the RF cache if the random- Il
composed assembly code sequences specialized for Arm. This neighborhood window is not suf ciently large.

allows for testing different implementations of the assembly for the

use in speci c attack steps, and to obtain the nal, more accuraje, Open-Source Benchmarks

vulnerability tests. We pr se the rst Arm benchmarks th
erability tes propose c S he Arm benchmarks and the code for the cloud-based framework

utilize statistical tests to differentiate distributions of timings t i b | d und i d mad ilable at
check if vulnerabilities can result in attacks, with each benchm P! De released under open-source ficense and made avaliable a

run 30:000times to better understand the timing distributions an tps://caslab.csl.yale.edu/code/arm-cache-security-benchmarks/.
minimize potential noise in the measurements.

We also found specic new insights about CPU features-3 Additional Data and Results
affecting security (Section 6.1). For example, we show that tiag arXiv version of this paper is available at https://arxiv.org/abs/
Snoop Control Unit (SCU) in Cortex A53 contains buffers tha106.14054. There will be more evaluation data results added in an
handle direct cache-to-cache transfers; consequently, vulnerabilit@®endix to the arXiv paper, which is not present in this version.
related to differentiating cross-core invalidation timing occur much
less frequently on Cortex A53 than on the other cores. Meanwhilg,
the Store Buffer (STB) implemented in Kryo 360 Gold/Silve RELATED WORK AND BACKGROUND
core pushes the write accesses into a buffer, resulting in differdiiis section provides background on prior cache timing-based
timings of accesses to clean and dirty L1 data and resulting in mé&igle-channel attacks in Arm devices, and gives an introduction to
vulnerabilities. These are examples of units that help security, e@}l three-step model used as foundation for the benchmarks and
SCU, and hurt security, e.g., STB. Only through benchmarking #fe evaluation given in this paper.
real devices can such insights be discovered.

Given the existing threats due to cache timing attacks, therel Cache Timing-Based Attacks on Arm

has already been a n_umber of works on secure caches. Hoqu_%%t of the existing work so far has focused on x86 processors.
none of the cache designs have been systematically evaluated USINIArm. we are aware of six papers [17], [18], [19], [20], [21]
benchmarks, such as ours. Consequently, havmg developed that speci cally explore security of caches. Table 1 lists
benchmarks, we further analyze secure cache designs to unders A% elated work and compares it to this paper. AutoLock [18]
if they_ can enhance security of Arm devices. This work shows tl%‘?(plores how theAutoLockfeature found in some Arm proces-
security of PL [15] a_lnd RF [16] caches, but also UNCOVETS N&Ws could be used to thwart some cache timing attacks; the
weaknesses. E.speC|aIIy, we nd a new att'ack. related to'eV|ct| ‘per also shows how attackers can overcome the feature and
based.attacks in the PL'cache bgcause it fails to consider w form timing attacks. This work explores previously proposed
buffer impacts wheq locking data in the gache. Further,. we fou ict+Time [3], Prime+Probe [3], and Evict+Reload [23] attacks.
th.at the RF cachq is secure when setting a Iarge.nelghborh %\/Iageddon 17] focuses on cross-core cache timing attacks
window (for ;electmg the rgndomly fetched cache line). A sm lsing Prime+Probe [3], Flush+Reload [24], Evict+Reload [23],
random- | nelghbor.hoor.j window, hpwever, may be bettgr for thgind Flush+Flush [25] strategies on non-rooted Arm-based devices.
perfo_rm_ance, but with high probability can leak information abOL’FruSpy [19] analyzes timing cache side-channel attacks on Arm
the victim’s cache access. TrustZone. It exploits cache contention between the normal world
and the secure world to leak secret information from TrustZone
1.1 Contributions protected code. The work only considers the Prime+Probe [3]
In summary, the contributions of this work compared to our priGitack strategy. Zhang et al. [20] give a systematic exploration of
conference paper [11] are as follows: vectors for Flush+Reload [24] attacks on Arm processors and Lee
Desi fth ity bench K sui d luati et al. [22] explore Flush+Reload [24] attacks on the Armv8 system.
esign of the r§t security benchmark suite anc eva Ualtioft e [21] makes use of Prime+Probe [3], Flush+Reload [24],
framewgrk speci cally for A"'l' to s_ystematlca_lly explore_gnd Flush+Flush [25] to attack Apple A10 Fusion SoC.
ca_chettr:mg?g-Eﬁ_s_relijEvulnﬁ_rtabltlltles n Arror|1 dewges (conshl "~ While existing works do a good job testing a few vulnerabilities,
enng thebig. architecture, pseudo-random cac ?ney fail to systematically analyze all possible types of cache timing

replacement policy, _e_tc_.) . attacks in Arm processors, as does this work.
Use of a new sensitivity testing approach to evaluate how

incorrect cache con guration information can affect the

benchmarks, and consequently which vulnerability types c& Three-Step Model for Cache Attacks

still be successful if the cache con guration is incorrecBased on the observation that all existing cache timing-based side
or unknown. and covert channel attacks have three steps, a three-step model
The rst large-scale cloud-based test platform allowing tbas been proposed previously by the authors [11]. In the three-
uncover the security characteristics of a large number stfep model, each step represents the state of the cache line after
different Arm devices. a memory-related operation is performed. First, there is an initial
The rst set of cache security benchmarks which can rustep (Stepl) that sets the cache line into a known state. Second,
on thegemb5simulator. This allows to test microarchitecturathere is a step (Step2) that modi es the state of the cache line.
features, such as write buffer and MSHR sizes, which canrfeinally, in the last step (Step3), based on the timing, the change in
be changed on real devices, and provides an understandinghaf state of the cache line is observed. Among the three steps, one
how they affect the security of the system. or more steps comprise the victim's access to an address that is
Implementation of secure cachesgam5simulation, and use protected from the attacker (denoted\ly, and timing is observed

of the benchmarks to nd a new write-based attack on tha Step3. In the model, there are three possible cases for the address
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TABLE 1: Comparison to related work exploring Arm processors and cache timing attacks.

[ [ Num. Vuln. Explored [ Num. Devices | Cloud-Based Framework [ gemb5 Testing | Secure Cache Testing|

AutoLock [18] 3 4 7 7 7
ARMageddon [17] 4 4 7 7 7
TruSpy [19] 1 1 7 7 7
Zhang et al. [20] 1 5 7 7 7
Lee et al. [22] 1 1 7 7 7
iTimed [21] 3 1 7 7 7

[ This Work [ 88 [ 34 [ 3 [ 3 [ 3

of Vi: (1) a, which represents an address known to the attacker, {8) be observable. Meanwhile, a positive result may be due to
aalias, Which refers to an address that maps to the same cachesteictures other than cache, such as prefetchers, Miss Status
asa, but is different froma, and (3) Not In Block NIB), which Handling Registers (MSHRs), load and store buffers between
refers to an address that does not map to the same cache s@rasessor and caches, or line Il buffers between cache levels.
a. If a vulnerability is effective, the attacker can infer whetheDur benchmarks focuses on L1 data caches, but we consider that
W is the same a8, agjias, OF NIB based on the access timingtiming results could be due to all the different structures. Detailed
observations. The soundness analysis of the three-step modéd@nchmarks for these structures or other levels of caches are left
our prior work [26] showed that it covers all possible timing-basefr future work.

