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Survey of Transient Execution Attacks and Their Mitigations

WENJIE XIONG and JAKUB SZEFER, Dept. of Electrical Engineering, Yale University

Transient execution attacks, also known as speculative execution attacks, have drawn much interest in the last
few years as they can cause critical data leakage. Since the first disclosure of Spectre and Meltdown attacks in
January 2018, a number of new transient execution attack types have been demonstrated targeting different
processors. A transient execution attack consists of two main components: transient execution itself and a
covert channel that is used to actually exfiltrate the information.Transient execution is a result of the fun-
damental features of modern processors that are designed to boost performance and efficiency, while covert
channels are unintended information leakage channels that result from temporal and spatial sharing of the
micro-architectural components. Given the severity of the transient execution attacks, they have motivated
computer architects in both industry and academia to rethink the design of the processors and to propose
hardware defenses. To help understand the transient execution attacks, this survey summarizes the phases
of the attacks and the security boundaries across which the information is leaked in different attacks.This
survey further analyzes the causes of transient execution as well as the different types of covert channels and
presents a taxonomy of the attacks based on the causes and types. This survey in addition presents metrics for
comparing different aspects of the transient execution attacks and uses them to evaluate the feasibility of the
different attacks. This survey especially considers both existing attacks and potential new attacks suggested
by our analysis. This survey finishes by discussing different mitigations that have so far been proposed at the
micro-architecture level and discusses their benefits and limitations.
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1 INTRODUCTION

In the past decades, computer architects have been working hard to improve the performance
of computing systems. Different optimizations have been introduced in the various processor
micro-architectures to improve the performance, including pipelining, out-of-order execution, and
branch prediction [51]. Some of the optimizations require aggressive speculation of the executed
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Fig. 1. Phases of transient execution attacks.

instructions, which leads to transient execution of certain instructions. At the Instruction Set

Architecture (ISA) level, today’s processors behave correctly and return correct results. How-
ever, in the majority of today’s processors, the complicated underlying micro-architectural states
are modified during the transient execution, and data can be leaked from these micro-architectural
states, even if there is no leak at the ISA level. For example, while waiting for a conditional branch
to be resolved, branch prediction is used to predict whether the branch will be taken or not, and the
processor begins to speculatively execute down the predicted control flow path before the outcome
of the branch is known. Such speculative execution of instructions causes the micro-architectural
state of the processor to be modified, even if instructions are executed down an incorrectly spec-
ulated control flow path. The execution of the instructions down the incorrectly speculated path
is called transient execution—because the instructions execute transiently and should ideally dis-
appear with no side effects if there was mis-speculation. When a mis-speculation is detected, the
architectural and micro-architectural side effects should be cleaned up—but this is not done in the
majority of today’s processors, leading to a number of recently publicized transient execution at-
tacks [16, 64, 72, 84, 102, 113, 115, 123]. The attacks enable data leakage across different security
boundaries in computing systems. The micro-architectural states of a processor are today espe-
cially not captured by the ISA specification, and the micro-architectural vulnerabilities cannot be
found or analyzed by only examining the processor’s ISA.

The complicated micro-architectural states arise from the various optimizations realized in to-
day’s processors. Besides focusing on pure performance optimization, many processors are also de-
signed to share hardware units in order to reduce area and improve power efficiency. For example,
hyper-threading allows different programs to execute concurrently on the same processor pipeline
by sharing the execution and other functional units among the hardware threads in the pipeline.
Also, because supply voltage does not scale with the size of the transistors [87], modern processors
use multi-core designs. In multi-core systems, caches, memory-related logic, and peripherals are
shared among the different processor cores. Sharing of the resources has led to numerous timing-
based side and covert channels [50, 76, 109, 142]—the channels can occur independent of transient
execution or together with transient execution, which is the focus of this survey.

Transient execution combined with covert channels results in transient execution attacks, which
can compromise the confidentiality of the system. As shown in Figure 1, during such attacks, the
secret (a.k.a., sensitive data) is available in the duration of the transient execution—this differen-
tiates the transient execution attacks from conventional covert channel attacks where the data is
assumed to be always available to the sender, not just during transient execution.1 After the secret

1There are also attacks using the timing difference in transient execution, e.g., [33, 34, 36, 36, 56]. These attacks are still

conventional covert channel attacks, where the timing difference comes from the prediction units. Thus, these attacks are

not in the scope of this article but are listed in Section 8.
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data is accessed during transient execution and encoded into a covert channel, the secret data can
later be extracted, i.e. decoded, by the attacker from the covert channel.

A number of transient execution attack variants have been demonstrated, e.g., Spectre [10, 21,
64, 65, 77, 78, 104, 111], Meltdown [16, 23, 63, 72, 111], Foreshadow [113, 123], LazyFP [107], Micro-

architectural Data Sampling (MDS) [84, 102, 115], and Load Value Injection (LVI) [114].
These attacks have been shown to allow data leaks across different security boundaries, e.g., across
different privilege levels, between the SGX enclave and the rest of the system, across sandbox
isolation, and so forth. The transient execution attacks have been assigned 9 Common Vulner-

abilities and Exposures (CVE) IDs out of 14 CVE IDs that correspond to vulnerabilities about
gaining information on Intel products in 2018, and 4 out of 9 in 2019, according to the CVE Details
database [24]. These attacks also affect other vendors, such as AMD or Arm [4, 5, 16].2

In addition, these attacks have raised a lot of interest and motivated computer architects to
rethink the design of processors and propose a number of hardware defenses [8, 38, 60–62, 68,
97, 98, 100, 122, 125, 132]—this survey summarizes the attacks and the hardware defenses, while
software-based defenses are summarized in existing work [16].

1.1 Outline and Contributions

This article provides a survey of existing transient execution attacks from January 2018 to December
2020. We start by providing background on the micro-architectural features that lead to the attacks.
We then define the transient execution attacks and summarize the phases and attack scenarios. We
analyze the types of transient execution and covert channels leveraged by the transient execution
attacks to show the root causes of these attacks. In the end, we discuss the mitigation strategies for
the transient execution and covert channels. The contributions of this survey are the following:

• We summarize different attack scenarios and the security boundaries across which secrets
are leaked in the different attacks.

• We provide a taxonomy of the existing transient execution attacks by analyzing the causes
of transient execution that they leverage, and we propose metrics to compare the feasibility
of using different transient execution types for attack.

• We summarize and categorize the existing and potential timing-based covert channels in
micro-architecture states that can be used with transient execution attacks, and also propose
metrics to compare these covert channels.

• We discuss the feasibility of the existing attacks based on the metrics we propose.
• We compare the different mitigation strategies that have been so far designed at the micro-

architectural level in various publications.

2 BACKGROUND

This section gives background about various optimizations in micro-architecture that lead to the
transient execution, and thus in turn contribute to the transient execution attacks. Many more
details about processor micro-architecture and pipeline details are available in computer architec-
ture textbooks, e.g., [51]. This section also discusses conventional side channels and covert chan-
nels based on timing; many more details about the timing channels are given in other surveys,
e.g., [109]. The two concepts combined lead to the transient execution attacks, which is the focus
of the rest of this survey.

