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Abstract—A Physically Unclonable Function (PUF) is a unique
and stable physical characteristic of a piece of hardware, which
emerges due to variations in the fabrication processes. PUFs have
been shown to be a promising cryptographic primitive for key
storage, hardware-based device authentication, and identification.
This paper shows how to realize the recently proposed decay-
based intrinsic DRAM PUFs in commercial off-the-shelf systems.
A key advantage of the new PUF is that it can be queried
during run-time of a Linux system, and requires no hardware
modifications, nor use of FPGAs.

I. INTRODUCTION

The continued miniaturization and cost reduction of system-
on-chip devices has enabled the creation of ubiquitous smart
devices. However, the proliferation of such smart devices
creates new security vulnerabilities, as devices such as smart-
phones, smart appliances, and sensors often collect critical or
private information. If these devices lack the implementation
of sufficient security mechanisms, such sensitive information
can be manipulated or leaked. Critical challenges in securing
these devices are how to provide robust device authentication
and identification mechanisms, and means to store long-term
cryptographic keys in a secure manner that minimizes the
chances of their illegitimate access.

A classic approach to device identification is to embed
cryptographic keys in each device by burning them in at
manufacturing time. However, this solution comes with po-
tential pitfalls, such as increased production complexity as
well as rather limited protection against key extraction at-
tempts. In order to address these issues, researchers have
proposed Physically Unclonable Functions (PUFs) [1]. PUFs
leverage the unique behavior of a device due to manufacturing
variations as a hardware-based fingerprint. A PUF instance
is extremely difficult to replicate, even by the manufacturer.
Hence, PUFs have been proposed as cryptographic building
blocks in security primitives and protocols for: authentication
and identification, hardware-software binding, remote attesta-
tion, and secret key storage [1], [2]. So far, most types of
PUFs in digital electronic systems (such as arbiter PUFs [1])
require the addition of dedicated circuits to the device, and
thus, increase manufacturing costs and hardware complexity.
Consequently, there is great interest in the so-called intrinsic
PUFs [2], which are PUFs that are already inherent to a device.
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Intrinsic PUFs are considered an attractive low-cost se-
curity primitive, as they use standard hardware that can be
found in commercial off-the-shelf devices, without requiring
any hardware modifications or additions. The most promi-
nent example of intrinsic PUFs are PUFs based on Static
Random-Access Memories (SRAMs) [2], [3], which draw
their characteristics from the startup values of bi-stable SRAM
memory cells. Although SRAM PUFs are known to have
good PUF characteristics, the PUF measurements must be
extracted during a very early boot stage (before the SRAM is
used). Consequently, the derived key can only be used at this
time, or must be saved to a different memory region, which
may cause security problems. Alternatively, a dedicated IC
chip with an SRAM can be added to the system, which can
be accessed at run-time, but this requires hardware changes.
Without adding extra hardware, an error-based SRAM PUF
can be accessed at run-time as well [4], but to query the PUF,
still, hardware modification is required to change the supply
voltage.

An alternative to the SRAM PUFs, are DRAM PUFs
presented in this paper, which were designed based on our
existing work [5]. We show how to extract DRAM PUFs
from commercial systems, requiring no special hardware
modifications nor FPGA setup, and to provide a practical
solution to query DRAM PUFs during run-time on a Linux
system. Our decay-based DRAM PUFs allow for repeated
accesses, which overcomes the limitation of previous intrinsic
memory-based PUFs that were available at device startup
only. Furthermore, our PUF can be accessed at run-time
without hardware changes. Moreover, the capacity of DRAM
is magnitudes larger than SRAM, allowing to use many more
bits in order to derive larger cryptographic key material, or
to segment DRAM into several logical PUFs. DRAM is an
excellent candidate for an intrinsic PUF as DRAM is an
integral part of many of today’s commodity platforms and can
be found in many “smart” devices, such as smartphones or
smart thermostats. Recent use of embedded DRAM [6] in low-
cost microprocessors will further increase the availability of
DRAM as part of mobile and embedded computing platforms.
Our work on run-time accessible DRAM PUFs has already
served and will continue to serve as a catalyst for higher
security, especially in low-end IoT devices currently utilized
in sensors or other smart devices, for example in health care,
home automation, transportation, or energy grids.

