
42 May/June 2021 Copublished by the IEEE Computer and Reliability Societies 1540-7993/21©2021IEEE

CACHETIMING VULNERABILITIES

Understanding the Insecurity of
Processor Caches Due to TimingBased
Vulnerabilities
Shuwen Deng, Wenjie Xiong, and Jakub Szefer | Yale University

 This article discusses a recently developed test suite for checking timingbased vulnerabilities in processor
caches, which has revealed the insecurity of today’s processor caches. The susceptibility of caches to these
vulnerabilities calls for more research on secure processor caches.

P rocessor caches are the key component to improv-
ing the performance of today’s processor. By caching

frequently used data, they allow for a significant latency
reduction in many memory-related operations. How-
ever, caches are of a finite size, and they cannot contain
all of the data. This will cause the memory accesses in dif-
ferent cache levels or in the main memory to take vary-
ing amounts of time. As a result, the timing of memory
operations in data caches, for example, the timing of cache
hits versus cache misses, can reveal information about
security-critical data. For instruction caches, it may be
possible to reveal information about the execution as well.

The Threats of TimingBased
Vulnerabilities in Processor Caches
In general, two types of memory-related operations
exhibit timing variations that can be abused to extract
sensitive information using timing-based side or covert
channels in processor caches. First, memory-access
operations, such as loads and stores, can be fast (a cache
hit) or slow (a cache miss). Second, invalidation-related
operations, such as cache flushes, can also be fast (there
is no dirty data in the cache so flush finishes quickly)
or slow (there is dirty data in the cache, and it has to be
written back, resulting in longer timing).

Researchers have previously proposed to use these
timing differences in memory-related operations to
reveal sensitive information in software execution.1

These timing-based, side-channel attacks often focus
on cryptographic applications, for example, attacks on
software using Advanced Encryption Standard (AES)
with table lookups, which have the goal of extracting the
AES key by analyzing the timing of the table lookups.
Further, there are many timing-based, covert-channel
attacks in which the sender and the receiver cooperate
to break the isolation boundary and leak data.2 Addi-
tionally, timing-based channels have recently been used
as a part of the Spectre and Meltdown attacks.3,4

Yet, until recently, there has not been a systematic
method to analyze whether a cache design is vulner-
able to possible types of timing-based, side-channel
and covert-channel attacks. While different publica-
tions have presented individual attacks on caches, cache
security analysis has often been done in an ad hoc man-
ner. One reason for the ad hoc analysis is that there have
been no security tests that could be easily used to evalu-
ate different processor caches for potential security vul-
nerabilities to all of the likely timing-based attacks.

A Security Test Suite for TimingBased,
SideChannel Vulnerabilities in Caches
In our previous work,5 we observed that all of the exist-
ing timing-based vulnerabilities in caches can be mod-
eled with three “steps” of memory-related operations.

Digital Object Identifier 10.1109/MSEC.2021.3055799
Date of current version: 24 February 2021

Authorized licensed use limited to: Yale University. Downloaded on April 14,2022 at 02:06:22 UTC from IEEE Xplore. Restrictions apply.

www.computer.org/security 43

Further, since all of the cache blocks are updated follow-
ing the same cache-state machine logic, it is sufficient
to consider only one cache block when evaluating tim-
ing vulnerabilities.

Therefore, we proposed a three-step model, focus-
ing on one cache block, to derive a set of possible
cache-timing-based vulnerabilities in processors. Our
work5 put forth the first three-step theoretical model,
and we recently updated it6 to derive a set of 88 types of
cache-timing-based vulnerabilities in modern processors.

Attack Model and Objectives
In timing-based attacks, there exists a victim and an
attacker. The victim holds the security-critical data,
such as the AES encryption key. The attacker attempts
to learn security-critical data by observing the tim-
ing variation of operations, such as different memory
accesses. We assume that the victim performs some
memory accesses that involve security-critical data,
and the goal for the attacker is to determine a particu-
lar memory address (or cache index) accessed by the
victim. We assume that, to determine this address,
the attacker and the victim can share the same cache,
and, thus, the attacker can observe the timing of
cache-related operations and guess which locations
are accessed by the victim. The attacker is assumed to
have some additional information. For example, to cor-
relate the memory address or index to values of the
security-critical data, he or she could know the specific
version of AES implementation used. In our model, we
assumed the worst-case scenario, where the attacker is
able to derive the previously mentioned information.
Being able to measure the timing of the victim is stan-
dard in the majority of cache-related attacks.