attacks in set-associative caches. Our recent conference paper [11],
upon which this journal paper improves, presented a benchmark
suite based on the three-step model to evaluate vulnerabilitiesiln ARM SECURITY BENCHMARKS

x86 processors it did not evaluate Arm processors nor secufethis section, we present the rst set of benchmarks which is
cache designs. used to evaluate L1 cache timing-based vulnerabilities of Arm

processors. To implement the security benchmarks on Arm, as

. listed below, we developed solutions to key challenges accordingly.
2.3 Cache Vulnerability Types
We previously i.denti ed 88 yulnerability types in cach.es [1}]. T04.1 Heterogeneous CPU Architectures
better summarize them, this work categorizes them into different ] ) ] o
attack types, as shown in Table&D-Type (address-only-based),’a‘rm_processors implement iceg._LITTLEarchltef:ture W|_tHJ|g
SOType (set-only-based), an8AType (set—or—address-based)”‘”d"me processor cores hav_lng dn‘fe_rent cache sizes. T_h|s presents
categorize the vulnerabilities based on the information that tRd"€W challenge, as the architecture is fundamentally different from
attacker can gain from the timing observation. Note that our pripulti-core systems where all cores have identical cache sizes and
work [11] de ned the three types @ Type, SType, andSAType, C€ON gurations. Th|§ was not cqnsudergd in our previous work [11]
respectively; we rename the types in this paper to better conyd}ich only dealt with x86, nor in previous studies [17], [18], [19],
their meanings. Furthermore, we also categorize thetrTgpe [20] Which only tested attacks on one core type.
(internal-based) anB-Type (external-based) based on whether the Thelocal core is the one wherein is located the target cache
interference is within the victim process or between the victiffi’® that the attacker wants to learn. Meanwhile, irotecore is
process and the attacker process. These two types of Categ&iggferent core where the target cache line is nqt located, but which
are orthogonal to each other. One speci ¢ vulnerability can K5@uld affect theocal core and its caches, e.g., via cache coherence
both one ofAO-Type, SO Type, orSAType, and one of-Type or protqcol. Thus, both cross-core and c_ro_ss-CPU vulnerab|I|t|es_ are
E-Type. For example, vulnerability #43 (see Figure 3) belongs gonsidered in our work by testing the victim and attacker operations

the E-SO-Type. Here the E-Type and SO-Type are merged into® different combinations dbcal andremotecores. Especially,
combined vulnerability E-SO-Type. with different big and little processor cores, cal or remote

core can be either dbig or little core type, resulting in four
combinations.
3 THREAT MODEL AND ASSUMPTIONS Because we consider different core types, unlike prior work, and

We assume that there is a victim that has secret data whi@fhes are not even between thgandlittle cores, we de ne how
the attacker tries to extract through timing of memory-relatdd correctly specify the cache con gurations for the benchmarks

operations. The victim performs some secret-dependent mem@ffn running the tests:
accesses\() and the goal for the attacker is to determine a If the rst two steps of the three-step model describing a
particular memory address (or cache index) accessed by the victim. particular vulnerability both occur in the remote core, use the
The attacker is assumed to have some additional information, e.g., remote core’s cache con guration.
he or she knows the algorithm used by the victim, to correlate the In all other cases, use the local core’s cache con guration.
memory address or index to values of secret data. In the three-step model, when testing for vulnerabilities, main
In addition to regular reads, writes, and ush operations, wiaterference (leading to potential timing differences) occurs within
assume that the attacker can make use of cache coherence protbeolrst two steps, while the nal, third step is used for the timing
to invalidate other core’s data, by triggering read or write operation®servation used to determine if there is possible attack or not.
on theremotecore as one of the steps of the that attack. Therefore, the above method of choosing the cache con guration
A negative result of a benchmark means there is likely focuses on where the main interference is occurring in the three
such timing channel in the cache or the channel is too noisieps.
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TABLE 2: Attack vulnerability types, following [11].

Attack Type | Description |

In vulnerabilities of this type, the attacker can observe that the timing for victim's avgessi is different from the
timing for victim’s accesses, = agjias Or Vu = NIB, so the attacker can infer if the addres¥/pfs equal to a known
address or not. Vulnerabilities of this type usually differentiate timing between L1 cache hit and DRAM access, which is

AO-Type (address

only-based) usually large and distinguishable. Sample vulnerabilities of this type are Flush+Reload (vulnerability benchmarks| #5-#8
shown in Figure 3).
In vulnerabilities of this type, the attacker can observe that the timing for victim’s a®gess or ag)ias is different from
SO-Type the timing for victim's acces¥, = NIB, or the attacker can observe that the timing for victim’s actgss agjias iS

different from the timing for victim’s access¥&§ = NIB orV, = a. In this case, the attacker can infer the cache set of|the
address o¥/,. Vulnerabilities of this type usually differentiate timing between L1 cache hit and L2 cache hit, which fis
usually small. Sample vulnerabilities of this type are Evict+Time (vulnerability benchmark #41 shown in Figure 3)|
In vulnerabilities of this type, the attacker can observe different timing for victim’s acc¥gses, Vi, = agjias, and

Vu = NIB. For example, in Prime+Probe (vulnerability #44), ifStepl, attacker reads data in addisthen inStep2, the
victim writes toV,,; and then inStep3, the attacker tries to read data in addaesta can be read from the write buffen
(due to the write in the second stepVf = a) instead of being read directly from the L1 cachejf= NIB orV, = agjias)
and attacker can observe the timing difference of the two cases.

(set-only-based)

SA-Type (set-or-
address-based)

I-Type Vulnerabilities of this type only involve the victim’s behavior 8tep2and Step3of the three-step model. One example pf
(internal-based) this attack is the Bernstein’s Attack (vulnerabilities #33-#36).
E-Type Vulnerabilities of this type are the ones where there is at least one access by the attacker in the second or third step, e.g.,

(external-based) Flush+Reload (vulnerabilities #5-#8).

4.2 Random Replacement Policy in Arm 38
Modern Arm cores use the random replacement policy in the L1 V;Terab;g'eé:
cache [17]. This policy is signi cantly different from the Least Each VU,
Recently Used (LRU) replacement policy, and poses fundamental Three Steps:
challenges for eviction and probing stepstiout of 88 vulnera- Stepl!  Step2!_Step)|
bility types. e 64e a2
In particular, this makes the set-only-based vulnerabilit®s ( eq”i”ginch;;“rﬁ = Instr. [Execute on loca
Type) harder to implement. The reason is that occupying a cache Or remote cores

set in caches using a random replacement policy is not as easy as . _ . o
in caches using LRU or similar policies, where accessing a certéjlg- 1b R:jelat_lonsulp of the ?8 VU'Rerib'“t'es‘ eachdolf VTVEICh IS
number of ways (denoted aache_associativity_num ) of escribed using three steps from the three-step model. The steps

. . . - . re further translated into sets of assembly instructions for the
cache lines in a cache set is able to evict all data in the set. In CacE@ﬁchmarks, and the code can be run on eithebig or small cores
using the random replacement policy, tbache set thrashing in the tested systems.
problem[27], referring to self-evictions within the eviction set,
which affects accessing all the ways of the cache set in eviction-
based vulnerabilities. To avoid this problem, we use a smaller ggé., hit or miss), t-test is sensitive to the mean of distributions, and
size to avoid set thrashing in our benchmarks. We set the evictigius t in this case.
set size tocache_associativity_num-1 and then repeat  The statistical tests are used to differentiate timings of mem-
each step’s memory operations 10 times. Using this technique, ¥ related operations. However, cycle-accurate timings are not
are able to reduce set thrashing signi cantly given the randogiecessible without root access on Arm, while x86 provides accurate
replacement policy. However, in this case, exactly one way will ngsembly instructions to record timing (ergitsc ). Consequently,
be occupied after the repeated memory operations. This will cayge developed code that can get reliable timing measurements in

victim’s access in one out afache_associativity_num user-level applications using tistock_gettime() system call.
ways to be not detectable, but this is acceptable as vulnerabilitige experimented with other different performance counters and
can still be detected as we show in our evaluation. thread timers, but these proved not to be applicable or accurate

enough for our benchmarks.

When performing timing measurements, in our experience,
Arm devices further exhibit a lot of system noise when running
For benchmarking Arm cache timing-based vulnerabilities, thike tests on real devices in the cloud-based device farms, possibly
work is the rst to utilize statistical tests Welch's t-test [28] due to OS activity, or other background services. Therefore, we
to differentiate distributions of timings to check if vulnerabilitiesset the benchmarks to run more tH000 repetitions for each
can result in attacks. Thevalueis the threshold used to judgebenchmark for each device to average out the noise. Further, when
the effectiveness of the vulnerabilities. Based on our evaluatiomnning each step operated by either the victim or the attacker, we
we selec:00049for the pvaluein our tests, improved from our isolate the core to avoid in uence of other application processes
previous work on x86 [11], and use this to determine if differerftom user-level applications.
timing distributions are distinguishable. We chose Welch's t-test
since it is generally used in attack evaluations [29], [30], [31].
There is also Kolmogorov-Smirnov’s two-sample test [32] that cal
be used to differentiate distributions. However, in the case of cackellowing the above features, we developed benchmarks for all 88
timing side channel, there is only two possible timing observatiorsinerabilities. As shown in Figure 1, there are three steps for each

4.3 Measuring and Differentiating Timing

4 Summary of Benchmark Structure
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Algorithm 1 Read/Write Access Code Sequence

1: asm__volatile__ (
2: DSB SY nn
3: ISB nn

4: LDR/STR %0, [%1] nn
5. DSB SY nn
6
7
8

: ISB nn
: © =r (destination)
2 oor (arrayli]);

Algorithm 2 Flush Code Sequence

1: asm__volatile__( Fig. 2: Overview of the evaluation framework using the cloud-