2No CVEs were published in 2020 when this survey was being prepared.
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2.1 Performance Optimizations That Enable Transient Execution Attacks

Due to the data dependencies between instructions, the CPU pipeline sometimes has to stall un-
til the dependencies are resolved. To reduce the stalls in the pipeline and to keep the pipeline
full, many performance-improving optimizations have been proposed and implemented in today’s
commodity processors.

Out-of-Order Execution (OoO): In OoO, some of the younger instructions can be executed
earlier than the older instructions (based on program order) if all the dependencies of the younger
instructions are available. OoO helps to improve instruction-level parallelism. In OoO, the life cy-
cle of instruction is fetch, dispatch, issue (a.k.a. execute), and retire (a.k.a. commit). The instruction
is first fetched into the pipeline, and after decoding, micro-ops are dispatched. Once all the depen-
dencies of the instruction are satisfied, an instruction (or micro-op) is issued for execution. OoO
uses a reorder buffer (ROB) to hold the instructions (or micro-ops) and execution results and to
retire each instruction (or micro-op) in the program order. Instructions (or micro-ops) are retired
(committed) when they reach the head of ROB.

Speculative Execution: Speculative execution occurs when there is a control flow instruction
for which the processor does not know the result yet. For example, a branch condition needs to be
computed before the branch result (taken or not taken) can be obtained. To improve performance,
processors often speculate the outcome of such instructions and begin to execute instructions
down the speculated path. As the instructions execute down the mis-speculated path, they may
access data that should otherwise not be accessible if the speculation was not allowed. Later, ei-
ther speculation is confirmed to be correct or there is a mis-speculation, and instructions that
began to execute down the mis-speculated path are squashed (cleared from the pipeline). After
mis-speculation, the processor should clean up all architectural and micro-architectural states to
create an illusion as if these instructions never executed. In addition to control flow, speculation
may also happen in prefetching and value prediction (not used in commodity processors).

Delayed Fault Validation: Similar to speculation for control flow, processors speculate that
there is no fault and continue execution even when there is a potential fault. Fault checking es-
pecially can be delayed, and some processors allow for instructions to continue executing, during
which time the data (that should have been inaccessible due to the fault) can be accessed and
micro-architecture states can be modified. If there is any fault, the processor then should clean up
all the architectural and micro-architectural state changes.

Caching: One of the key optimizations for memory-related operations is caching. Modern pro-
cessors have multiple levels of caches, typically L1, L2, and Last Level Cache (LLC). A cache
hit occurs when a piece of data is found in a cache, and the processor does not need to go to the
main memory to fetch the data. Based on the level of cache where data is found, it can be up to
about 500× faster to get data if it is a cache hit. Other cache-like structures in processors, such as
translation lookaside buffer (TLB), can also offer performance improvement by caching data
or metadata.

Sharing of Functional Units in Hyper-Threading within a Processor Core: To reduce area
and power consumption, functional units are shared among hardware threads in hyper-threading.
Today, most processors are built with two-thread Simultaneous Multi-Threading (SMT) con-
figurations. In SMT, in the execution stage, the processor decides with instructions from which
threads can execute based on the available execution units. It is expected that not all programs
need all the units at the same time, so the sharing allows for good performance while reducing the
need to duplicate all units among all SMT threads. However, sharing also creates situations when
two processes try to use the same unit—there may be contention and difference in the timing of
the execution.

ACM Computing Surveys, Vol. 54, No. 3, Article 54. Publication date: May 2021.
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Sharing of Resources among Cores in Multi-Core Processors: Similar to sharing within the
processor core, many resources are shared among cores. These include caches, prefetchers, various
buffers, memory controllers, directories, and other cache coherence-related structures, memory
busses, I/O, and so forth. Rather than each core having a separate one of these units, they are
shared to reduce hardware resources. However, the sharing, again, can create timing differences
based on the different operations.

2.2 Covert Channels

Covert channels are communication channels that are not originally designed for information
transmission but can indirectly exfiltrate the information across security boundaries [109]. The
entity sending the information is called the sender in covert channels.3 Execution of some instruc-
tions by the sender causes the state of the processor to be modified. The states can be internal
processor states or physical states such as temperature or EM emanations. Finally, the receiver
observes the state change to learn about a bit of information transmitted (or leaked) by the sender.

Timing-based covert channels, which are the focus of this survey, leverage the changes in the
processor, which can be observed by measuring the execution time of some operations in software.
The state modification can be the architectural state or the micro-architectural state. However,
because by design the processors should not leak any information from the architectural state
(e.g., two processes in different memory spaces cannot access each other’s memory), the majority
of the timing channels abuse the micro-architectural state changes, which cannot be directly read,
but which can be observed through timing differences. These covert channels are the result of the
various performance optimizations discussed in Section 2.1.

3 TRANSIENT EXECUTION ATTACK SCENARIOS

We define transient execution attacks as data exfiltration attacks that access data during transient
execution and then leverage a covert channel to leak information. The phases of these attacks are
shown in Figure 1. Although not indicated in the “transient execution attacks” name, covert chan-
nels are an essential component of the transient execution attacks, because the micro-architectural
states changed during transient execution are not visible at the architectural level and are only
accessible by using a covert channel to learn the micro-architectural state change (and thus the
secret). In this section, we summarize the attack scenarios, e.g., the attacker’s goal, the location of
the attacker, and so forth.

3.1 Attacker’s Goal: Breaking Security Boundaries

There are many security boundaries (between different privilege levels or security domains) in a
typical processor, as shown in Figure 2. The goal of the attacker of the transient execution attacks
is to learn information related to the victim’s protected data across the different boundaries. In
Figure 2, we categorize the possible privilege levels, or security domains, where the attack can
originate and wherefrom it is trying to extract data as follows:

(1) Across user-level applications: The attacker and the victim are two separate user ap-
plications, and the attacker process tries to learn the memory content of another process;
e.g., [10] demonstrates how an attacker process learns the private key of a separate victim
OpenSSH process.

3Side channel is similar to covert channel. In a side channel, the sender (a.k.a the victim) does not transmit information on

purpose, but has a vulnerability in the code to leak information.
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Fig. 2. Security boundaries in computer systems that are broken by transient execution attacks.

(2) User-level program attacking the kernel: The attacker runs in the user level and wants
to read the privileged data of the kernel; e.g., [72] demonstrates an attack that allows an
unprivileged application to dump kernel memory.

(3) Virtual machine attacking another VM: The attacker and the victim reside in two
different guest virtual machines (VMs); e.g., [10] shows it is possible for an attacker VM
to learn the private key of the OpenSSH server in the victim VM.

(4) Virtual machine attacking the hypervisor: The attacker is a guest OS and the vic-
tim is the host hypervisor; e.g., [64] demonstrates an attack against KVM that leaks the
hypervisor’s memory when the attacker has full control of the OS inside a VM.

(5) Attacking the victim running inside an enclave: The victim runs inside a security do-
main protected by some hardware scheme, such as Intel SGX [25], XOM [69], Aegis [108],
Bastion [19], Sanctum [26], and Keystone [66], and the attacker code runs outside of it;
e.g., [21] demonstrates such an attack that retrieves secret from inside the SGX enclave.

(6) Across security domains protected by software: The victim runs inside the security
domain protected by some software scheme, such as sandboxes in JavaScript, and the
attacker code runs outside of it, as shown in [64].