Our model enumerates all of the possible timing-based
attacks in the L1 data cache. Our model assumes a multi-
core and possibly hyperthreading processor, with a cache
hierarchy of a local and remote L1 cache, an L2 cache, and
a shared L3 cache (which is possibly divided into different
cache slices).

Based on this model, we have generated a test suite
containing systematically implemented individual tests
to check for timing-based vulnerabilities. The goal of the
test suite is to identify the sequences of memory-related
operations made by the victim and the attacker that
cause timing-based vulnerabilities in caches. The pre-
sented tests are not actual security exploits; rather, they
implement sequences of memory-related operations
that correspond to timing-based vulnerabilities. If a vul-
nerability is detected, we expect that it could be used
for a real attack, but that is not the goal of the test suite.
To analyze all of the possible vulnerabilities, we devel-
oped the test suite assuming a strong attacker scenario,
where the attacker is able to control the synchronization

between the victim and itself and is able to measure the
victim’s timing. Some of the vulnerabilities that our
model predicts have been previously exploited in real
attacks1,7–10 while some are new and have not been con-
sidered before.

Our test suite uses sequences of instructions (called
steps in our work5), which can lead to an attack if they
have timing differences depending on the security-critical
data. Each test outputs whether or not there is a statisti-
cally significant timing difference that the attacker could
observe to extract information from the timing channel.

Modeling Accesses Leading to Vulnerabilities
In our model,5,6 in step 1, a memory operation is per-
formed, placing the cache in an initial state that is
known to the attacker (for example, a new piece of
data at some address is put into the cache or the cache
block is invalidated). Then, in step 2, a second memory
operation alters the state of the cache from its initial
state. Finally, in step 3, a final memory operation is per-
formed, and the timing of the final operation observed
by the attacker reveals some information about the rela-
tionship among the addresses from steps 1–3.

We found that there are 17 possible states for each
step.5 This includes the cases in which the addresses are
either unknown or known to the attacker and those in
which the address is brought into the cache by either the
victim or the attacker. Consequently, there are 17 × 17 ×
17 = 4,913 combinations of three steps in total. As is pre-
sented in Figure 1, we developed a cache simulator and
a set of reduction rules to process all of the three-step
combinations and to decide which ones can indicate an
effective vulnerability.

Among the three steps, one or more should be the
victim’s access to an address that is protected from
the attacker (denoted by Vu, where V stands for vic-
tim, and u represents the address unknown to the
attacker), and the timing is observed in step 3. In the
model, there are three possible cases for the address of
Vu. The first is a, which represents an address known
to the attacker. The second is aalias, which refers to a
different address than a but maps to the same cache
set as it (thus, it can be used for cache line evic-
tion in the attacks). The third is not in block (NIB),
which refers to an address that does not map to the
same cache set as a. If a vulnerability is effective, the
attacker can infer whether Vu is a, aalias, or NIB, based
on the timing observations.

In step 3, the timing is observed. We found 66 possi-
ble types of timing observations by measuring the pos-
sible timings of reading, writing, or flushing one data
address from different levels of the cache hierarchy (L1,
L2, and the last-level cache). For details of the deriva-
tion process, one can refer to our prior work.6

Authorized licensed use limited to: Yale University. Downloaded on April 14,2022 at 02:06:22 UTC from IEEE Xplore. Restrictions apply.

44 IEEE Security & Privacy May/June 2021

CACHE-TIMING VULNERABILITIES

The Derivation of All Possible Vulnerabilities
The exhaustive list of the 4,913 combinations of
three-step patterns is first input into the cache simula-
tor, where effective vulnerabilities are derived. The sim-
ulator takes all of the 4,913 combinations and 66 types
of timing observations as inputs, checks them, and
outputs the combinations that belong to preliminary
strong vulnerability types. To derive the preliminary
strong vulnerabilities, the simulator computes if there is
a timing variance that the attacker could leverage.