II. EXTRACTING DRAM PUFS FROM COMMODITY
DEVICES

A. DRAM Decay Characteristics
In a DRAM cell, a single data bit is stored in a capacitor and

can be accessed through a transistor, as shown in Figure 1 (i).
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Fig. 1. (i) A single DRAM cell consists of a capacitor and a transistor, connected to a word-line (WL) and a bit-line (BL or BL*); arrows
indicate leakage paths for dissipation of charges that lead to PUF behavior. (ii) The five steps required for run-time access of a DRAM PUF.
Only during steps (b) – (d) the memory associated with the PUF is not usable for other processes.

DRAM cells are grouped in arrays, where each row of the
array is connected to a horizontal word-line. Cells in the same
column are connected to a bit-line. All bit-lines are coupled
to sense-amplifiers that amplify small voltages on bit-lines to
levels such that they can be interpreted as logical zeros or
ones. In order to access a row, all the bit-lines are precharged
to half the supply voltage, VDD/2; subsequently the word-line
is enabled, connecting every capacitor in that row with its bit-
line. The sense amplifier will then drive the bit-line to VDD

or 0V as the digital readout value, depending on the charge
on the capacitor.

DRAM cells require periodic refresh of the stored charges,
as otherwise the capacitors lose their charge over time, which
is referred to as DRAM cell decay or leakage. The hardware
memory controller takes care of periodic refresh, whose in-
terval is defined by the vendor and is usually 32ms or 64ms.
Without this periodic refresh, some of the cells will slowly
decay to 0, while others decay to 1, depending on whether they
are the so-called true cells or anti-cells, respectively. Because
of the manufacturing variations among DRAM cells, some
cells decay faster than others, which can be exploited as basis
for the PUF.

B. Run-time DRAM PUF Access on Commodity Devices

Our process to extract a DRAM PUF measurement at run-
time in a commodity system using Linux is summarized in
Figure 1 (ii). The starting point (a) comprises the DRAM
module being configured for ordinary use, where the memory
controller periodically refreshes all of the cells’ content. In
the next step (b), the PUF memory region defined by starting
address (addr) and size (size) is reserved, e.g., using memory
ballooning (in Section II-B). Furthermore, the refresh for the
PUF region is disabled and the initialization value (initval) is
written to the region. Next (c), for a given decay time (t), the
memory region containing the PUF is not accessed to let the
cells decay. After the decay time has expired (d), the memory
content is read in order to extract the PUF measurement. At
the end (e), normal memory operations are restored and the
memory region is made available to the operating system (OS)

again. As the decay time and the positions of the flipped bits
are unique for individual DRAM regions, the “pattern” of
flipped bits for a given decay time t can serve as the PUF
response.

We implemented and tested our DRAM PUF construction
on two popular platforms, the PandaBoard ES Revision B3 and
the Intel Galileo Gen 2. The PandaBoard houses a TI OMAP
4460 System-on-Chip (SoC) module that implements 1GB of
DDR2 memory from ELPIDA in a Package-on-Package (PoP)
configuration, which operates at 1.2V. The Intel Galileo has
an Intel Quark SoC X1000 SoC with two 128MB DDR3 chips
from Micron, operating at 1.5V. The two physical DRAM
modules are accessed in parallel and located on the same PCB
as the processor.

We implemented two different approaches to query the
PUF. The first approach uses a modified firmware in order
to obtain PUF measurements during the boot phase. Second,
we implemented a kernel module-based solution that enables
PUF queries during the run-time of a Linux operating system.
The kernel module is a proof-of-concept of the run-time
accessibility of the proposed DRAM PUF.

Deactivating DRAM refresh for PUF access during device
operation is a non-trivial task: when DRAM refresh cycles
are disabled, critical data (such as data belonging to the OS
or user-space programs) will start to decay and the system will
crash. In our experiments, the Intel Galileo board with Yocto
Linux crashes about a minute after DRAM refresh is disabled.
Therefore, we present a customized solution which allows
us to refresh critical code, but leaves PUF areas untouched.
This solution is based on two techniques dubbed selective
DRAM refresh and memory ballooning. The former allows for
selectively refreshing the memory regions occupied by the OS
and other critical applications so that they run normally and
do not crash. Memory ballooning, on the other hand, safely
reserves the memory region that corresponds to a logical PUF
without corrupting critical data and also protects the memory
region from OS and user-space programs accesses, to let the
cells decay during PUF measurement.