All of the security boundaries listed above are broken by one or more of the existing transient
execution attacks. Details about each attack type will be discussed in Section 4.7.

3.1.1 Coherent and Non-Coherent Data. We especially categorize all the data in the processor
state into coherent data and non-coherent data. The existing attacks have been shown to be able
to retrieve coherent data, as well as non-coherent data.

• Coherent data are those coherent with the rest of the system; e.g., data in caches are main-
tained by cache coherence protocol. Coherent data can be accessed by its address.

• Non-coherent data are temporarily fetched into micro-architectural buffers or registers, are
not synchronized with the rest of the system, and may not be cleaned up after use, e.g., data
in the store-to-load (STL) buffer. Thus, non-coherent data may be stale. Non-coherent
data that is left in the buffer can be of a different privilege level or security domain, so the
attacker will break the security domain when accessing the non-coherent stale data. Some
attacks [77, 107] focus on attacking buffers to retrieve such non-coherent data, which in
turn breaks the security boundaries.

3.2 Phases of the Attack

As shown in Figure 1, we divide the transient execution attacks into three phases:

(1) Setup Phase: The processor executes a set of instructions that modify the micro-
architectural states such that it will later cause the transient execution of the desired code
(called disclosure gadget) to occur in a manner predictable to the attacker. An example of
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modifying the micro-architectural states can be achieved by performing indirect jumps
to a specific address to “train” the branch predictor. The setup can be done by the at-
tacker running some setup code or triggering a setup gadget in the victim’s code so that
the micro-architectural state is set up as the attacker expects.

(2) Transient Execution Phase: The transient execution is actually triggered in this phase.
The piece of code that accesses4 and transmits the secret into the covert channel is called
disclosure gadget, following the terminology in [112]. The desired disclosure gadget exe-
cutes transiently in this phase due to the prior training in the setup phase. The instructions
belonging to the disclosure gadget are eventually squashed, and the architectural states
of the transient instructions are rolled back, but as many of the attacks show, the micro-
architectural changes caused by the disclosure gadget remain in the majority of today’s
processors, so secret data can be later decoded from the covert channel. This phase can be
executed either by the victim or by the attacker.

(3) Decoding Phase: The attacker is able to recover the data via the covert channel by run-
ning the attacker’s code or by triggering a decoding gadget in the victim’s code and ob-
serving the behavior or result of the execution.

During an attack, the Setup Phase and the Transient Execution Phase cause the transient execution
of the disclosure gadget to occur. Then, the Transient Execution Phase and the Decoding Phase

leverage the covert channel to transmit data to the attacker. Thus, the Transient Execution Phase
is critical for both accessing the secret and encoding it into a channel.

3.3 Transient Execution of the Victim vs. the Attacker

Each phase listed above can be performed by the attacker code or by the victim code, resulting in
eight attack scenarios shown in Figure 3. When a phase is performed by the victim, the attacker is
assumed to have the ability to trigger the victim to execute the disclosure gadget. We categorize
the attacks based on who is executing transiently.

3.3.1 Victim Is Executing Transiently. Figures 3(a) through 3(d) show the scenarios where the
victim is triggered to execute a disclosure gadget transiently and the attacker obtains the secret
by decoding the data from the covert channel. Because accessing the secret is conducted by the
victim transiently, all the data accessible by the victim may be exfiltrated. In these scenarios,
the attacker is assumed to be able to control or trigger the execution of the disclosure gadget
in the victim’s code. The attacker can do this by calling some victim functions with certain param-
eters. For example, in SGXpectre [21], the attacker can call the target enclave program.

Different from the conventional side and covert channels, here, the encoding phase is executed
transiently, and thus, the attack cannot be detected by simply analyzing the software semantics
of the victim code. This attack vector leverages the difference between the expected semantics of
software execution and the actual execution in hardware and is a fundamental problem in current
computer architectures.

There are two options for the setup phase. First, if the hardware component that causes tran-
sient execution, e.g., the prediction unit, is shared between the attacker and the victim, then the
attacker’s execution can manipulate the states of the prediction unit, as shown in Figures 3(c) and
3(d). The second option is that the attacker triggers a setup gadget in the victim code to set up the
transient execution, as shown in Figures 3(a) and 3(b). For the first option, the attacker is required

4In most existing attacks, the secret is not in the register file and needs to be fetched and then transmitted during transient

execution. But it is also a transient execution attack if the secret is already in the register but is transmitted during transient

execution.
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Fig. 3. Possible scenarios of transient execution attacks: (a)–(d) The attacker triggers part of the victim code

to execute transiently to leak secret data through the covert channel. (e)–(h) The attacker executes transiently

to access data that he or she does not have permission to access and encodes it into the covert channel.

to co-locate with the victim to share the prediction and to prepare some code to set up the hard-
ware to lure the victim into the desired transient execution. For the second option, the attacker is
required to understand the victim’s code and be able to trigger the setup gadget to execute with a
controlled input, e.g., by calling a function of the victim code.

Decoding data from the covert channel can be done by the attacker, as shown in Figures 3(b)
and 3(d), or by the victim, as shown in Figures 3(a) and 3(c). If the decoding is done by the victim,
the attacker may leverage the results of the victim code to infer information, or the attacker may
trigger the execution of a decoding gadget in the victim’s code and measure the time or other side
effect of the execution.

3.3.2 Attacker Is Executing Transiently. As shown in Figures 3(e) through 3(h), alternatively, the
attacker can directly obtain the secret in transient execution, then encode the data into a covert
channel and decode it to obtain the secret in the architectural state, such as in his or her memory.
Transient execution allows the attacker to access more data than is allowed in the architecture (i.e.,
ISA) level; thus, this attack is powerful. The attacker can also launch different software threads for
the setup or the decoding phases. The attacker’s code shown in Figures 3(e) through 3(h) might be
in different threads, even on different cores.

During the attack, the attacker directly obtains the secret during transient execution, and thus,
the attacker should be able to have a pointer to the location of the victim data. There might be
only the attacker code running, or the attacker and the victim running in parallel. In the scenario
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Table 1. Required Control of the Victim’s Execution in Different Attack Scenarios

Scenario in
Figure 3

Setup
Phase

Transient
Execution

Phase

Decoding
Phase

Number of
Victim

Gadgets to Be
Triggered*

Sharing
Required

during
Transient

Execution**

Sharing
Required
for Covert
Channel**

a Victim Victim Victim 2–3 No No

b Victim Victim Attacker 1–2 No Yes

c Attacker Victim Victim 2 Yes No

d Attacker Victim Attacker 1 Yes Yes

e Victim Attacker Victim 2 Yes Yes

f Victim Attacker Attacker 1 Yes No

g Attacker Attacker Victim 1 No Yes

h Attacker Attacker Attacker 0 No No

*The number shows the number of different code gadgets in the victim’s code to be triggered by the attacker. We assume

the decoding gadget is different from the disclosure gadget. The setup gadget may or may not be the same code as the

disclosure gadget, so the two gadgets can be counted as either 1 (same) or 2 (different) gadgets, giving a range of gadgets

required, as shown in the fifth column of the table.