A timing variance exists if different possible values
(a, aalias, and NIB) of u correspond to different timings
out of the 66 types. We enumerate all of the possible
operations (read/write for access and remote write/
flush for invalidation) for a step and consider different
timings for each operation. Therefore, each pattern may
have different types of timing observations. If, for a spe-
cific combination, the attacker is able to unambiguously
correlate the timing to one of the three values, he or she
is able to learn the value of u. The corresponding com-
bination belongs to the “Strong” type of vulnerability.

The reduction rules are then used to remove repeated
and redundant patterns from the preliminary strong vul-
nerabilities. For example, unknown address u must be in
one of the steps. If there is no unknown u in the steps,
there is nothing for the attacker to learn. Furthermore,
we prove the soundness of the model, and the analysis
can be found in our prior work.5

The resulting 88 types of vulnerabilities can be fur-
ther categorized into 27 “Vulnerability Types,” listed in
Table 1 according to their access pattern of each step. The
vulnerability types are not actual attacks but are used to
group the susceptibilities based on the common features
used for each one. A type can be provided for the attacker
to trigger real attacks. Broadly, the type names are either
based on previous vulnerabilities proposed in literature
or are new ones, which we are the first to propose.

For example, there are vulnerabilities using types
that map to the techniques used by existing attacks, such
as the Cache Collision7 vulnerability type, displayed in

Figure 2(a). In step 1, the cache block’s data are invalidated
using one of various methods. Then, the victim accesses
the security-critical data in step 2. Finally, in step 3, the vic-
tim accesses data at a known address to try to collide with
the security-critical data. If there is a fast cache-hit timing
in step 3, then it reveals to the attacker that there was an
internal collision within the victim. The attacker learns the
security-critical data based on the knowledge of whether
or not there was an internal collision.

Using our model,6 we have discovered new vulner-
abilities that have not been previously explored in litera-
ture. For instance, one of the new weaknesses falls into
the “Flush and Time” type, presented in Figure 2(b).
This vulnerability requires the victim to perform the
access on the same security-critical data in step 1 and
step 3. In step 2, the attacker invalidates a known address
on the remote core with the use of a flush or write. If the
victim’s access in step 3 returns a cache miss, and a longer
timing is observed by the attacker, the security-critical
address maps to the known address in step 2. Otherwise,
if there is a shorter timing, the two addresses do not map
to each other. In this way, the attacker is able to derive the
information of the security-critical address. The details
of all of the vulnerability types are in our work.5,6

Toward Testing Vulnerabilities
on Real Processors
To generate an actual test suite from the theoretical model,
we considered different variants of how a processor’s
memory-related operations could be executed to find all
possible scenarios that could lead to attacks. Our model
considers that: 1) there are 66 possible timing obser-
vations in the cache hierarchy of multicore processors
among local and remote cores, 2) the victim and attacker
can be running in hyperthreading or time-slicing settings,
3) both read and write operations can be memory accesses
for testing for potential vulnerabilities, and 4) two types
of cache-invalidation operations are possible—through
flush instruction or through cache coherence by writing
on a remote core to invalidate the local core’s cache lines.

Cache
Three-Step
Simulator

Reduction
Rules

Reduction
Step

Classification
Step

Strong
Vulnerability

88203
66

4,913

Types of
Timing

Observations

Exhaustive
List of All Possible

Three-Step
Combinations

Preliminary
Vulnerability

Figure 1. The procedure to derive the effective types of timing-based vulnerabilities. The red ovals refer to the number of
vulnerabilities.

Authorized licensed use limited to: Yale University. Downloaded on April 14,2022 at 02:06:22 UTC from IEEE Xplore. Restrictions apply.

www.computer.org/security 45

Table 1. The evaluation results of different vulnerability types for nine processor configurations.