Selective DRAM Refresh. On some devices, such as the
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TABLE I
METRICS OF LOGICAL PUF INSTANCES MEASURED AT DIFFERENT DECAY TIMES.

decay
time

device family min.
Jintra

max.
Jinter

fractional
entropy
Ht/N

avg.
decay
rate

max.
fractional
intra-HD

min.
fractional
inter-HD

120s PandaBoard 0.4634 0.0102 0.0271 0.0041 0.0045 0.0038
IntelGalileo 0.7712 0.0038 0.0062 0.0009 0.0003 0.0012

180s PandaBoard 0.4382 0.0168 0.0754 0.0102 0.0083 0.0139
IntelGalileo 0.8361 0.0044 0.0169 0.0024 0.0005 0.0032

240s PandaBoard 0.4087 0.0258 0.0893 0.0159 0.0101 0.0244
IntelGalileo 0.6261 0.0049 0.0250 0.0041 0.0020 0.0057

300s PandaBoard 0.4222 0.0405 0.1478 0.0202 0.0123 0.0238
IntelGalileo 0.7944 0.0055 0.0353 0.0061 0.0013 0.0080

360s PandaBoard 0.3484 0.0342 0.1440 0.0234 0.0206 0.0279
IntelGalileo 0.8276 0.0072 0.0541 0.0093 0.0022 0.0124

PandaBoard, DRAM consists of several physical modules or
logical segments, where the refresh of each module/segment
can be controlled individually. In this case, the PUF can be
allocated in a different memory segment from the OS and user-
space programs. When querying the PUF, only the refresh of
the segment holding the PUF is deactivated, while the other
segments remain functional.

On other devices, e.g., the Intel Galileo, the refresh rate can
only be controlled at the granularity of the entire DRAM. Re-
fresh at segment granularity is not possible. However, memory
rows can be refreshed implicitly once they are accessed due
to a read or a write operation. When a word line is selected,
as a result of a memory access, the sense amplifier drives the
bit-lines to either the full supply voltage VDD or back down
to 0V, depending on the value that was in the cell. In this way,
the capacitor charge is restored to the value it had before the
charges leaked. Using the above principle, even if the refresh
of the whole memory is disabled, a set of memory rows can
be refreshed by issuing a read to one word in each of the rows.

Ballooning System Memory. Memory ballooning is a mecha-
nism for reserving a portion of the memory so as to prevent
the memory region from being used by the kernel or any
application. This approach allows to specify the physical
address (addr) and size (size) of the memory region that will
be reserved for the PUF. Once PUF memory is “ballooned”,
DRAM refresh is disabled, and selective refresh is enabled for
the non-PUF memory region. After PUF access is finished,
the balloon can be deflated and the memory can be restored
to normal use.

C. Security Assumptions
DRAM PUFs differ from classic memory-based PUFs, as

they can be evaluated during run-time. Disabling and enabling
DRAM refresh includes writing to hardware registers, a task
which can only be performed by the kernel. Furthermore,
accessing the memory dedicated to the PUF is restricted
to the kernel as well. Thus, a crucial security assumption
is that firmware and operating system are trusted and an
attacker never gains root privileges, similar to a controlled
PUF setting [7].

III. EVALUATION OF DRAM PUF CHARACTERISTICS

We performed measurements using four different Panda-
Boards and five Intel Galileo devices. Furthermore, given the
large amount of memory present, we measured two 32KB
PUF regions on each device, resulting in eight different PUFs
for the PandaBoard and ten PUFs for the Intel Galileo. Each
logical PUF was measured at five different decay times t,
with 50 measurements each. Based on these measurements we
evaluated the robustness, uniqueness, and randomness, as well
as the temperature dependency of DRAM PUFs. The results
are shown in Table I.

The characteristics of DRAM PUFs are different compared
to SRAM PUFs. Rather than being considered as an array of
bits, a DRAM PUF response is a set of flipped bits within a
memory region. Thus, classic metrics that are used to evaluate
memory-based PUFs, which are usually based on fractional
Hamming Distance (HD), do not properly reflect the properties
of DRAM PUFs. This effect is particularly noticeable when
evaluating the uniqueness of PUF instances. In case of DRAM
PUFs, it is the locations, i.e., the indices, of the bit flips, that
present the uniqueness of the PUF response. If one would
apply the fractional inter-HD, the whole 32KB measurement
would be considered, including those cells that did not flip
within the observed time period, resulting in a very low value
(in column min. fractional inter-HD in Table I), which does
not capture uniqueness to the full extent.