**Here, we refer to sharing of hardware between the attacker and the victim. In addition, the attacker (or the victim) could

also have multiple software threads running and sharing hardware between the threads. We assume co-location between

the threads is possible and do not list that here.

when there is only the attacker code running, the victim’s protected data should be addressable
to the attacker or the data is in some register in the hardware; i.e., the attacker should have a way
to point to the data. In Meltdown [72], the attacker code first loads protected data by its virtual
address to a register and then transfers the data through a covert channel. When the attacker and
the victim are running concurrently, the attacker should be able to partially control the victim’s
execution or synchronize with the victim execution. For example, in MDS attacks [84, 102, 115],
the attacker needs to synchronize with the victim execution to extract useful information from the
non-coherent data of the victim in the processor’s buffers.

In micro-architectural implementations, transient execution allows the attacker to access more
data than is allowed in the architecture level. Thus, this attack leveraging the attacker’s transient
execution is implementation dependent and does not work on all the CPUs; e.g., Meltdown [72],
Foreshadow [113, 123], and MDS [84, 102, 115] are reported to work only on Intel processors.

Similar to the case when the victim is executing transiently, the setup phases and decoding
phases can also be done by the victim, resulting in four attack scenarios in Figures 3(e) through
3(h). However, in the current known attacks, the attacker always sets up, triggers the transient
execution, and decodes from the channel, which is more practical.

3.3.3 Feasibility of the Attack Scenarios. The required number of gadgets in the victim code
to be triggered and required sharing in different transient execution scenarios are summarized in
Table 1. In addition, Figure 3 shows the attack scenarios demonstrated in different publications. In
a practical attack, it is desired to have most phases to be executed by the attacker’s code and less
required sharing of hardware.

In most of the existing attacks, the attacker completes setup and decoding phases, as shown in
Figures 3(d) and 3(h), because they use fewer gadgets in the victim code and are more practical
for the attacker. Attack scenarios are also demonstrated in Figures 3(a) and 3(b) that have fewer
requirements for shared hardware. In Spectre V1, since the victim disclosure gadget can be reused
as the setup gadget for training the predictor, triggering the victim to run the setup phase does
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not require additional effort for the attacker, and thus, Figure 3(b) is also feasible. The attacker can
also use the victim’s code to complete both setup and decoding steps, as shown in Figure 3(a). In
this case, the attacker can launch the attack remotely [104].

The scenarios in Figures 3(c) and 3(e) through 3(g)require more gadgets in the victim code and
are not demonstrated in the publications so far. However, if the attacker has the ability to trigger
the victim to execute certain gadgets (as required by some of the attacks already), those scenarios
are still feasible and should be considered when designing future mitigations.

4 CAUSES OF TRANSIENT EXECUTION

Transient execution is the phenomenon where code is executed speculatively, and it is not known if
the instructions will be committed or squashed until the retirement of the instruction or a pipeline
squash event. Upon an instruction squash, not all the micro-architectural side effects are cleaned up
properly in the majority of today’s processors, causing different transient execution attacks. Hence,
all causes of pipeline squash are also causes of transient execution and need to be understood to
know what caused transient execution attacks to occur. In this section, we first discuss all possible
causes of transient execution and then propose a set of the metrics to evaluate feasibility of the
transient execution attacks.

4.1 Mis-speculation

The first possible cause of transient execution is mis-speculation. Modern computer architectures
make predictions to make full use of the pipeline to gain performance. When prediction is correct,
the execution continues and the results of the predicted execution will be used. In this way, pre-
diction boosts performance by executing instructions earlier. If the prediction is wrong, the code
executed transiently down the incorrect (mis-predicted path) will be squashed.

(1) Control Flow Prediction: Control flow prediction predicts the execution path that a
program will follow. Branch prediction unit (BPU) stores the history of past branch
directions and targets and then leverages the locality in the program control flow to make
predictions for future branches. BPU predicts whether the branch is to be taken or not
(i.e., branch direction) by a using pattern history table (PHT), and what is the target
address (i.e., branch or indirect jump target) by using the branch target buffer (BTB) or
return stack buffer (RSB). The implementation details of PHT, BTB, and RSB in Intel
processors will be discussed in Section 4.9.1.

(2) Address Speculation: Address speculation is a prediction of the address when the phys-
ical address is not fully available yet, e.g., whether two addresses are the same. It is used to
improve performance in the memory system, e.g., STL forwarding in the load-store queue
and line-fill buffer (LFB) in the cache use address speculation. The implementation de-
tails of STL and LFB in Intel processors will be discussed in Section 4.9.2.

(3) Value Prediction: To further improve the performance, while the pipeline is waiting for
the data to be loaded from the memory hierarchy on a cache miss, value prediction units
have been designed to predict the data value and to continue the execution based on the
prediction. While this is not known to be implemented in commercial architectures, value
prediction had been proposed in the literature [70, 71].

4.2 Exceptions

The second possible cause of transient execution to occur is exceptions. If an instruction causes
an exception, the handling of the exception is sometimes delayed until the instructing is retired,
allowing code to (transiently) execute until the exception is handled. There are a number of causes
of exceptions, such as a wrong permission bit (e.g., present bit, reserved bit) in Page Table Entry

ACM Computing Surveys, Vol. 54, No. 3, Article 54. Publication date: May 2021.



Survey of Transient Execution Attacks and Their Mitigations 54:11

(PTE), and so forth. A list of all the exception types or permission bit violations is summarized in
[16]. In addition, Xiao et al. developed a software framework to automatically explore the vulner-
abilities using exceptions on a variety of Intel and AMD processors [127].

Sometimes the exceptions are suppressed due to another fault, e.g., nested exceptions. For exam-
ple, when using transactional memory (Intel TSX [55]), if a problem occurs during the transaction,
all the architectural states in the transaction will be rolled back by a transaction abort, suppress-
ing the exception that occurred in the middle of the transaction [102, 115]. Another way is to put
the instruction that would cause exception in a mis-predicted branch. In this survey, even if the
exception is suppressed later, we categorize the attack to be due to exceptions.

4.3 Interrupts

Another cause of transient execution is (external) interrupts. If a peripheral device or a different
core causes an interrupt, the processor stops executing the current program, saves the states, and
transfers control to the interrupt handler. In one common implementation, when stoping execu-
tion, the oldest instruction in the ROB will finish execution, and all the rest of the instructions
in the ROB will be squashed; the instructions that were executed after the oldest instruction (but
end up being squashed) are executed transiently. After the interrupt is handled, the current pro-
gram may continue the execution; i.e., the instructions that are squashed will be fetched into the
pipeline again.

4.4 Load-to-Load Reordering in Multi-Core Processors

The fourth possible cause of transient execution is load-to-load reordering. Current x86 architec-
tures use the total store order (TSO) memory model [105]. In TSO, all observable load and store
reordering are not allowed except store-to-load reordering, where a load bypasses an older store
of a different address. To prevent a load-to-load reordering, if a load has executed but not yet re-
tired and the core receives a cache invalidation for the line read by the load, the pipeline will be
squashed. Transient execution occurs between the instruction issue and when the load-to-load
reordering is detected.