Vulnerability type

Corre
sponding
vulner
ability
[6]

Intel
Xeon
E5
1620

Intel
Xeon
E5
2667
on
chip

Intel
Xeon
E5
2667
inter
chip

Intel
Xeon
E5
2690

Intel
Core
i5
4570

Intel
Xeon
E5
2686

Intel
Xeon
P8175

AMD
FX
8150

AMD
EPYC
7571

Found
in all
tested
CPUs

Found
in at
least
one
CPU

Cache Collision [7] 1–4

Flush and Reload [8] 5–8

Reload and Time [5] 9, 10

Flush and Probe [11] 11–14

Flush and Time [5] 15, 16

Cache Coherence Flush
and Reload [6]

17–20

Cache Coherence Prime
and Probe [6]

21–28

Cache Coherence Evict
and Time [6]

29–32

Bernstein’s Attack [1] 33–36

Evict and Probe [5] 37, 38

Prime and Time [5] 39, 40

Evict and Time [9] 41, 42

Prime and Probe [9] 43, 44

Cache Collision Inv. [5] 45, 46

Flush and Flush [10] 47–50

Flush and Reload Inv. [5] 51, 52

Reload and Time Inv. [5] 53, 54

Flush and Probe Inv. [5] 55–58

Flush and Time Inv. [5] 59, 60

Cache Coherence Flush
and Reload Inv. [6]

61–64

Cache Coherence Prime
and Probe Inv. [6]

65–72

Cache Coherence Evict
and Time Inv. [6]

73–76

Bernstein’s Inv. [5] 77–80

Evict and Probe Inv. [5] 81, 82

Prime and Time Inv. [5] 83, 84

Evict and Time Inv. [5] 85, 86

Prime and Probe Inv. [5] 87, 88

Inv.: Invalidation.

Authorized licensed use limited to: Yale University. Downloaded on April 14,2022 at 02:06:22 UTC from IEEE Xplore. Restrictions apply.

46 IEEE Security & Privacy May/June 2021

CACHE-TIMING VULNERABILITIES

As stated previously, there are three steps for each
vulnerability, and each step can be one of 17 possi-
ble states. Each state can be achieved by two possible
means: a read or a write access for a memory-access
operation, or a flush or write from the remote core for
an invalidation-related operation. Thus, there is a total
of 23 = 8 different variants. Additionally, if vulnerabili-
ties contain both the victim and attacker, running either
locally or remotely, these two parties can run in either
a time-slicing or hyperthreading setting. Consequently,
for one vulnerability, there are possibly eight to 16 vul-
nerability variants. In total, considering different vari-
ants, we generated 1,094 test programs that correspond
to the 88 types of vulnerabilities. Different test programs
correspond to the same vulnerability because one pos-
sible state can be achieved by different memory-access
or invalidation-related operations, as previously stated.

Security Evaluation of Real Processors
In our test suite,6 the theoretical steps5 are translated into con-
crete assembly instructions to test the corresponding memory
operations of vulnerability variants. Given the large num-
ber of variants, we wrote scripts to automatically generate
the C program for each one of each vulnerability type.

Evaluating if a Cache Is Vulnerable
For the victim's unknown memory operation state (as
is discussed in “Modeling Accesses Leading to Vulner-
abilities”), it has three candidates: a, aalias, and NIB.
The tests separately check the timing of each candi-
date. For all of the tests, the timing of step 3 is used to
try to recover the security-critical data. We use read
time-stamp counter (rdtsc) instruction in our test suite
to measure time. We run it 300 times for each of the
variants in which the unknown address is a, aalias, and
NIB, respectively. Then, we use Welch’s t-test12 to dis-
tinguish the distributions of the measured timings for
each candidate value. We consider two timing distribu-
tions to be significantly different from each other if the
probability that the observed data comes from the same
distribution is less than 0.05% (this number is set to be
very small to reduce false positives).