2 DSB ISH nn based testing platforms for Android mobile devices.

3: ISB nn

4: DC CIVAC, %0 nn

5. DSB ISH nn executables are inserted into the application package (APK) of a
6: ISBnn custom Android application we developed. Figure 2 illustrates the
7o (array(i])); resulting test setup, which will be open-sourced.

vulnerability, and each step is realized by a sequence of instructio%g. Extracting Cache Con gurations

The instruction sequences from each step can execute on local@puild the benchmark, cache and CPU con guration information

remote cores. When performing the steps, there are two possileé needed. The con guration can be automatically identi ed

cases for the victim's or attacker's memory related operation: reBd reading the corresponding system information located at

or write access for a memory access operation; and ush or write/Bys/devices/system/cpu/gpgwherex stands for the CPU core

the remote core for an invalidation-related operation. Thus, for eagdmber) on each tested device. However, depending on the SELinux

vulnerability, there are in total & = 8 types considering different policies applied by the vendor and Android version, access to these

cases of each step’s operation. Further, if a vulnerability beirlgs is restricted on some devices [33]. For these device models, we

tested has both the victim and the attacker running on one cargnually identify and verify their cache con gurations from public

these two parties can run either time-slicing or multi-threadingsources. Finally, we store both automatically- and manually-

Consequently, the 8 cases are doubled to account for both tig¥racted cache con guration parameters in a single database, and

slicing and multi-threading execution. Thus, for each vulnerabiliijiclude this database into the APK, so that it can be used when

being tested, there are correspondingly 8-16 cases dependingdutning the benchmarks.

the speci ¢ vulnerability. Each vulnerability is realized as a single

benchmark program. In total there are 1094 benchmarks for all §& packaging Security Benchmarks

typ?rshgflvgsl)r:letr)aetr):::l::s:érks are automatically generated. The baSstl%mng from Androiq 9, the qperating sygtem does not allow to exe-
. cute les from an arbitrary writeable location on the lesystem [34].

code sequences, e.g., Alg. 1 and 2, are composed into progra}nms%éad onlv native librarv dependenci ithi Android -

with one program for each benchmark. Additional instructions are”,.” "’ Y y dependencies within an Android appl

cation can be executed. Consequently, we pre-compile and place

used in the benchmarks to pin execution of the code to dlffere[ﬁ%e benchmark les in the resource subfolder of the APK package

processor cores when testing different con gurations. The resulting . . L ) . . i
1094 programs are compiled and executed on the devices unV(\JIﬁé'Ch contains native libraries (src/main/resources/lib/arm64-v8a),

test as detailed in the next section. as [he OS grants read-and-execute permissions for all binary les
in this subfolder.

5 CLOUD-BASED FRAMEWORK 5.4 Running Benchmarks

In this section, we report on the rst cloud-based platform fqr . . . -
. . . e give an overview of our evaluation framework in Figure 2. Once
testing cache channels on Arm devices. Our prior work only

. . ¢ cache con guration is extracted (step 1), the corresponding
considered x86 [11] with several processors manually set to t Se hchmarks are precompiled (step 2) and packaged (step 3), we
and work by others only manually tested only few Arm devices [1% P P P P 9 P ),

[18], [19], [20] pload the application packagt_a to_ the cloud testing platforms

' ' ' (step 4). The implemented application does not require any user
] _ interaction. Instead, it contains an instrumented unit test which
5.1 Android Device Testbeds automates the execution of benchmarks. The tests can be run
We build our evaluation framework using testing platforms fasimultaneously on multiple devices (step 5). The process of
mobile devices, namely the Visual Studio App Center [12], theploading and running the application is automated using the
Amazon AWS Device Farm [13], and the Firebase Test Lab [14PIs provided by the cloud platform provider.
We developed a framework which allows us to run custom binary On each device, the application rst identi es the device model
benchmarks and retrieve the results in an automated manner. by accessing thBuild.MODEL property. This information is used

In these cloud deployments, it is not possible to execute look up the corresponding cache con guration parameters in
benchmark les through a remote shell and download the resuttse database. Afterwards, the application executes the precompiled
Instead, the entire functionality must be implemented as a udeenchmarks one by one, using the corresponding parameters. In
level native Android application. Consequently, the benchmaodkder to automatically retrieve the results of benchmarks from
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Core Name ,Sr‘;:‘;’ "é ;a;he SoC Name \N/‘L‘J'r'n allows STB to make it more effective. From the evaluation results,
Kryo 58919 | 2.42.2.841] 64 KB 16-wayl Qualcomm % Kryo 360 Gold/Silver cores are more susceptible to vulnerabilities
Gold/ Silver 18 32 KB 4-way Snapdragon 865 such as #33, compared to Cor.tex A53 core, WhIC.h con rms the
Kryo 38520 2.5-2.8/ | 64 KB 16-way/ Qualcomm 87 fact that the STB is presented in Kryo 360 Gold/Silver cores but
Gold/ Silver | 1.6-1.7 32 KB 4-way Snapdragon 845 not in Cortex A53 core, based on reference manuals.
Kryo 36039 2.0-2.2/ | 64 KB 16-way/ Qualcomm 87
Gold/ Silver 1.7 32 KB 4-way | Snapdragon 670/ 71( .

Cortex 1922 | 32KB4way | NvidaTegaxy | 81 | ©-1.2 Snoop Control Unit

A5318 Qualcomm The Snoop Control Unit (SCU) contains buffers that can handle

Snapdragon 625/ 63( direct cache-to-cache transfers between cores without having to

Kryo 28059 2.35-2.5/ | 64 KB 16-way/ Qualcomm 79 d it data to the | he b intaini t of
Gold/ Siver | 1819 | 32KB4-way Snapdragon 835 read or write any data to the lower cache by maintaining a set o
Kryo 260°%9 1822/ | 64KB 16-way/ Qualcomm 76 duplicate tags that permit each coherent data request to be checked
Gold/ Silver | 1.6-1.8 | 32KB4-way | Snapdragon 636/ 66( against the contents of the other caches in the cluster. With the SCU,

when comparing the timing between remote writes to invalidate
TABLE 3: CPUs and SoC types found in the evaluated devices. local L1 data and remote writes to invalidate local L2 data, the SCU
The Core Name(with corresponding number used in Figure 3), will accelerate the coherence operations. This makes the different

Core Freq., andL1 Cache Con g.columns show the processor core cache coherence in uence non-differentiable in timing on the cores
names, their frequency ranges, and typical cache con gurations. that have the SCU.

The Vul. Num. column shows the average number (out of 88) of

vulnerabilities that show up during tests; smaller value is better. For example| ~ SOType vulnerabilities #78-#79 mainly use

timing differences between ushing of L1 data and ushing of
L2 data, or between remote writes to invalidate local L1 data and

multiple devices, we implement an HTTP server which can recei{@mote writes to invalidate local L2 data. From the evaluation
POST requests from Android applications. Each request contafgults, vulnerabilities #78-#79 occur much less frequently on Kryo
the results in textual or binary format. As the execution time @80 Gold/Silver cores and Cortex A53 cores compared to Kryo
the whole set of benchmarks on a device can take several ho@$$,and Kryo 385 Gold/Silver cores. This supports the observation
the application periodically sends the intermediate results to tHit the Kryo 280 Gold/Silver cores and Cortex A53 cores have
server. In this way, we can precisely monitor the current state &Snoop Control Unit (SCU), which helps prevent these types of
the execution on each device. Finally, the results are collected frijgnerabilities, while Kryo 360 and Kryo 385 Gold/Silver cores do
the server (step 6) for further analysis (step 7). not have it.

6.1.3 Transient Memory Region

6 EVALUATION Transient Memory Region allows for setting a memory region as

We tested a total of 34 different devices. The correspondifgnsient. Data from this region, when brought into L1 cache, will

processor core types are shown in Table 3 note that some deviggsmarked as transient. As result, during eviction, if this cache line

use the same processor or SoC con guration so there are Igsglean, it will be marked as invalid instead of being allocated in

than 34 processors in Table 3. The results of the tests are sh@w# |2 cache.

in Figure 3, which shows the vulnerabilities that can possibly be Although this may help avoid polluting the cache with unnec-

exploited on the device, based on suf cient timing differences ssary data, internal and exterSD Type vulnerabilities #33-#44

the memory operations corresponding to each three-step attggt we are able to differentiate between L1 and L2 cache hits can

Figure 3 consists B8 columns, each corresponding to one of th@ow differentiate between an L1 cache hit and a data access from

three-step vulnerabilities. The vulnerabilities are colored based DPRAM. This makes this type of vulnerability more effective on

the different types. cores that support this feature, which are Kryo 360/385 Gold/Silver
In addition to smartphones, we further tested other Argobres, compared to other cores, such as Cortex A53.

cores, leveraging Amazon EC2 [35] with an X-Gene 2 core and

Chameleon cloud [36] W|th a Neoverse core to test A_rm_ processqrs, Heterogeneous Caches’ Impact on Vulnerabilities

on servers. Arm server chip results generally have similar patterns

as the mobile devices. Therefore, in this work, we show only resulé also evaluated how Armisig.LITTLE architecture impacts the
for the mobile devices from the cloud-based testbeds. attacks, where we s&ical andremotecore to be eithebig or little

processor core. In Figure 4, we present evaluation results for one
example device, Google Pixel 2. A similar pattern was observed
for all other tested devices.