Thus, we use Jaccard index to evaluate the robustness and
uniqueness of DRAM PUF. The Jaccard index is a well
known metric to quantify the similarity of two sets of different
size: the index results in a value of zero if both sets share
no common elements and a value of one if both sets are
identical. In particular, based on two PUF responses m1,m2,
we construct two corresponding sets s1 and s2 that store
the indices of the flipped cells. Jaccard index J(s1, s2) is
calculated as:

J(s1, s2) =
|s1 ∩ s2|
|s1 ∪ s2|

. (1)



4

Jaccard index between pairs of measurements
0 0.2 0.4 0.6 0.8 1

P
ro

b
ab

il
it
y

0

0.05

0.1

0.15

Jinter

Jintra

Jaccard index between pairs of measurements
0 0.2 0.4 0.6 0.8 1

P
ro

b
ab

il
it
y

0

0.05

0.1

0.15

0.2

0.25

Jinter

Jintra

Fig. 2. Distribution of Jintra and Jinter values for (left) the PandaBoard and (right) the Intel Galileo.

Uniqueness and Robustness. In order to evaluate the unique-
ness of the PUF, we consider the set of indices of DRAM
cells that flipped due to decay among different PUFs. For
an ideal PUF, the value of Jinter(s1, s2) should be close to
zero, indicating that two logical PUFs rarely share flipped bits.
Indeed, as Table I shows, our DRAM PUFs depict an almost
perfect behavior with the Intel Galileo having a maximum of
Jinter = 0.0072 at t = 360s. The PandaBoard shows larger
values with a maximum value of 0.0405 at t = 300s which,
however, is still close to the optimal value of zero.

In order to quantify the inherent noise in the PUF mea-
surements and consequently PUF robustness, we computed
the Jaccard index Jintra(s1, s2) between two sets containing
the indices of flipped bits in two measurements of the same
logical PUF at identical decay times. An ideal PUF should
show values close to one, indicating that responses are stable.

Figure 2 displays the distributions of Jintra(s1, s2) and
Jinter(s1, s2) of all measurements, corresponding to identical
decay times, for both device types. A clear divide between
the two distributions indicates that individual devices can be
distinguished perfectly, while the PUF response is stable over
subsequent measurements.

Entropy. In order to generate cryptographic keys from the PUF
response, PUF measurements must exhibit sufficient entropy.
We estimate the Shannon entropy of DRAM PUF responses
as follows. We again consider the set s of indices of DRAM
cells that flipped after time t. We denote with k the cardinality
of s and with N the total number of DRAM cells. Assuming
that the flipped bits are distributed uniformly, as confirmed
by our experiments, the probability of observing one set s is:
P (v) = 1/

(
N
k

)
. The Shannon entropy of DRAM PUF for a

given decay time can thus be calculated using

Ht = log2

(
N

k

)
. (2)

Note, that simply observing the number of bits decaying
after time t has elapsed, is not sufficient for determining k,
as the bit decay will be due to two effects: (i) short-term
noise that must be corrected and (ii) stable long-term decay
characteristics. In order to approximate k, indicating the stable
PUF characteristics, multiple measurements for a single PUF
can be averaged in order to eliminate the noise component.
Table I lists the fractional entropy Ht/N computed this way.
We observe that the entropy is significantly bigger on the

PandaBoard, indicating more bit flips than on the Intel Galileo.
This is most likely due to the different technologies used to
implement DRAM cells.

Decay Dependency on Temperature. In Figure 3 (top), we
show the dependency between the temperature and the decay
rate of DRAM modules on the Intel Galileo and the Pand-
aBoard. In order to control the temperature, we used a metal
ceramic heater to heat the surface of DRAM modules to the
desired temperature.