For a vulnerability to be judged effective on a particu-
lar processor, the timing distribution of one of the three
candidates for the victim’s unknown memory operation
(a, aalias, or NIB) should be statistically different from the
other two candidates. That is, the timing of the execution
of the test suite when u is equal to a, aalias, or NIB, should
be distinguishable. At the end of each test run, the test

Local Core

Target Cache Line Target Cache Line Target Cache Line

Remote Core Local Core Remote Core Local Core Remote Core

L1-I L1-IL1-D L1-D

L3 Slice L3 Slice

Flush
BackL2 L2

L1-I L1-IL1-D L1-D

L3 Slice

Victim
Accesses

Victim
Accesses

Victim
Accesses

Victim
Reloads

(2,
Short)(1,

Long)

L3 Slice

L2 L2

L1-I L1-IL1-D L1-D

L3 Slice L3 Slice

L2 L2

DRAM DRAM DRAM

Local Core

Target Cache Line Target Cache Line Target Cache Line

Remote Core Local Core Remote Core Local Core Remote Core

[1, Short
If Access (1) in Step 2]

L1-I L1-IL1-D L1-D

L3 Slice L3 Slice

L2 L2

L1-I L1-IL1-D L1-D

L3 Slice

(1) (2)

(2, Long)

L3 Slice

L2 L2

L1-I L1-IL1-D L1-D

L3 Slice L3 Slice

L2 L2

DRAM DRAM DRAM

Step 1 Step 2 Step 3

Step 1 Step 2 Step 3

(a)

(b)

Attacker
Writes

Figure 2. Some examples of vulnerabilities of different types, including: (a) the vulnerability using techniques of the previously proposed Cache
Collision7 attack and (b) a new vulnerability, falling into the “Flush and Time” type, derived from our model. DRAM: dynamic random-access memory.

Authorized licensed use limited to: Yale University. Downloaded on April 14,2022 at 02:06:22 UTC from IEEE Xplore. Restrictions apply.

www.computer.org/security 47

outputs whether there is a significant timing difference
(vulnerability found) or not (vulnerability not found).

The Susceptibility of Real Processors
We evaluated the vulnerabilities by running the experi-
ments on nine processor configurations and display the
results in Table 1. For each type of processor, a full-solid
circle showing up in the entry means that the machine
is susceptible to all of the vulnerabilities of that attack
type. A half-solid circle and hollow circle mean that the
machine is vulnerable to partial and no vulnerabilities of
that attack type, respectively. The Intel Xeon E5-2667
in our lab has two sockets. Therefore, the local and
remote cores can both be in one socket (that is, they can
run on-chip), or the local and remote core can be in dif-
ferent sockets (that is, they can run interchip). Table 1 pres-
ents that the 27 Vulnerability Types are mostly found
in all of the tested CPUs. Since our new cache simula-
tor considers the ideal case—where all possible timing
observations within the cache hierarchy have unique
results—it outputs all of the possible vulnerability
types. For commodity processors, a different subset of
vulnerability types is shown to be effective on different
processors. This is likely due to the microarchitectural
variations and that some timing measurements are not
differentiable on various CPUs.

The Insecurity of Processor Caches
Based on the evaluation results, we found that com-
mercial caches are generally susceptible to many
cache-timing-based vulnerabilities, which demonstrates
the insecurity of processor caches. In this section, we
summarize some lessons learned from our work.

The Impact of Architectural
Designs on Security
We observed that processors from the same family have
similar evaluation results, based on common architec-
tural features implemented for the whole memory hier-
archy. Different implementations will be reflected in
different results for the various vulnerability types.

For example, according to Table 1, Bernstein’s Invali-
dation Attack is usually observed on Intel E5-1620 and
only sometimes observed on Intel E5-2690. Based on
our analysis, flushing L1 data to DRAM and flushing L2
data to DRAM have large timing differences for Intel
E5-1620 (1,036 versus 985 average cycles) but are non-
differentiable for Intel E5-2690 (872 versus 879 average
cycles). With the smaller difference, it is not possible to
distinguish the timing with high confidence, and corre-
sponding attacks are not exploitable on this processor.

Diving deeper, the possible reason for the timing vari-
ation may be the different clock speeds of Intel E5-1620
and Intel E5-2690 (3.6 GHz versus 2.9 GHz), where a

faster clock speed will make long memory-related oper-
ations more differentiable, even if the absolute timing
differences are the same. Also, the Intel E5-1620 does
not support Flex Memory Access, which improves
memory-access efficiency. Intel E5-2690 supports it,
making two operations less differentiable using timing.