4.5 Causes of Transient Execution in Known Attacks

Not all transient execution can be leveraged in an attack, and Table 2 shows the causes of tran-
sient execution in existing attacks. (Mis-)speculation is leveraged in Spectre attacks, e.g., [64].
Address speculation is leveraged in MDS attacks [84, 102, 115] and LVI [114]. Exceptions of loads
or stores are leveraged in Meltdown attacks [72], Foreshadow attacks [113, 123], LVI [114], and so
forth. Other types of exceptions, interrupts, and load-to-load reordering are not considered to be
exploitable. Because the instructions that get squashed due to exceptions, interrupts, and load-to-
load reordering are legal to be resumed later on, no extra data is accessible to the attacker during
the transient execution.

Example code of different variants is shown in Figure 4. The victim code should allow a potential
mis-speculation or exception to happen. In Spectre V1 [64], to leverage PHT, a conditional branch
exists in the victim code followed by the gadget. Even if the condition offset < arr1_len is
not true, the disclosure gadget may still execute transiently. The disclosure gadget first fetches
the secret at arr1[offset] and then conducts a memory access whose address (arr2[sec*c])
depends on the secret value that encodes the secret in the cache states. Similarly, in Spectre V2 [64]
and V5 [65, 78], the victim code has an indirect jump (or a return from a function) that uses BTB
(or RSB) for prediction of the execution path. In Spectre V4 [77], to use STL, the victim code has
a store following a load having potential address speculation. In LVI [114], a load that triggers a
page fault (accessing trusted_ptr) will forward non-coherent data in the store buffer, which is
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Table 2. Data Leaked by Different Transient Execution Attacks
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BTB Spectre V2 [10, 21, 64] � � � � � � �
RSB Spectre V5 [65, 78] � � � � � � �

Addr.
STL Spectre V4, LVI [77, 114] � � � � � � �
LFB LVI [114] � � � � � � �

Value No commercial implementation

Exception * LVI [114] � � � � � � �
Interrupts No known attack

Load-to-load reordering No known attack
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Executes
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n Ctrl Flow * No known attack

Addr.

STL Fallout [84] � � � � � � �
LFB RIDL, ZombieLoad [102, 115] � � � � � � �
Staging buf. CROSSTALK [96] � � � � � � �

Value No commercial implementation

Exception

PF-US Meltdown (V3) [72, 111] � � � � � � �
PF-P Foreshadow (L1TF) [113, 123] � � � � � � �
PF-RW V1.2 [63] � � � � � � �
NM LazyFP [107] � � � � � � �
GP V3a [23] � � � � � � �

Interrupts No known attack

Load-to-load reordering No known attack

� indicates that the attack can leak the protected data; � indicates that the attack cannot leak the data.

*indicates all hardware components that cause the corresponding transient execution; we combine them in the same row

because the data leaked in the attacks are the same.

**Coh. Data is short for coherent data. Non-coh. Data is short for non-coherent data.

injected by a malicious store (*arg_copy = untrusted_ptr), and then the secret data addressed
by the injected value (**untrusted_ptr) is leaked. In Meltdown [72], the attacker code makes an
illegal load to cause an exception. In MDS attack [84, 102, 115], a faulty load (value=*(new_page))
forwards non-coherent data in the buffer.

4.6 Metrics for Causes of Transient Execution

If the attacker wants to launch a transient execution attack, the attacker should be able to cause
transient execution of the disclosure gadget in a controlled manner. We propose the following
metrics to evaluate the different causes of transient execution in an attack:

• Security Boundaries That Are Broken: This metric indicates the security boundaries
that are broken during the transient execution attacks—this will be discussed in Section 4.7.
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Fig. 4. Example code of transient execution attacks. Code highlighted in orange triggers transient execution.

Code highlighted in yellow with dashed frame is the disclosure gadget.

• Required Control of the Victim’s Execution: This metric evaluates whether the attacker
needs to control the execution of victim code—details will be discussed in Section 4.8.

• Required Level of Sharing: This metric evaluates how close the attacker should co-locate
with the victim and whether the attacker should share memory space with the victim to
trigger the transient execution in a controlled manner—details will be discussed in Sec-
tion 4.9.

• Speculative Window Size: This metric indicates how many instructions can be executed
transiently—the speculation window size will be discussed in more detail in Section 4.10.

4.7 Security Boundaries That Are Broken in Different Attacks

As discussed in Section 3.1, the attacker’s goal is to access the coherent or non-coherent data across
the security boundaries in the system. Table 2 lists the type of data and the security boundaries
across which the data can be leaked in the known transient execution attacks, assuming all the
instructions in the disclosure gadget can execute transiently and the covert channel can transmit
information to the attacker.

If the victim is executing transiently, the disclosure gadget can read any coherent data that
the victim could access architecturally, even if the semantics of the victim code do not intend it to
access the data [64]. Hence, in these attacks, the attacker can break the isolation between the victim
and the attacker and learn data in the victim’s domain. For example, the SWAPGS instruction is
a privileged instruction that is usually executed after switching from user-mode to kernel-mode.
If SWAPGS is executed transiently in the kernel-mode in the incorrect path, kernel data can be
leaked [12]. When the victim is executing transiently, the attacker can also learn the non-coherent
data (e.g., stale data) and also data that depends on non-coherent data (e.g., data in an address that
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depends on non-coherent data). For example, in Spectre V4 [77], stale data that contains the address
of the secret data in the store buffer is forwarded to the younger instructions transiently, and the
disclosure gadget accesses and transmits the secret data to the attacker. As another example, in
LVI attack [114], the attacker injects malicious value through buffers, such as STL or LFB, causing
a victim’s transient execution that depends on a value controlled by the attacker and potentially
leaks the value in an address controlled by the attacker.

If the attacker is executing transiently, transient execution allows the attacker to access illegal
data directly. As shown in Table 2, the security boundaries that are broken depend on the causes of
transient execution. In some processor implementations, even if a load causes an exception due to
permission violation, the coherent data might still be propagated to the following instructions and
learned by the attacker. For example, in Meltdown [72], privileged data is accessible transiently
to an unprivileged user even if the privileged bit in the page table is set. In L1 terminal fault

(L1TF) [123], secret data in the L1 cache is accessible transiently even if the present bit in the
page table is not set. In Table 2, the attacks leveraging exceptions are categorized by the cause
of the exception, e.g., page fault (PF), and the related permission bit. Non-coherent data present
in the micro-architecture buffers, e.g., LFBs or store buffer (STB), can sometimes be accessed by
the attacker in transient execution [84, 102, 115]. In addition, in CROSSTALK [96], a hardware
buffer called the staging buffer is discovered. The staging buffer is used for some type of off-core
reads; e.g., it is used by the RDRAND instruction that requests Digital Random Number Generator

(DRNG), and the CPUID instruction that reads from Machine-Specific Registers (MSRs). The
staging buffer is shared across cores, and thus, the CROSSTALK paper demonstrated a cross-core
attack where the victim fetched some data from DRNG, and the attacker then learned the random
number stored in the staging buffer during transient execution.