Below we list some of the observations gained from our evaluation. SOType andSAType vulnerabilities which differentiate L1
Only through the extensive benchmarking of caches on a large a8t L2 cache hit timings (#41-#44) are mostly vulnerable to the

6.1 Microarchitectures’ Impacts on the Vulnerabilities

of devices, can such insights be discovered. case when thiocal core uses thbig core. This is mainly because
the bigger cache (e.g., 64K 16-way vs. 32K 4-way) of kg
6.1.1 Store Buffer core results in larger timing differences for the vulnerabilities that

The STB (STore Buffer) is used during write accesses to haldquire priming each cache set, reducing the proportion of system
store operations. This structure makes clean and dirty L1 dazise at the same tim80O Type andSAType vulnerabilities which
access timing easier to be distinguished. For exanipleSAType differentiate writing to remote dirty L1 and L2 cache data (#73-#76)
vulnerability #33 differentiates timing between reads of dirty Lare successful whepcal andremotecore both use théttle core.
data and reads of clean L1 data, or between writes of dirty L1 dddérty data are usually not stored in the cache line but stored in other
and writes of clean L1 data, which is a typical vulnerability thdbcations such as write buffer. Write buffer is possibly processed
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Fig. 3: Evaluation of the 88 types of vulnerabilities on different Arm devices® A solid dot means the corresponding processor is
found to be vulnerable to the vulnerability type. The 1-SO (colored by dark red) and E-SO (colored by light red) are internal-
interference set-only-based and external-interference set-only-based vulnerabilities, respectively. TheAD (colored by dark red) and

E -AO (colored by light red) are internal-interference address-only-based and external-interference address-only-based vulnerabilities,
respectively. The I-SA (colored by dark red) and E -SA (colored by light red) are internal-interference set-or-address-based and
external-interference set-or-address-based vulnerabilities, respectively. The devices are grouped according to their core types. Each
device’s core is labeled by a number shown after the device name, with corresponding cores shown in Table 3. The order is from the
most vulnerable core to least vulnerable among the cores. The last line shogemb5 testing results of defaultgem5, to show thatgem5
simulation gives similar results to real devices.

a. We further tested other Arm cores, including an X-Gene 2 core and a Neoverse core to test Arm processors on servers. The results generally have similar
patterns as the mobile devices so we show only results for the mobile devices from the cloud-based testbeds.
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Fig. 4: Evaluation of the 88 types of vulnerabilities on different cores of Google Pixel 2. bigbig means running both local and
remote core on big cores, big little means running local core on the big core, remote core on the little core. Same naming is applied
to little _big and little _little . Dot coloring is the same as in Figure 3.

in an out-of-order way. Therefore, fewer number of writes due to
fewer number of ways ilittle core are more likely to have relatively
differentiable timing. SO Type andSAType vulnerabilities which
differentiate writing remote L1 and remote L2 cache data (#77-#88)
are mostly successful whdocal andremotecores use different
core types (bigr little). This is due to the fact thdtig andlittle
cores are often in different quad-core clusters in the SoC, where
coherence time across quad-core cluster results in higher timing
differences when accessing data located in the remote cluster.

(a) Sample histogram ofAO-Type vulnerability

6.3 Core Frequency’s Impact on Vulnerabilities
(b) Sample histogram of SO-Type vulnerability
) _ . o High clock frequency tends to make long memory operations more
Fig. 5. Samples of different types of vulnerabilities’ timing gifferentiable, and will make timing attacks easier to exploit the

histograms for different candidate values for\,. difference. From the evaluation results, we found that devices with
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higher clock frequency will likely have more effective timing6.6 Estimating the Real Attack Dif culty

channel vulnerabilities. . To estimate the real attack dif culty, we can leverage the distance
This is especially visible ir5O-Type vulnerabilities, most of 4. jikelihood (using p-value) of different timing measurement
which differentiate between L1 and L2 cache hits, which have gsiriputions. As is shown in Figure 5 in Section 64)-Type or
relatively small cycle difference, e.g., less than 10 cycles. Howevgia 1ype vulnerabilities are easier to exploit since they depend on
if the core’s frequency increases, the timing difference is algpying differences of L1 cache hits vs. DRAM accesses; meanwhile
increased, which makes cycle distributions more differentiable a@‘bType vulnerabilities are more dif cult to exploit, since they
an attack possibly easier to execute. depend on the timing differences between L1 and L2 cache hits,
. . which are much smaller compared to the former.
6.4 Inuence of Write Buffer and MSHR Sizes Further, our benchmarks show the overall attack surface. If a
We design our benchmarks so they can also be used in simulatigBtivated attacker only needs to use one attack to derive sensitive
We use the Arnbig.LITTLE con guration to run the benchmarks jnformation, he or she will likely start witAO-Type orSAType
in Full System (FS) mode or Syscall Emulation (SE) mod@inerabilities. However, the bigger the attack surface is, the more
on gemsS. The simulator is con gured to use the Exynos [37hptions he or she has, and if there are defenses@Type orSA
con guration to model real Android devices and uses the O3CPHJ/pe types of vulnerabilities, attackers could still leverSg@Type
model with a S-stage pipeline. The last line of Figure 3 showginerabilities. The goal of this work is to show the whole attack
the benchmark results when using the default con guration on tigface on Arm devices, including vulnerabilities and attack types
gems simulator. Overall, we nd that baseligemSresults have that are not previously presented in the literature. Which attack
good correspondence with real CPUs in terms of the cache timiggy|d be used in practice depends on the attacker’s motivation and

vulnerabilities. _ _ _ resources, but thanks to this work, the overall attack surface is
Next, we evaluate different con gurations of the Miss Statugetier understood.

Holding Register (MSHR) and the write buffer (WB), both tested on
gemb. Results are shown in Figure 6: A larger MSHR size leads to )
more vulnerabilities to be observed. MSHR is a hardware structffe  Results Compared with Other Work
for tracking outstanding misses. Larger MSHR sizes lead to mdrer our benchmark results shown in Figure 3, strategies exploited
outstanding misses that can be handled, which may stabilize Bheexisting Arm attacks Evict+ Time (#41-#42 in the Figure),
memory access timings and give more consistent results. Prime+Probe (#43-#44 in the Figure), Flush+Relogib-#8 in the
Changing the size of WB does not have an explicit in uencgigure), and Flush+Flush (#47-#50 in the Figure) all indeed show
on the vulnerability results. WB stores the write request, whidkp as effective vulnerabilities for 30 out of the 34 mobile devices
frees the cache to service read requests while the write is takiegted. This con rms that our benchmarks can cover existing work.
place. It is especially useful for very slow main memory, whemjote that the 5 types of vulnerabilities explored by prior work,
subsequent reads are able to proceed without waiting. We @sg., the Evict+ Time, etc., can be realized using more than one
the SimpleMemory option ofgem5, which is relatively simple vulnerability from the 88 types, thus prior work covers 12 types,
compared with the implementation of real devices and may rlegaving 76 types not considered, for the total of 88 vulnerabilities
have the same slow memory timing in this case. As the result shott@t are possible.
bigger WB may improve performance and can be added without

degrading security, while bigger MSHR may improve performanggg  summary of Vulnerability Trends

but at some cost to security. . -
y To summarize, the patterns of the vulnerabilities uncovered thanks

to the systematic benchmarking on 34 devices are:

Microarchitectural features: performance increasing features
such as the store buffer can degrade security, while features
such as the snoop control unit can be helpful, indicating that
security and performance are not always at odds with each
other, and some features can help both.

Heterogeneous cache size: larger coherence timing for ac-
cesses involving cores in different clusters, compared to within
same cluster, may lead to more vulnerabilities being effective.
Core frequency: larger core frequency generally correlates
with more vulnerabilities.