These timing variations could possibly be used to
fingerprint the processors or even reverse-engineer
the implementations. Based on our prior example, if a
machine is evaluated and is found to be fully vulnerable
to this attack, the machine may have a fast clock speed
and may not support Flex Memory Access either.

Existing Processors and
the Need for Secure Caches
Due to the insecurity of current commercial caches,
previous work has developed hardware secure caches.13
There are three main techniques that the secure caches
utilize: partitioning, randomization, and differentiating
the security-critical data. These security features can
help prevent the corresponding vulnerabilities if our
test suite finds the processor to be susceptible to them.

Partitioning-based caches usually limit the victim and
attacker to only being able to access their own assigned
set of cache blocks. For example, partitioning can be used
to prevent “Flush and Reload”-related vulnerabilities—
where the cache is flushed in step 1, then, the victim process
accesses data u (which could possibly be a, aalias, or NIB)
in step 2, and the attacker process accesses data a in step 3.
When u is equal to a, the data a will be put into the victim
partition of the cache, and the attacker will not see a in its
own partition in step 3. This will lead to cache-miss timing
always being observed in step 3, which is the same as the
case when u is equal to aalias or NIB. Consequently, there is
no observed timing difference, which helps the cache pre-
vent this vulnerability.

Randomization-based caches inherently decorrelate
the relationship between the address information of the
victim’s security-critical data and the observed timing
from the cache hit or miss, or between the address and the
observed timing of the flush or cache-coherence opera-
tions. For example, for the “Prime and Probe” vulnerabili-
ties, the attacker accesses the same address a to prime and
probe a specific cache set in step 1 and step 3 while the vic-
tim accesses u in step 2, where u possibly maps to the same
cache set as a, where a slower cache-miss timing is observed
by the attacker in Step 3. Otherwise, faster cache-hit tim-
ing is observed. However, if some random data (rather than
the data that maps to the same cache set as a) is filled into
the cache in step 2, cache-miss timing observation does not
deterministically correspond to the result that a and u map
to the same cache set, which limits this attack.

Differentiating the security-critical data is a mecha-
nism that could allow the victim program or system

Authorized licensed use limited to: Yale University. Downloaded on April 14,2022 at 02:06:22 UTC from IEEE Xplore. Restrictions apply.

48 IEEE Security & Privacy May/June 2021

CACHE-TIMING VULNERABILITIES

management to explicitly label a certain range of the vic-
tim’s security-critical data. Using this, we can apply ran-
domization or a partitioning scheme to only the labeled
data for better efficiency and security. Cache-specific
instructions could be used to protect the data and to
limit the internal interference among a victim’s own
data. For instance, the Cache Collision type that has
victim operations in all of the three steps could likely be
prevented by combing randomization techniques and
by labeling the security-critical data to randomize the
victim’s access to every step to decorrelate the relations
between the timing observation and victim’s behavior.

The Impact of Attack Discovery
on Processor Caches
Previous discovery of a type of cache-based timing
side-channel can influence commercial processor designs
that are proposed or released later. For example, Intel’s
Cache Allocation Technology (CAT), available today
in Intel Xeon E5 2618 L v3 processors,14 can be used to
realize the partitioning approach mentioned in “Existing
Processors and the Need for Secure Caches” to pre-
vent interference among different processes in the cache
hierarchy. Although it is unclear as to whether CAT was
implemented for performance or security, it is one exam-
ple of a cache feature that can help security.

Customized Hardware and
Software Defenses
Our test suite results have shown that different proces-
sors are vulnerable to different attacks. Consequently,
customized software or hardware defenses could be
deployed for each processor, based on the evaluation
results, rather than defenses against vulnerabilities not
present in the specific processor’s caches. In general,
however, customized defenses may be expensive in hard-
ware, and hardware secure caches may be preferable.

For some of the software defenses, the access patterns
from the test suite could be used as a reference for scan-
ning software to find if it has similar patterns, for example,
to find malicious software that has similar attack patterns.
Further, evaluation results and our model have uncov-
ered attack types which were unknown before and, thus,
were not considered by existing defenses. With an under-
standing of the 88 types of attacks, new software defenses
leveraging performance counters can be deployed, for
example, scanning for the write accesses that can be used
in the attacks, which were not considered before.