4.8 Required Control of the Victim’s Execution

For the attacks leveraging mis-speculation, (mis-)training is an essential setup phase to steer the
control flow to execute the desired disclosure gadget. The (mis-)training can be part of victim
code, which is triggered by the attacker, as shown in Figure 3(b) and Table 1. In the example of
Spectre V1, the attacker can first provide inputs to execute the setup gadget to train the branch
predictor (i.e., PHT) to execute the target branch, because in this way the training code will always
share the branch predictor with the attack code. In this case, the attacker should be able to control
the execution of victim code. The (mis-)training code can also be a part of the attacker’s code and
run in parallel with the victim code, as shown in Figure 3(d), e.g., in Spectre V2. Then, it does not
require control of the victim’s execution for setup, but it requires the attacker’s training thread
and the victim’s thread should be co-located to share the same prediction unit (e.g., BTB). Further,
to share the same entry of the prediction unit, if the prediction unit is indexed by physical address,
the attacker and the victim should also share the same memory space to share the entry, which
will be discussed in the next subsection.

For the attacks that leverage exceptions, the instructions that follow the exception will be ex-
ecuted transiently, and thus, no mis-training is required, but the attacker needs to make sure
the disclosure gadget is located in the code such that it is executed after the exception-causing
instruction.

4.9 Required Sharing to Setup Transient Execution

As shown in Table 1, in some scenarios, the setup phase and the transient execution phase are run
by different parties, e.g., Figures 3(c) through 3(f), or in the attacker’s different software threads,
e.g., Figures 3(g) and 3(h). These cases require that the setup phase shares the same prediction
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unit (entry) with the transient execution phase. One common attack scenario is that the attacker
mis-trains the prediction unit to lure the execution of the disclosure gadget of the victim, e.g.,
Figure 3(d). Hardware sharing can be the following:

• Same thread: The attacker and the victim (if both of them are executing) or the attacker’s
software threads (if only the attacker is executing) are running on the same logical core
(hardware thread) in a time-sliced setting, and there might be context switches in between.

• Same core, different threads: The attacker and the victim (if both of them are executing)
or the attacker’s threads (if only the attacker is executing) are running on different logical
cores (hardware threads) through SMT on the same physical core.

• Same chip, different cores: The attacker and the victim (if both of them are executing) or
the attacker’s threads (if only the attacker is executing) are on different CPU cores but are
sharing LLC, memory bus, and other peripheral devices.

• Same motherboard, different chip: The attacker and the victim (if both of them are
executing) or the attacker’s threads (if only the attacker is executing) share memory bus
and peripheral devices.

Some prediction units have multiple entries indexed by address or thread ID, and in that case, the
attacker needs to share the same entry of the prediction unit with the victim during the setup. To
share the same entry, the attacker needs to control the address to map to the same predictor entry
as the victim. The address space can be one of the following:

• In the same address space: In this case, the attacker and the victim have the same virtual-
to-physical address mapping.

• In different address spaces with shared memory: In this case, the attacker and the
victim have different virtual-to-physical address mappings, but some of the attacker’s pages
and the victim’s pages map to the same physical pages. This can be achieved by sharing
dynamic libraries (e.g., libc).

• In different address spaces without shared memory: The attacker and the victim
have different virtual to physical address mapping. Further, their physical addresses do not
overlap.

In the following, we discuss the level of sharing required to trigger transient execution of
disclosure gadget for an attack leveraging mis-speculation. In particular, the scenario depends
on the implementation, and thus, we discuss each of the prediction units in Intel processors in
detail.

4.9.1 Control Flow Prediction. To predict the branch direction, modern branch predictors use
a hybrid mechanism [32, 57, 81, 83, 106]. One major component of the branch predictor is the
PHT. Typically, a PHT entry is indexed based on some bits of the branch address, so a branch at
a certain virtual address will always use the same entry in the PHT. In each entry of the PHT, a
saturating counter stores the history of the prior branch results, which in turn is used to make
future predictions.

To predict the branch targets, a BTB stores the previous target address of branches and jumps.
Further, a return instruction is a special indirect branch that always jumps to the top of the stack.
The BTB does not give a good prediction rate on return instructions, and thus, RSB has been
introduced in commercial processors. The RSB stores N most recent return addresses.
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Table 3. Level of Sharing and (Mis-)training the Prediction Unit on Intel Processors
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“–” indicates the prediction unit is not possible to be trained under the corresponding sharing setting. Otherwise,

the prediction unit can be trained and “f(virtual addr)” indicates the prediction unit is indexed by a function of the

virtual address, “f(physical addr)” indicates the prediction unit is indexed by a function of the physical address, and

“not by address” indicates the prediction unit is not indexed by addresses.
a Conflicting results are presented in different publications [34, 64].
b Most OSs overwrite RSBs on context switches.
c STL is possible after context switch but not on SGX enclave exit.
d In [102], it is indicated that there could be other structures that forward data speculatively.

In Intel processors, the PHT and BTB5 are shared for all the processes running on the same
physical core (same or different logical core in SMT). The RSB is dedicated to each logical core
in the case of hyper-threading [78]. Table 3 shows whether the prediction unit can be trained
when the training code and the victim are running in parallel in different settings. The results are
implementation dependent and Table 3 shows the result from Intel processors.

The prediction units sometimes have many entries, and the attacker should use the same entry
as the victim for mis-training. The attacker and the victim will use the same entry only if they
are using the same index. When the prediction unit is indexed by virtual address, the attacker can
train the prediction unit from another address space using the same virtual address as the victim
code. If only part of the virtual address is used as the index, which is shown as f(virtual addr)
in Table 3, the attacker can even train with an aliased virtual address, which maps to the same
entry of the prediction unit as the victim address. The RSB is not indexed by the address; rather, it
overflows when many nested calls are made, and this creates conflicts when there are more than
N nested calls, and will cause mis-speculation.

5In [34], the authors did not observe BTB collision between logical cores. However, it is demonstrated that the attacker can

mis-train the indirect jump of a victim when they are two hyper-threads sharing the same physical core in [64]. Thus, we

think BTB is shared across hyper-threads in some of the processors.
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4.9.2 Address Speculation. One of the uses of address speculation is in the memory disambigua-
tion to resolve read-after-write hazards, which are the data dependencies between instructions
in out-of-order execution. In Intel processors, there are two known uses of address speculation.
First, loads are assumed not to conflict with earlier stores with unknown addresses, and specu-
latively STL forwarding will not happen. When the address of a store is later resolved, the ad-
dresses of younger loads will be checked. And if store-to-load forwarding should have happened
and data dependence has been violated, the loads will be flushed, and the new data is reloaded
from the store, as shown in the attacks [77, 99]. Second, for performance, when the address of a
load partially matches the address of a preceding store, the store buffer will forward the data of
the store to the load speculatively, even though the full addresses of the two may not match [84].
In the end, if there is mis-speculation, the load will be marked as faulty, flushed, and reloaded
again.

Another use of address speculation is in conjunction with the LFB, which is the buffer storing
cache-lines to be filled to the L1 cache. LFB may forward data speculatively without knowledge of
the target address [102, 115]. Address speculation may also be used in other hardware structures
in Intel processors, as indicated in [102].

To trigger address speculation, the availability of the address should be delayed to force the
hardware to predict the address. One way is to make the address calculation depend on some
uncached data, as in Spectre V4 [77]. Another way is to use a newly mapped page, so that
the physical address is available only after OS handles the page-in event, as in [115]. In an ex-
treme case, the speculation can even be caused by a NULL pointer or an invalid address, and then
the error is suppressed in the attacker code, as in attack [102]. In STL, the entries are indexed by
a function of physical addresses. In this case, the training code needs to share memory space with
the victim to achieve an attack.