WB and MSHR sizes: WB size does not impact security, while
larger MSHR may allow more vulnerabilities to be effective.
Vulnerability type effectiveness: relations of number of
effective vulnerabilities showed ar&O-Type > SAType

> SOType; meanwhile|-Type andE-Type vulnerabilities

are similarly effective on the tested devices.

Tested device results: relations of number of effective vulner-

6.5 Patterns in Vulnerability Types

It can clearly be observed from the colored dots in Figure 3Alat
Type vulnerabilities are observable in almost all devices and in the
simulation, because these types of vulnerabilities, e.g., differentiate
L1 cache hits and DRAM hits, which have large timing differences.
Such timing distribution results can be observed in Figure 5a.
SAType vulnerabilities also occur relatively often, but are much
more unstable compared withO-Type vulnerabilities, which
shows that different devices have large but quite variable timing
differences among different memory operations, e.g., between
clean abd dirty L1 data invalidation or between local access
of remote clean and dirty L1 dat&O Type vulnerabilities are
least effective. This is because the timing differences between the
observations such as L1 and L2 cache hits are so small that they
are sometimes indistinguishable due to system noise. For example,
timing distribution evaluation result shown in Figure 5b have small
timing difference.

I-Type andE-Type vulnerabilities do not show explicit eval- >t
uation differences. In this case, another take-away message is 2Pilities showed are: Kryo 585 Kryo 385  Kryo 360>
that protecting only the external-interference vulnerabilities is COre A53> Kryo 280> Kryo 260.
not enough at all. Internal-interference vulnerabilities can be a5 our Flush+Reload benchmarks test for a stronger variant of the
effective as the external-interference vulnerabilities for attacks. Evict+Reload vulnerability shown in [17], [18].
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(a) Benchmark gem5 simulation results for different MSHR sizes.

(b) Benchmark gem5 simulation results for different write buffer sizes.

Fig. 6: Evaluation of 88 types of vulnerabilities on different number of write buffer (WB) and MSHR sizes. A solid dot means the
corresponding processor is found to be vulnerable to the vulnerability type. The SO (colored red) and AO (colored green) are
set-only-based and address-only-based vulnerabilities, respectively. SA (colored blue) are the ones that are set-or-address-based. The
E (colored in lighter color) and | (colored in darker color) are internal- and external-interference vulnerabilities, respectively.

7 SENSITIVITY TESTING OF BENCHMARKS benchmark is correct, if the secret maps to the same cache set as

To understand how the benchmarks are affected by possible mis@ne known address that was accestedyill be observed, while
gurations, we performed a number of sensitivity tests. In additiof} they are not mapped,; will be observed. In this case, timing
to evaluating how the benchmarks behave, the sensitivity stugfgservations for mapped and unmapped caseass@ 12 and
allows us to understand how knowledge (or lack of knowledg@§S@ t1.

of the correct cache con guration affects the attacker’s ability

attack the system. T'9.1.1 Cache Associativity

Associativity usually in uences the number of accesses that map
to a target cache set. We distinguish two cases:

7.1 Analysis of Sensitivity Testing .
) o ass@ < assq: In this case, due to smaller number of ways
The most important cache parameters for sensitivity tests are: gccessed in each step, fewer evictions will occur (situation

associativity line size, andotal cache size. We ussssgq, lineg, ®). If a data address maps to the same set as the secret
andtoty to respectively denote the value of the parameters of the data, timing observation will be t+(ass@ n) tu
actual target device. Meanwhilassg, line,, andtot, denote the instead ofassq  t,». Here,0< n< assg. Due to the random

cache parameters used by the benchmarks. The parameters USEdrepIacement policy, only (not all ass@) cache lines will

in the tests are varied and are different from the actual, correct pe evicted. This will make the timing less distinguishable
parameters to test the sensitivity of the results to miscon guration. compared with the unmapped case, in which timing should be
As we show, setting the con guration incorrectly in the benchmarks equal toassq@  tis.

changes the mapping of the addresses used by the benchmarks, andassca, > ass@: Whentot, = toty, this setting will lead to

in uences the number of vulnerabilities judged to be effective ona  5ccesses that should map to one cache set actually mapping to

device. o . . several cache sets (situati@). This will result in measuring
We implement the sensitivity tests in the following way. Alarge  more thanrep of cache sets for one step, which possibly
array is maintained to locate three different candidates of the secret jytroduces more noise.

value @, agjias, Or NIB). We consider two addresses that only differ
in the lowlogy(liney) bits to belong to the same cache line, an@.1.2 Cache Line Size
two addresses that are a distanc€oftot,=assg (C is a integer) |ine size generally in uences which cache set is chosen within an

apart to map to the same cache set. For each step, we @Is8S attack (benchmark) step. Again, we distinguish two cases:
number of addresses for each cache set to occupy or cause collision liney, < lineg: In this setting, the accesses that should map

in the whole cache set. To increase the sign_al to noise ratio in our 4 yifferent cache sets in the benchmark actually map to the
measurementsep cache sets are accessed in each of the steps of ¢, 0 cache set (situatié®). This will lead to the result that

a benchmark (m_our setting th|s_number s 8). ) the benchmark measures less thap cache sets effectively,
When_assg_, “neb’ or tot, deviates fromassa, lineg, or tol, causing a reduced signal to noise ratio. For example, when

the following situations could happe(®) the number of addresses choosingline, = lineg=2, then two addresses that differ in

being accessed in one cache set is less #sai, so interferences line, will map to the same cache line instead of different

that should happen are not observ@lithe addresses that should  jines in difference sets. This results in having more L1 cache
map to a target cache set actually map to several cache sets, andiis from assq t»t0assg=2 o+ ass@=2 t.1, which

contention in the target cache set might not happen or will become -1 o< it less distinguishable compared with unmapped case
contention in several sets; af@®) the addresses that should map to where timing isassq  t.1.

different cache sets actually map to the same cache set, introducing liney, > lineg: In this setting, since we always access the rst
noise to the channel. We show later that the total number of attacks g4 pits in a cache line, the addresses that should map to the
judged to be effective is less when an incorrect con guration is used

however, there are still attacks that are effectively independent of
the con guration setting.

In the following, we denote one L1 cache hit timing tag

and one L2 cache hit timing &s. When the con guration of the 2. In the example of Section 7.2, this number is equal to 12848.

same sets in the benchmark (with the incorrect con guration)
still map to the same set (if the correct con guration was used).
However, wherline, is larger or equal ta@ache setre?
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times ofliney, the address foNIB in the benchmark will
wrap back and map to the same cache seh asd agjias
(situation(3)), causing a false negative result.

7.1.3 Total Cache Size

Cache size mainly in uences the data addresses accessed in each
step of an attack (benchmark).

tot, < toty: In this setting, the accesses that should map to one

cache set in the benchmark actually map to several cache sets

situation becauséot.-=assq < toty=assa. This further Fi9- 7: Timing histogram of a vulnerability case when changing
( ). fo N la @ e cache size. The error bar shows the range of timing distri-

causes the number of data.accesses n gach set to e fitidn and the dot shows the average timing cycles. Succeed
than the number of ways being accessed in the target cagiifier the con guration means the vulnerability is effective while
set, i.e.assq (situation(D). Thus, for the mapped case, it iSFail means not. Three values under Succeed or Fail are
equivalent to observing t_, timing instead ofassgq t > the pvaluefor each two timing distributions out of three. If it is
timing for this cache set, whefé< n< tot,=toty ass@ due smaller than 0.00049, we judge the two timing distributions to be
to the random replacement policy. This could decrease tfifferentiable, otherwise not.

signal to noise ratio. . P
TABLE 4: Con guration test results for cache associativity, line

. 0— 0 i

FOtb > tol: Let(_: = tok=0l. I_n most case<."will be a,\? size and cache size of Google Pixel 2. Black bold nhumbers show
integer, assuming a cache size (botl, andtoly) of 2% e |argest effective number of vulnerabilities for each category.
bytes. In this setting, the cache addresses that are different\iidie column shows the correct con guration values for this
tot,=assq = C° totg=assq in the benchmark, will still map device, other columns show smaller (left side) and bigger (left
to a different cache set in target devicBurther, ifC%is too  side) values that were tested for each parameter of the cache.

large, this will cause unexpected system noise if prefetching,

copy-on-write, etc., functions are enabled in the device. [ Cong. | [ Effective Vul. Num. for Diff. Cong. |
Assoc- ass@ Value 1 2 4 8 16
7.1.4 Analysis by Vulnerabilities Types iativity | o VUl Num. | 75 | 78 82 LCH L

SO-Type Num. 17 17 20 13 12
For AO-Type andSAType Vulnerabilities, the timing observation | |, .. linep Value 16 32 64 128 | 256

forV,, = ais different fromVy = agiias 0rVy = NIB. In these types of | size ng"TV“'é Nﬂﬁ IZ Ig fg ig I?
vulnerabilities, the attack does not rely on the interference between totby\'[}alue — 8195 16384 37768 65536 98304
different cache lines in a cache set. How the addresses map to thgi";‘;he Total Vul. Num. | 79 77 82 79 77
cache set does not affect the result, and the cache con gurations SO-Type Num. | 16 15 20 16 14
will not in uence the effectiveness of the vulnerabilities. Also,

these types usually rely on relatively larger timing differences, so

the signal to noise ratio is large.