Securing Future Processor Caches
From our evaluation results, timing-based vulnerabili-
ties exist in all of the tested commercial processors’
caches. Therefore, we advocate for more vendors to con-
sider this threat and to build secure cache features into

commercial processors in the near future. The system-
atic modeling of all of the possible cache-timing vulner-
abilities is necessary to understand processor security.
In addition, our mostly automated approach helped
find new potential vulnerabilities, further highlighting
the dangers resulting from set-associative caches.

The Applicability of Our Test Suite
To always keep the system secure, defenses need to pro-
tect against all types of attacks, anticipating what the
attacker can do. Hence, a systematic approach, such as
the one we have presented, is needed to first find all of
the vulnerabilities and, then, to use the results to build
defenses. In this case, our proposed model and the
test suite should be used to examine all of the possible
cache-timing-based attacks for a processor and, then,
give insights about the needed defenses.

As mentioned in “The Impact of Attack Discovery
on Processor Caches,” no actual secure cache designs
have been incorporated into commercial processors.
The main reasons deduced from the evaluation could
be the following:

 ■ In going from software to hardware, it becomes harder to
modify the system. It requires more complicated verifica-
tion work to guarantee that the whole processor will keep
the original functionality when new security features are
added, hence the slow adoption of secure caches.

 ■ Many secure cache designs require 2–10% perfor-
mance overhead, which is not tolerable for many com-
mercial usage scenarios.

 ■ Vendors usually prioritize equipping machines with
performance features rather than security features.

However, since the Spectre3 and Meltdown4 dis-
covery, more companies have been paying attention
to the problem of side channels and are working on
incorporating hardware defenses. Our work, in this
case, can help motivate the establishment of these hard-
ware defenses as we thoroughly demonstrate the scope
of timing-based vulnerabilities. Furthermore, our test
suite shows that there are real side-channel problems
on commercial processors and gives tangible results in
terms of identifying which processors may be vulner-
able to which types of attacks.

Future Direction and Challenges
Apart from applying our methodology to the L1 data
caches, we have also employed the modeling approach
in our work on translation lookaside buffers (TLBs) to
enumerate and understand all possible timing-based
vulnerabilities in TLBs and to provide correspond-
ing hardware defenses.15 In that work, security micro-
benchmarks are automatically generated based on the

Authorized licensed use limited to: Yale University. Downloaded on April 14,2022 at 02:06:22 UTC from IEEE Xplore. Restrictions apply.

www.computer.org/security 49

model. New secure TLB designs are proposed accord-
ingly and evaluated using the test suite. Furthermore,
we believe that our modeling approach and automatic
generation framework of the test suite can be extended
to other levels of caches and cache-like structures, such
as the branch target buffer of branch prediction units, or
even other microarchitectural features.

T he main challenges of extending the modeling
approach and test suite framework are the vari-

ants of different microarchitectures. For example, the
current model only considers the data address of the
cache line. If the cache coherence bits and replacement
policy are included to be treated as part of cache states,
possible steps of our model need to be customized, and
it may require adding a fourth step to capture all of the
vulnerabilities as the model is expanded. In addition, in
branch prediction units, pattern history could be consid-
ered instead of the actual address of the data in the cache,
so the model would have to be changed. However, we still
believe that our work—providing a modeling approach
and test suite framework for timing-based channels—can
serve as a catalyst to help direct secure hardware design.

Acknowledgments
This work was supported by NSF Grant 1813797 and
through Semiconductor Research Corporation award
2844.001.

References
 1. D. J. Bernstein, “Cache-timing attacks on AES,” Pre-

print, 2005. [Online]. Available: http://cr.yp.to/papers
.html#cachetiming

 2. M. Clémentine, N. Christoph, H. Olivier, and F. Aurélien,
“C5: Cross-cores cache covert channel,” in Proc. Int. Conf.
Detection Intrusions and Malware, and Vulnerability Assess-
ment, 2015, pp. 46–64.