4.9.3 Value Prediction. There is no commercial processor that implements value prediction yet.
Thus, there are no known exploits that abuse value prediction. However, similar to control flow
prediction, if the predictor is based on states that are shared between different threads and not
cleaned up during context switch, the prediction can be hijacked by the attacker.

4.10 Speculative Window Size

To let an attack happen, there should be a large enough speculative window for the disclosure
gadget to finish executing transiently, as shown in Figure 1. The speculative window size is the
window from the time the transient execution starts (instruction fetch) to the time the pipeline is
squashed. In attacks leveraging mis-speculation, the speculative window depends on the time the
prediction is resolved. In a conditional branch, the time depends on the time to resolve the branch
condition; in indirect jump, this depends on the time to obtain the target address; and in address
speculation, this depends on the time to get the virtual and then the physical address. In [79],
a tool called Speculator is proposed to reverse-engineer the micro-architecture using hardware
performance counters. The results of Speculator show that the speculative window of branches
that depend on uncached data is about 150 cycles on Intel Broadwell, about 300 cycles on In-
tel Skylake, and about 300 cycles on AMD Zen, and the speculative window of STL is about 55
cycles on Intel Broadwell. In attacks leveraging exceptions, the speculative window depends on
the implementation of exceptions. To make the speculative window large enough for the dis-
closure gadget, the attacker can delay obtaining the result of the branch condition or the ad-
dresses by leveraging uncached loads from main memory, chains of dependent instructions, and
so forth.

ACM Computing Surveys, Vol. 54, No. 3, Article 54. Publication date: May 2021.



54:18 W. Xiong and J. Szefer

5 COVERT CHANNELS

Transient execution enables the attacker to access the secret data transiently, and a covert chan-
nel6 is required for the attacker to eventually obtain the secret data. There is a distinction between
conventional channels, where the encoding happens in the software execution path, and transient

execution channels, where the encoding phase is executed transiently. In this survey and this sec-
tion, we focus on covert channels that can be used in transient execution attacks; however, these
can also be used as conventional covert channels. There are two parties in a covert channel: the
sender and the receiver. In the covert channels, the sender execution will change some micro-
architectural states and thus encode information into the channel. Meanwhile, the receiver will
observe the change to extract information, e.g., by observing the execution time.

5.1 Assumptions about Covert Channels

This survey focuses on covert channels that do not require physical presence and that only require
the attacker’s software (or software under the attacker’s control) to be executing on the same
system as the victim. Thus, we do not consider physical channels, such as power [39], EM field [80],
acoustic signals [6, 40], and so forth. There are certain physical channels that can be accessed
from software and not require physical presence, such as temperature [128]. However, thermal
conduction is slow and the bandwidth is limited.

When considering channels that do not require a physical presence, in general, any sharing of
hardware resources between users or programs can lead to a covert channel [119]. The receiver
user or program can try to observe the states of the hardware through the execution time, the
values of hardware performance counters (HPCs), or system behavior. The most commonly
used observation by the receiver of the covert channels is the timing of execution. In today’s
processors, components are designed to achieve a better performance, and thus, the execution
time contains information about whether a certain hardware unit is available during execution
(e.g., port), whether the micro-architectural states are optimal for the code (e.g., cache hits or
misses), and so forth. To observe the hardware states via timing, a timer is needed. In x86, the
rdtscp instruction can be used to read a high-resolution timestamp counter of the CPU, and thus
can be used to measure the latency of a chosen piece of code. When the rdtscp is not available, a
counting thread can be used as a timer [103].

The receiver can also gain information from HPCs. HPCs have information about branch predic-
tion, cache, TLB, and so forth, and have been used in covert channel attacks [36]. However, HPCs
must be configured in kernel mode [27], and thus are not suitable for unprivileged attackers.

The receiver can further observe the state of the hardware by the system behaviors. In
Prime+Abort attack [30], for example, Intel Transactional Synchronization Extensions

(TSXs) [55] can be exploited to allow an attacker to receive an abort (call-back) if the victim process
accessed a critical address.

In transient execution attacks, several covert channels can also be used in series. Here, we focus
on the channels where the receiver can eventually decode data from the architectural states, e.g.,
values in register files. For example, in the Fetch+Bounce covert channel [99], first, the secret is
encoded into the TLB states, which affect the STL forwarding, and then a cache Flush+Reload
covert channel is used to observe the STL forwarding results. The first channel can only be ob-
served by instructions in transient execution, and the states will be removed when the instruction
retires. We only consider the second covert channel to be critical for transient execution attack
because it allows the attacker to observe the secret from the architectural states.

6The channel is considered a covert channel, not a side channel [64], because the attacker has control over the disclosure

gadget, which encodes the secret.
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Fig. 5. Steps for the sender and the receiver to transfer information through volatile covert channels. The yel-

low box shows the shared resource. The solid (dashed) arrow shows the shared resource is (is not) requested

or used by the corresponding party.

5.2 Types of Covert Channels

We categorize the covert channels into volatile channels and persistent channels. In volatile chan-
nels, the sender and the receiver share the resource on the fly, and no states are changed; e.g.,
the two parties use a port or some logic concurrently. There is resource contention when the
sender and the receiver communicate using this type of channel. In persistent channels, the sender
changes the micro-architectural states, and the receiver can observe the state changes later, e.g.,
change of cache state. Although the states may be changed later, we call them persistent channels
to differentiate from the volatile channels.

5.3 Volatile Covert Channels

In a volatile covert channel, there is contention for hardware resources between the sender and the
receiver on the fly, and thus, the two should run concurrently, for example, as two hyper-threads
in SMT processors, or running concurrently on two different cores. Another scenario is that the
sender and the receiver are two parts of code in the same software thread that their instructions
are scheduled to execute concurrently due to OoO [37]. As shown in Figure 5, in a volatile channel,
the receiver first measures the baseline execution time when the sender is not using the shared
resource. Then, the sender causes contention on the shared resource or not, depending on the bit of
the message to be sent, while the receiver continues to measure the execution time. If the execution
time increases, the receiver knows the sender is using the shared resource at the moment.

Execution units, ports, and buses are shared between the hyper-threads running concurrently
on the same physical core and can be used for covert channels [2, 10]. There is also a covert channel
leveraging the contention in the floating-point division unit [37]. L1 cache ports are also shared
among hyper-threads. In Intel processors, L1 cache is divided into banks, and each cache bank can
only handle a single (or a limited number of) requests at a time. CacheBleed [137] leverages the
contention L1 cache bank to build a covert channel. Later, Intel resolved the cache bank conflicts
issue with the Haswell generation. However, MemJam [86] attack demonstrates that there is still
a false dependency of memory read-after-write requests when the addresses are of the same L1
cache set and offset for newer generations of Intel processors. This false dependency can be used
for a covert channel. As shown in Table 4, the covert channel in execution ports and L1 cache
ports can lead to covert channels within the same thread when the sender and the receiver code
are executed in parallel due to OoO and between hyper-threads in the SMT setting.