SOType vulnerabilities usually derive thg information by

observing evictions of the originally accessed data in a pridf t€sted a wide range of devices and found similar trends among
attack step. FOSOType vulnerabilities, we need to access afi’® results. Here we give results for one example phone, Google

theassg ways to prime the whole cache set in order to observe théX€l 2, 10 show how the sensitivity test is implemented and
timing difference, therefore§O Type vulnerabilities will actually evaluated.

be in uenced by the setting of parameters includasgociativity, _1he L1 cache con guration of small core of Google Pixel
line size. andotal cache size. 2 is 32KB, 4-way set-associative with line size to be 64B. We

test this con guration by changing one of the three parameters
(associativity, line size or cache size), while keeping the other two
the same to avoid interference between different parameters. The

Based on the above, we make three observations about dferent con guration values we choose in our evaluation are listed
con gurations’ impact on the benchmarks and the correspondifigTaple 4.

attacks and how easy they are to perform:

7.2 Evaluation of Sensitivity Testing

7.1.5 Summary

In the example test case shown in Figure 7, timing distribution
1. Attackers can still attack the system even when they adéferences between three candidates are larger for the correct con-
uncertain about the cache con guration. This is especially truguration, compared to the wrong con gurations. The vulnerability
for AO-Type orSAType attacks since they are not impacteé effective under the correct con guration while it fails for the

much by the (mis) con guration. incorrect con guration.
2. Most of the differences are due 80 Type attacks, which do As shown in Table 4, we found that differences between the
not work well when incorrect setting is selected. number of correct con guration and incorrect con guration for all

3. Setting correct con gurations causes more vulnerabilities tffective vulnerabilities an&O Type only effective vulnerabilities
be judged effective for a device. Incorrect settings can cause roughly the same. For example, when changing the associativity,
an underestimation of the total number of vulnerabilities. difference of all effective vulnerability numbers between 4 (82)
and 8 (75) is 7, which is the same as differenceS@ Type

3. WhenCPis not an integer, e.gG%= 1.5, then the address to set mappin ;
will be different than the case wheat, = toty, which is equivalent to having *humbers (between 4 (20) and 8 (13)). This also shows that

addresses mapped to other cache set, resulting in fewer number of addre4$8§19 con gurations Wi”_ still |ea(_j toAO-Type a_nd S_AType
mapped to the target cache set (situafib). vulnerabilities to be effective even if the con guration is wrong.
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Fig. 9: Evaluation results of security benchmarks on PL cache, RF
cache, and a normal set-associative cache, for comparison. Solid
dots, half solid dots or empty dot mean all of the, part of the, or

) ) no vulnerability cases are vulnerable to the cache, respectively.
As shown in Table 4 as well, attacks are most effective under the

correct con guration. When setting the wrong value for either one
of the three cache con gurations, the number of vulnerabilities thgt>  Security Evaluation of the PL Cache

are effective decreases. On the other hand, this shows that hiding )
the cache architecture information or giving wrong con guration§'duré 9 shows the results of evaluation of the PL cache (and the
on-purpose is not a reliable defense. RF cache, as well as the baseline set-associative cache). For the PL

cache AO-Type vulnerabilities such as Flush+ Reload fail, because
the sensitive data is locked in the cache, and cannot be evicted by
the benchmark steps that simulate the attacker. Without locking, a
normal cache is vulnerable to these attacks, as shown in Figure 9.
As shown in the previous sections, current commercial Arm For SOType or SAType vulnerabilities such as Bernstein’s
architectures are indeed vulnerable to most of the attack typstsack, theoretically the PL cache should prevent all of them as
A potential defense are secure caches. To help understandéfl. However, from the experimental results we nd that when the
existing secure cache designs could help defend the attacks in Asteps are implemented using write (store), some of the attacks will
processors, we implemented and evaluated the Partition-Locksil be successful in the PL cache. This is mainly due to the write
(PL) [15] and Random Fill (RF) [16] caches together with oubuffer structure, which is not considered in original design of the
benchmarks in thgem5 simulator. We show that they can defendPL cache [15]. These attack strategies all require con icts of known
many of the attacks, but we also uncover new vulnerabilities &md unknown secret cache lines. Although being locked before the
the secure cache designs. In this section, we focus on the secuitsick runs, the secret cache lines may be further brought into the
analysis of the secure cache designs. Performance evaluationsris& buffer due to a write access and then leave the cache structure
PL cache and RF cache can be found in [15] and [16], whet® bypass the locking features, making the attack successful.
reasonable overhead is shown. On the other hand, without the in uence of the write buffer, we
nd that the attack cases that have all three steps to be non-write
) ] accesses to be always prevented on PL cache, as expected. The
8.1 PL Cache Design and Implementation vulnerabilities leveraging the cache coherence states and multiple

Cache replacement is considered as the root cause of many c&&ies were not considered in original PL cache design, but can be
side-channel attacks, and partitioned caches were proposedegged in future.
prevent the victim’s cache line from being evicted by the attacker. The PL cache evaluation highlights the need for systematic
PL cache [15] is a exible cache partitioning design, where thgecurity evaluation using benchmarks. Thanks to the approach, the
victim can choose cache lines to be partitioned. In the PL cach#ginal PL cache design is found to have a new write-based attack.
each cache line is extended with a lock bit to indicate if the line ore importantly, our benchmarks can be useful for designing
locked in the cache. When a cache line is locked, the line will nBiture secure caches and testing thergém5.
be evicted by any cache replacement until it is unlocked. Figure 8
shows the replacement logic of the PL cache. If a locked cache . .
line is selected to be evicted, the eviction will not happen, and tﬁe3 RF Cache Design and Implementation
incoming cache line will be handled uncached. If the victim lockso prevent interference caused by cache replacement, Random Fill
the secret-related address properly and the cache is big enougR) cache [16] has been proposed to de-correlate the cache |l that
hold all the locked cache lines, the PL cache is secure againstcallises the cache replacement and the victim’s cache access. On a
types of timing-based vulnerabilities, because the secret-relategthe miss, the missing cache line will be handled without being
address will always be in the cache. fetched in the cache, instead a cache line in the neighborhood
To evaluate the PL cache against different vulnerabilities, wandow [addr RF_start;addr RF_start+ RF_size] will be
implement it in the L1 data cache and add new instructions to lo@tched, as shown in Figure 10. In this way, the memory access
(and unlock) cache lines in thgem5 simulator. The evaluation in pattern is de-correlated from the cache lines fetched in the cache.
gem5is run in SE mode using a single O3CPU core, where ea8lince fetching cache lines in the neighborhood window may still
benchmark has an additiorlack step for locking the victim’s carry information about the originalddr, the security of RF cache
cache line. depends on the paramet&E_start andRF_size.

Fig. 8: PL cache replacement logic ow-chart, as proposed in [15].