 3. P. Kocher et al., “ Spectre attacks: Exploiting specula-
tive execution,” in Proc. Symp. Security and Privacy, 2019,
pp. 1–19.

 4. M. Lipp et al., “ Meltdown: Reading kernel memory from user
space,” in Proc. USENIX Security Symp., 2018, pp. 973–990.

 5. S. Deng, W. Xiong, and J. Szefer, “Analysis of secure caches
using a three-step model for timing-based attacks,” J.
Hardw. Syst. Security, vol. 3, no. 4, pp. 397–425, 2019. doi:
10.1007/s41635-019-00075-9.

 6. D. Shuwen, X. Wenjie, and S. Jakub, “A benchmark suite
for evaluating caches’ vulnerability to timing attacks,” in
Proc. Int. Conf. Arch. Support Programming Languages and
Operating Syst., 2020, pp. 683–697.

 7. B. Joseph and M. Ilya, “Cache-collision timing attacks
against AES,” in Proc. Int. Workshop on Cryptographic
Hardw. and Embedded Syst., 2006, pp. 201–215.

 8. Y. Yuval and F. Katrina, “Flush+ Reload: A high resolu-
tion, low noise, L3 cache side-channel attack,” in Proc.
USENIX Security Symp., 2014, pp. 719–732.

 9. A. O. Dag, A. Shamir, and E. Tromer, “Cache attacks and
countermeasures: The case of AES,” in Proc. Cryptogra-
phers’ Track at the RSA Conf., 2006, pp. 1–20.

 10. G. Daniel, M. Clémentine, W. Klaus, and M. Stefan,
“Flush+ Flush: A fast and stealthy cache attack,” in Proc. Int.
Conf. Detection Intrusions and Malware, and Vulnerability
Assessment, 2016, pp. 279–299. 2016.

 11. T. Caroline, L. Daniel, and M. Margaret, “MeltdownPrime
and SpectrePrime: Automatically-synthesized attacks
exploiting invalidation-based coherence protocols,” 2018,
arXiv:1802.03802.

 12. L. W. Bernard, “The generalization of student’s prob-
lem when several different population variances are
involved,” Biometrika, vol. 34, no. 1/2, pp. 28–35, 1947. doi:
10.2307/2332510.

 13. J. Szefer, Principles of Secure Processor Architecture Design.
San Rafael, CA: Morgan & Claypool, 2018.

 14. F. Liu et al., “CATalyst: Defeating last-level cache side-channel
attacks in cloud computing,” in Proc. Int. Symp. High Perfor-
mance Comput. Arch., 2016, pp. 406–418.

 15. S. Deng, W. Xiong, and J. Szefer, “Secure TLBs,” in Proc.
Int. Symp. Comput. Arch., 2019, pp. 346–359.

Shuwen Deng is a Ph.D. candidate in the Depart-
ment of Electrical Engineering at Yale University,
New Haven, Connecticut, 06520, USA, working
with Prof. Jakub Szefer. Her research interests include
developing and verifying secure processor microar-
chitectures by self-developing timing side-channel,
vulnerability-checking schemes as well as languages
and tools for practical and scalable security hardware
and architecture verification. Deng received a B.Sc. in
microelectronics from Shanghai Jiao Tong University.
Contact her at shuwen.deng@yale.edu.

Wenjie Xiong is a postdoctoral researcher. Her research
interests include physically unclonable functions
and side-channel attacks and defenses in computer
architecture. Xiong received a Ph.D. from the Depart-
ment of Electrical Engineering at Yale University,
New Haven, Connecticut, USA. Contact her at
wenjie.xiong@aya.yale.edu.

Jakub Szefer is an associate professor in the Electrical En-
gineering Department at Yale University, New Haven,
Connecticut, 06520, USA, where he leads the Computer
Architecture and Security Laboratory. His research inter-
ests are at the intersection of computer architecture, hard-
ware security, and field-programmable gate array security.
Szefer received a Ph.D. in electrical engineering from Princ-
eton University. Contact him at jakub.szefer@yale.edu.

Authorized licensed use limited to: Yale University. Downloaded on April 14,2022 at 02:06:22 UTC from IEEE Xplore. Restrictions apply.