Although temperature affects the decay rate significantly,
it does not change the decay characteristics much; instead,
it affects decay time: We observed that by using a carefully
chosen smaller decay time t′T ′ < t at a larger temperature
T ′ > T , the same PUF response can be obtained as with
decay time t at temperature T . In our experiments, we derive
the following dependency for the Intel Galileo boards:

t′T ′ = t ∗ e−0.0662∗(T
′−T ). (3)

Hence, if the PUF is evaluated at a different temperature
than during enrollment, this can be compensated through
adapting the decay time according to Equation (3). In order to
support this statement, we calculated the noise Jintra between
an enrollment measurement at room temperature (40◦C) and
a measurement taken at a different temperature by adjusting
the decay time. For this purpose, we created reference mea-
surements at room temperature with decay times tx = {120s,
180s, 240s, 300s, 360s}. In a next step, we used equivalent
decay times t′T ′ that correspond to temperatures T ′ = {40◦C,
50◦C, 60◦C} and measured the PUF accordingly. As shown
in Figure 3 (bottom), for all measurements, Jintra lies within
the usual noise level. Thus, differences in temperature can
be accommodated by adjusting decay time accordingly. An
attacker may try to change the ambient temperature in order
to influence the bit flip characteristics, but a legitimate user
can compensate the temperature effect by adjusting the decay
time. As shown in [8], such temperature dependency allows
to use DRAM as a temperature sensor. DRAM regions other
than the PUF region can be used as temperature sensors to
decide the decay time for the PUF, such that no additional
sensor is needed.

IV. FUTURE RESEARCH DIRECTIONS ON DRAM PUFS

Our work demonstrates that the proposed run-time accessi-
ble DRAM PUFs can be deployed on existing commercial
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Fig. 3. (top) Relation between the temperature and the decay rate measured on (left) the PandaBoard and (right) the Intel Galileo. (bottom)
Jintra values (i.e., similarity) of enrollment measurements taken at room temperature and measurements at higher temperatures T ′ = {40◦C,
50◦C, 60◦C}, with adjusted decay times t′T ′ .

systems as a hardware security primitive of minimal cost,
especially in IoT devices and embedded systems that lack
other security mechanisms. We, therefore, believe that our
work will continue to serve as a catalyst for higher security,
especially in low-end IoT devices currently utilized in health
care, home automation, transportation, or energy grids. The
results of this work have paved the way for future research on
DRAM PUFs.

Characteristic of DRAM PUFs. The properties of decay-
based DRAM PUFs have been further investigated. The tem-
perature dependency of DRAM decay can be further evaluated
under a wider temperature range, such as in [9], [10]. We also
anticipate more research projects considering error correction
models for DRAMs.

Potential Attacks and Countermeasures of decay-based
DRAM PUFs. One potential attack is to access the PUF and
obtain a digital copy of the PUF. In the current implementa-
tion, it requires kernel privilege to access the runtime DRAM
PUF. Thus, a controlled PUF countermeasure can be built
leveraging the privilege level to prevent the attacker from
accessing PUF response. It is also possible to attack DRAM
PUF on the physical level. Effects such as temperature, radia-
tion, DRAM disturbance error could influence the robustness
of the DRAM PUFs. Also, there may be correlation in the
locations of bit flips in the DRAM PUF responses. These
physical properties need to be further investigated.

Schemes for Key Storage and other Applications. An index-
based helper data system for key storage and a mutual authen-
tication scheme are proposed in [10]. There is only a small
percentage of bit flips in the DRAM PUF responses, and thus,
the proposed helper data system chooses a fraction of the bits
in the response to extract bit strings with high-entropy. Further,
different decay times can be used to generate more DRAM

PUF challenge-response pairs for device authentication and
software protection [9].

Novel PUFs in DRAM. Our PUFs leverage the DRAM
decay to induce bit flips. Recent works have successfully
discovered PUFs based on other operations that can cause
bit flips in DRAM, such as the rowhammer effect [11] and
changes in the latency of DRAM operations [12].

V. CONCLUSION

In this work, we presented intrinsic PUFs that can be
extracted from DRAM in commodity devices. In contrast
to existing DRAM and SRAM PUFs, we demonstrate a
system model that is able to query the PUF instance directly
during run-time using a Linux kernel module on unmodified,
commodity devices, in particular the PandaBoard and Intel
Gallileo. New metrics based on the Jaccard index have vali-
dated the robustness, uniqueness and randomness of DRAM
PUFs. Consequently, our work presents a method for device
authentication by leveraging DRAM in commodity devices. Fi-
nally, the impact of our research approach has been significant
as other researchers have used our initial work as an inspiration
for a more extensive investigation of the properties of DRAM,
as a basis for the implementation of DRAM-based security
schemes and cryptographic protocols, and as a motivation for
the development of other types of DRAM PUFs.
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