8 EVALUATION OF SECURE CACHES
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belongs to and whether the address is security critical. When a
memory access tries to modify the cache state, the address will
rst be encrypted using a Low-Latency BlockCipher (LLBC) [39],
which not only randomizes the cache set it maps to, but also scatters
the original, possibly ordered, and location-intensive addresses to
different cache sets, decreasing the probability of con ict misses.
The encryption key will be periodically changed to avoid key
reconstruction. CEASER-S [40] allows CEASER to divide the
cache ways into multiple partitions of all the cache ways and
allows the line to be mapped to a different set in each partition
via principles of skewing. The modi ed skew idea of CEASER-
Fig. 10: RF cache replacement logic ow-chart, as proposed S cache assigns each partition a different multiple instance of
in [16]. CEASER to determine the set mappings to strengthen the random
mapping. These two caches, focusing on randomizing cache set
mapping, targetSOtype or SAtype attacks and cannot prevent
We implement the RF cache in the L1 data cache, as suggesﬁ@i_type vulnerabilities.
by the Work [16] Note that here the CaChe |ine W|” St|” be fetChed ScatterCache [41] uses Cache set random|zat|0n to prevent
into L2 cache, but vulnerabilities targeting the L1 cache Shouiﬁning-based attacks. It builds upon two ideas. First, a mapping
be defended. Parametd®&_start andRF_sizecan be con gured fynction is used to translate memory addresses and process informa-
in gem5 The benchmark suite for evaluation is identical to thﬁon to cache set indices. The mapp|ng is different for each program
normal three-step benchmarks, no additional step is required §pfsecurity domain. Second, the mapping function also calculates a

the RF cache, e.g., no special locking step is needed. different index for each cache way. The mapping function can be
. . keyed hash or keyed permutation derivation function a different
8.4 Security Evaluation of the RF Cache key is used for each application or security domain resulting in

RF cache can potentially defend all attacks because the victira'dlifferent mapping from addresses to cache sets. Software (e.g.,
access to a secret address will not cause the correspondiigyoperating system) is responsible for managing the security
cache line to be fetched into cache, but a random cache li#hemains and process IDs, which are used to differentiate the
in a neighborhood window will be fetched instead. Howevespftware processes and assign them with different keys for the
fetching a cache line in the neighborhood window still can transferapping. As hardware extension, a cryptographic primitive such as
information about the victim’s cache access. We tested two differdrshing and an index decoder for each scattered cache way is added.
RF cache con gurations, one with small neighborhood window (§catterCache is able to prevestype orSAtype vulnerabilities
cache lines) and one with large neighborhood window (128 cachy assigning a different index for each cache way and security
linesh. domain. It encrypts both the cache address and process ID when
To reduce noise in the tests, the benchmarks test 8 contigusugpping into the cache index, therefore, ScatterCache is able to
cache lines and measure the total timing. When the neighborhquéventE-AO-type vulnerabilities such as Flush+Reload, but not
window of the RF cache is small, the cache line fetched inteAO-type vulnerabilities such as Cache Collision vulnerabilities.
the cache will be not far from the address being accessed, andTime-Predictable Secure Cache (TSCache) [42] relies on
can still be observed by the third step of the benchmark withrandom placement to exhibit randomized execution times. To
high probability. As shown in Figure 9, for a small neighborhooéchieve side-channel attack robustness, random placement must
window (S), a number of vulnerabilities are still effective, such also decouple cache interference of the attacker from the victim.
Flush+Reload and Prime+Probe. Memory addresses from victim and attacker’s processes must not
For a large neighborhood window (L), no effective vulnerabilisontend systematically in the same cache set. Instead, each memory
ties are detected by the benchmark. B@Type vulnerabilities, address from each process must be randomly and independently
the large neighborhood window de-correlates the memory accetaced in a set, thus randomizing interference. This is achieved
and the cache set to be accessed, so that the vulnerabilities learoperating the address (tag and index bits) together with a
be prevented. FOAO-Type vulnerabilities, the channel capacity ofandom number called random seed. Each task is forced to have
the cache side channel decreases with the window size due toahtifferent seed so that con icts between attacker's and victim’s
reduced probability of the desired cache line being fetched intache lines are random and independent across runs, thus defeating
cache, as analyzed in [16]. The neighborhood window of 128 cachiy contention-based attacks. The same seed is given to allow the
lines is enough to mitigate the channel in our setting where thex@mmunication between runnables of a given software components
are 128 cache sets. of an application via shared memory. TSCache exploits random
The evaluation of the RF cache shows how the benchmarlacement to de-correlate set mapping with the corresponding
suite can be used to help choose the design parameter, andatfdress index bits. Therefore, it can be used to preSéxype
benchmark can quickly evaluate the design prototypes. or SAtype vulnerabilities but may not be able to prevé@type
vulnerabilities.

8.5 Security Evaluation of Other Secure Caches

CEASER [38] is able to mitigate con ict-based LLC timing basedg CoNcLUSION

side-channel attacks using address encryption and dynamic remap- . .
ping. The CEASER cache does not differentiate whom the addrd<4S Paper presented for the rst time a large-scale evaluation of
34 Arm devices against 88 types of vulnerabilities. In total, three

4. There are 128 cache sets in the evaluated L1 cache. different cloud platforms were leveraged for the evaluation, and
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gem5 was used for further analysis of certain microarchitecturgdo] X. zhang, Y. Xiao, and Y. Zhang, Return-oriented ush-reload side chan-

features. Based on the evaluation results, the work uncovered

a number of components of the microarchitectual design that
in uence the effectiveness of different types of the vulnerabilitieg;
Further, sensitivity tests were used to understand impacts of
possible miscon guration on the outcome of the benchmarks, afZal
also showed that even with uncertain cache con guration, number
of attack types can be successful. To help defend the attacks, thgJ3k b Gruss, R. Spreitzer, and S. Mangard, Cache Template Attacks:
and RF secure caches were implemented and evaluatgenof
Based on the benchmarking results of the secure caches, a newSymposium, 2015, pp. 897 912.

attack on PL cache, and possible issues due to small window d

in the RF cache were uncovered.

[25]

ACKNOWLEDGMENTS

This work was supported in part by NSF grants 1651945 and
1813797, and through SRC task 2488.001. The authors would I[REl
to acknowledge Amazon Web Services for cloud research credits
used for some of the testing.

[27]

REFERENCES

(1]

[2]
(3]

(4]

[5]
(6]

(7]
(8]

[9]

(20]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[29]

0018-9340 (c) 2021 IEEE. Personal use is p:

J. Bonneau and I. Mironov, Cache-Collision Timing Attacks against AES[28]
in International Workshop on Cryptographic Hardware and Embedded
Systems. Springer, 2006, pp. 201 215.

D. J. Bernstein, Cache-Timing Attacks on AES, 2005. [29]
D. A. Osvik, A. Shamir, and E. Tromer, Cache Attacks and Countermea-
sures: the Case of AES, iBryptographers’ Track at the RSA Conference.
Springer, 2006, pp. 1 20.

D. Gullasch, E. Bangerter, and S. Krenn, Cache Games Bringing Access-
Based Cache Attacks on AES to Practice,Sacurity and Privacy (SP), [30]
2011 IEEE Symposium on. |EEE, 2011, pp. 490 505.

C. Percival, Cache Missing for Fun and Pro t, 2005.

O. Acicmez andC. K. Kog, Trace-Driven Cache Attacks on AES (short [31]
paper), inInternational Conference on Information and Communications
Security. Springer, 2006, pp. 112 121.

J. M. Szefer, Architectures for secure cloud computing servers, Ph.%Z]
dissertation, Princeton University, 2013.

P. Kocher, D. Genkin, D. Gruss, W. Haas, M. Hamburg, M. Lipp,
S. Mangard, T. Prescher, M. Schwarz, and Y. Yarom, Spectre Attaclfgsl
Exploiting Speculative ExecutionArXiv e-prints, Jan. 2018.

M. Lipp, M. Schwarz, D. Gruss, T. Prescher, W. Haas, S. Mangar%‘”
P. Kocher, D. Genkin, Y. Yarom, and M. Hamburg, Meltdow@rXiv
e-prints, Jan. 2018.

Kevin Carbotte, The Next 100 Billion ARM-Powered Devices Will Fea-
ture ARM DynamIQ Technology, https://www.tomshardware.com/news[ﬁsl
arm-dynamig-multicore-microachitecture, 33947.html, accessed online.
S. Deng, W. Xiong, and J. Szefer, A benchmark suite for evaluating6]
caches’ vulnerability to timing attacks, iRroceedings of the Twenty-
Fifth International Conference on Architectural Support for Programming
Languages and Operating Systems, 2020, pp. 683 697.

Microsoft corp., Visual Studio App Center, https://appcenter.ms/37]
accessed online.

Amazon.com Inc., AWS Device Farm, https://aws.amazon.com/devicé¢38]
farm/, accessed online.

Google LLC, Google Firebase, https:// rebase.google.com/, accessed
online.

Z. Wang and R. B. Lee, New Cache Designs for Thwarting Softwarfs9]
Cache-Based Side Channel Attacks, ACM SIGARCH Computer
Architecture News, vol. 35, no. 2. ACM, 2007, pp. 494 505.

F. Liu and R. B. Lee, Random Fill Cache Architecture, Microarchi-
tecture (MICRO), 2014 47th Annual IEEE/ACM International SymposiufaQ]
on. |EEE, 2014, pp. 203 215.

M. Lipp, D. Gruss, R. Spreitzer, C. Maurice, and S. Mangard, Ar-
mageddon: Cache attacks on mobile devices25th USENIX Security [41)
Symposium (USENIX Security 16), 2016, pp. 549 564.

M. Green, L. Rodrigues-Lima, A. Zankl, G. Irazoqui, J. Heyszl, and
T. Eisenbarth, Autolock: Why cache attacks bARMg are harder than

you think, in 26th USENIX Security Symposium (USENIX Security 17[)‘2]
2017, pp. 1075 1091.

N. Zhang, K. Sun, D. Shands, W. Lou, and Y. T. Hou, Truspy: Cache
side-channel information leakage from the secure world on arm devices.
IACR Cryptology ePrint Archive, vol. 2016, p. 980, 2016.

Authorized licensed use limited to: Yale University.

nels on arm and their implications for android devices,Pirmceedings of

the 2016 ACM SIGSAC Conference on Computer and Communications
Security. ACM, 2016, pp. 858 870.

G. Haas, S. Potluri, and A. Aysu, itimed: Cache attacks on the apple al0
fusion soc. IACR Cryptol. ePrint Arch., vol. 2021, p. 464, 2021.

H. Lee, S. Jang, H.-Y. Kim, and T. Suh, Hardware-based ush+ reload
attack on armv8 system via acp, 2021 International Conference on
Information Networking (ICOIN). |IEEE, 2021, pp. 32 35.

Automating Attacks on Inclusive Last-Level Caches,USENIX Security

g__/lé Y. Yarom and K. Falkner, FLUSH+ RELOAD: A High Resolution, Low

Noise, L3 Cache Side-Channel Attack. WSENIX Security Symposium,
2014, pp. 719 732.

D. Gruss, C. Maurice, K. Wagner, and S. Mangard, Flush+ Flush: a Fast
and Stealthy Cache Attack, imternational Conference on Detection of
Intrusions and Malware, and Vulnerability Assessment.  Springer, 2016,
pp. 279 299.

S. Deng, W. Xiong, and J. Szefer, Analysis of secure caches
using a three-step model for timing-based attackdpurnal of
Hardware and Systems Security, Nov 2019. [Online]. Available:
https://doi.org/10.1007/s41635-019-00075-9

E. Tromer, D. A. Osvik, and A. Shamir, Ef cient cache attacks on aes,
and countermeasureslournal of Cryptology, vol. 23, no. 1, pp. 37 71,
2010.

B. L. Welch, The Generalization of Student’s Problem When Several
Different Population Variances are Involvediometrika, vol. 34, no. 1/2,
pp. 28 35, 1947.

A. Bhattacharyya, A. Sandulescu, M. Neugschwandtner, A. Sorniotti,
B. Falsa, M. Payer, and A. Kurmus, Smotherspectre: exploiting
speculative execution through port contention,Aroceedings of the 2019
ACM SIGSAC Conference on Computer and Communications Security,
2019, pp. 785 800.

S. Bhattacharya and I. Verbauwhede, Exploring micro-architectural side-
channel leakages through statistical testingt to receive the details,
2020.

S. A. Croshy, D. S. Wallach, and R. H. Riedi, Opportunities and limits
of remote timing attacks ACM Transactions on Information and System
Security (TISSEC), vol. 12, no. 3, pp. 1 29, 2009.

N. V. Smirnov, On the estimation of the discrepancy between empirical
curves of distribution for two independent sampleBull. Math. Univ.
Moscou, vol. 2, no. 2, pp. 3 14, 1939.

Android Open Source Project, Security-Enhanced Linux in Android,
https://source.android.com/security/selinux, accessed online.

Android Issue Tracker, [Android Q Beta] Apps can no longer execute
binaries in their home directory, https://issuetracker.google.com/issues/
128554619, accessed online.

Amazon.com, Elastic Compute Cloud (EC2), Cryptology ePrint Archive,
Report 2019/167, http://aws.amazon.com/ec2.

J. Mambretti, J. Chen, and F. Yeh, Next generation clouds, the
chameleon cloud testbed, and software de ned networking (sdn20irb
International Conference on Cloud Computing Research and Innovation
(ICCCRI). IEEE, 2015, pp. 73 79.

B. Burgess, Samsung exynos m1 processor2@16 IEEE Hot Chips 28
Symposium (HCS). |EEE, 2016, pp. 1 18.

M. K. Qureshi, Ceaser: Mitigating con ict-based cache attacks via
encrypted-address and remapping, 2018 51st Annual IEEE/ACM
International Symposium on Microarchitecture (MICRO). |EEE, 2018,
pp. 775 787.

J. Borghoff, A. Canteaut, T. @eysu, E. Kavun, M. Knezevic, L. Knudsen,
G. Leander, V. Nikov, C. Paar, C. Rechberggral., A low-latency
block cipher for pervasive computing applications-extended abstract.
Asiacrypt, 2012.

M. K. Qureshi, New attacks and defense for encrypted-address cache,
in 2019 ACM/IEEE 46th Annual International Symposium on Computer
Architecture (ISCA). |EEE, 2019, pp. 360 371.

M. Werner, T. Unterluggauer, L. Giner, M. Schwarz, D. Gruss, and
S. Mangard, Scattercache: Thwarting cache attacks via cache set
randomization, in28th fUSENIXg Security Symposiunf JSENDg
Security 19), 2019, pp. 675 692.

D. Trilla, C. Hernandez, J. Abella, and F. J. Cazorla, Cache side-
channel attacks and time-predictability in high-performance critical real-
time systems, inProceedings of the 55th Annual Design Automation
Conference, 2018, pp. 1 6.

ermitted, but republication/redistribution reguires |EEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.
ownloaded on June 01,2022 at 13:54:51 UTC from TEEE Xplore. Restrictions apply.


https://www.tomshardware.com/news/arm-dynamiq-multicore-microachitecture,33947.html
https://www.tomshardware.com/news/arm-dynamiq-multicore-microachitecture,33947.html
https://appcenter.ms/
https://aws.amazon.com/device-farm/
https://aws.amazon.com/device-farm/
https://firebase.google.com/
https://doi.org/10.1007/s41635-019-00075-9
https://source.android.com/security/selinux
https://issuetracker.google.com/issues/128554619
https://issuetracker.google.com/issues/128554619
http://aws.amazon.com/ec2

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TC.2021.3126150, IEEE

Transactions on Computers

Shuwen Deng (S’18) received her B.Sc. in Microelectronics from Shang-
hai Jiao Tong University in 2016. She is currently a Ph.D. candidate at the
department of Electrical Engineering at Yale University, working with Prof.
Jakub Szefer. Her current research includes developing and verifying
secure processor microarchitectures by self-developing timing side-
channel vulnerability checking schemes, as well as proposing languages
and tools for practical and scalable security hardware and architectures
veri cation.

Nikolay Matyunin (S’20) received his Dipl. in Computer Science from
the Lomonosov Moscow State University in 2014. He is currently a Ph.D.
candidate at the department of Computer Science at Technical University
of Darmstadt, Germany, working with Prof. Dr. Stefan Katzenbeisser. His
research interests include covert channels and physical side-channel
attacks, security and privacy of mobile and embedded systems.

Wenijie Xiong (S’17) received her B.Sc. in Microelectronics and Psychol-
ogy from Peking University in 2014. She is currently a Ph.D. student at the
department of Electrical Engineering at Yale University, working with Prof.
Jakub Szefer. Her research interests comprise Physically Unclonable
Functions, and cache side channel attacks and defenses.

Stefan Katzenbeisser (S'98 A'01 M'07 SM’'12) received the Ph.D.
degree from the Vienna University of Technology, Austria. After working
as a Research Scientist with the Technical University of Munich, Germany,
he joined Philips Research as a Senior Scientist in 2006. After holding
a professorship for Security Engineering at the Technical University of
Darmstadt, he joined University of Passau in 2019, heading the Chair of
Computer Engineering. His current research interests include embedded
security, data privacy and cryptographic protocol design.

Authorized licensed use limited to: Yale University.

14

Jakub Szefer (S'08 M’'13 SM'19) received B.S. with highest honors in
Electrical and Computer Engineering from University of lllinois at Urbana-
Champaign, and M.A. and Ph.D. degrees in Electrical Engineering from
Princeton University where he worked with Prof. Ruby B. Lee on secure
hardware architectures. He is currently an Associate Professor in the
Electrical Engineering department at Yale University, where he leads the
Computer Architecture and Security Laboratory (CASLAB). His research
interests are at the intersection of computer architecture, hardware
security, and FPGA security.

0018-9340 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.
ownloaded on June 01,2022 at 13:54:51 UTC from TEEE Xplore. Restrictions apply.