Memory bus serves memory requests to all the cores using the main memory. In [126], it is
shown that the memory bus can act as a high-bandwidth covert channel medium, and covert
channel attacks on various virtualized x86 systems are demonstrated.
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Table 4. Known Micro-architectural Covert Channels

Level of Sharing

Covert Channel Type
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Bandwidth

Required
Time Resolution
of the Receiver

(CPU cycles)

Volatile
Covert
Channels

Execution Ports [2, 10, 119] � � � � Not given 50 vs. 80

FP division unit [37] � � � � ∼70kB/s 314 vs. 342

L1 Cache Ports [86, 137] � � � � Not given 36 vs. 48

Memory Bus [126] � � � � ∼700 B/s 2,500 vs. 8,000

Persistent
Covert
Channels

AVX2 unit [104] � � � � >0.02B/s 200 vs. 550

PHT [35, 36] � � � � Not given 65 vs. 90

BTB [34, 122] � � � � Not given 56 vs. 65

STL [56] � � � � Not given 30 vs. 300

TLB [42, 53, 99] � � � � ∼5kB/s per set 105 vs. 130a

L1, L2 (tag, LRU) [62, 129, 130] � � � � ∼1MB/s per cache entry 5 vs. 15b

LLC (tag, LRU) [15, 76] � � � � ∼0.7MB/s per set 500 vs. 800

Cache Coherence [111, 135] � � � � ∼1MB/s per cache entry 100 vs. 250c

Cache Directory [134] � � � � ∼0.2MB/s per slice 40 vs. 400

DRAM row buffer [93] � � � � ∼2MB/s per bank 300 vs. 350

� indicates that the attack is possible to leak the protected data; � indicates that the attack cannot leak the data.
a Depending on the level of TLB used, the required time resolution varies. The biggest one is shown.
b Shows the time resolution for covert channel using L1 cache.
c Depending on the setup, the required time resolution varies. The biggest one is shown.

5.4 Persistent Covert Channels

In a persistent channel, the sender and the receiver share the same micro-architectural states, e.g.,
registers, caches, and so forth. Different from volatile covert channels, the state will be memorized
in the system for a while. And the sender and the receiver do not have to execute concurrently.
Depending on whether the state can only be used by one party or can be directly accessed by
multiple parties, we classify the persistent channels into occupancy based and encode based, as
shown in Figure 6.

5.4.1 Occupancy-Based Persistent Covert Channels. When a state or data can only be used by
one party (e.g., registers, cache), an occupancy-based covert channel may be built. The sender can
occupy the states or data to affect the execution of the receiver.
• Eviction-Based Persistent Channels: In this channel, the sender and the receiver will compete

and evict the other party to occupy some states to store their data or metadata to (de-)accelerate
their execution. One example of the eviction-based channel is the Prime+Probe attack [45, 91, 92,
131, 134]. The receiver first occupies a cache set (i.e., primes). Then, the sender may use the state
for his or her data or not, depending on the message to be sent. And in the end, the receiver reads
(i.e., probes) his or her data that were used to occupy the cache set in the first step to see whether
those data are still in the cache by measuring the timing, as shown in the first row of Figure 6. Other
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Fig. 6. Steps for the sender and the receiver to transfer information through different types of persistent

covert channels.

examples of the eviction-based channel are cache Evict+Time attack [9, 91], the covert channel in
the DRAM row buffer [93].

Another possible contention is that the sender needs to use the same piece of data (e.g., needs
exclusive access to the data for write), and thus, the receiver’s copy of data can be invalidated. Some
state is used for tracking the relationship of data in different components, which can cause the data
in one component to be invalidated. For example, a cache coherency policy can invalidate a cache
line in a remote cache, and thus, it results in a covert channel between threads on different cores
on the same processor chip [111, 135]. The cache directory keeps the tags and cache coherence
state of cache lines in the lower levels of cache in a non-inclusive cache hierarchy and can cause
eviction of a cache line in the lower cache level (a remote cache relative to the sender) to build a
covert channel [134].
• Reuse-Based Persistent Channels: In this channel, the sender and the receiver will share some

data or metadata, and if the data is stored in the shared state, it could (de-)accelerate both of their
execution. The cache Flush+Reload attack [44, 136] transfers information by reusing the same
data in the cache. The receiver first cleans the cache state. Then, the sender loads the shared data
or not. And in the end, the receiver measures the execution time of loading the shared data, as
in Figure 6. If the sender loads the shared data in the second step, the receiver will observe faster
timing compared to the case when the sender does not load the shared data. There are other reuse-
based attacks, such as the Cache Collision attack [13] and the cache Flush+Flush attack [43].

Prediction units can also be leveraged for such covert channels due to a longer latency for mis-
speculation. For example, PHT [22, 33, 35, 36, 139], BTB [34, 122], and STL [56] have been demon-
strated to be usable for constructing covert channels. For example, when sharing BTB, the sender
and the receiver use the same indirect jump source, ensuring the same BTB entry is used. If the
receiver has the same destination address as the sender, the BTB will make a correct prediction,
resulting in a faster jump.

5.4.2 Encode-Based Persistent Covert Channels. In encode-based persistent covert channels, the
sender and the receiver can both directly change and probe the shared state. One example of such
a channel is the AVX channel [104]. There are two AVX2 unit states: power-off and power-on. To
save power, the CPU can power down the upper half of the AVX2 unit by default. In step 2, if the
sender then uses the AVX2 unit, it will power on the unit for at least 1 ms. In step 3, the receiver
can measure whether the AVX2 unit is powered on by measuring the time of using AVX2 unit. In
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Fig. 7. Example disclosure gadgets for different covert channels.

this way, the sender encodes the message into the state of the AVX2 unit, as shown in Figure 6.
Other examples are the covert channels leveraging cache LRU states [15, 62, 129].

5.5 Disclosure Gadget

The covert channel is used in the disclosure gadget to transfer the secret to be accessible to the
attacker architecturally. The disclosure gadget usually contains two steps: (1) load the secret into
a register and (2) encode the secret into a covert channel. As shown in Figure 7, the disclosure
gadget code depends on the covert channel used. For covert channels in the memory hierarchy
(e.g., cache side channel), it will consist of memory access whose address depends on the secret
value. For AVX-based covert channels, the disclosure gadget encodes the secret by using (or not
using) AVX instruction.

5.6 Metrics for Covert Channels

We propose the following metrics to compare different covert channels:

• Level of Sharing: This metric indicates how the sender and the receiver should co-locate.
As shown in Table 4, some of the covert channels only exist when the sender and the receiver
share the same physical core. Other attacks exist when the sender and the receiver share
the same chip or even the same motherboard.

• Bandwidth: This metric measures how fast the channel is. The faster the channel, the faster
the attacker can transfer the secret. Table 4 compared the bandwidth of different covert
channels. Usually, the bandwidth is measured in a real system considering the noise from
activities by other software and the operating system.

• Time Resolution of the Receiver: As shown in Figures 5 and 6, the receiver needs to
measure and differentiate different states. For a timing channel, the time resolution of the
receiver’s clock decides whether the receiver can observe the difference between the sender
sending 0 or 1. The last column of Table 4 shows the timing difference between states. Some
channels, such as cache L1, require a very high-resolution clock to differentiate 5 cycles
from 15 cycles, while the LLC covert channel only needs to differentiate 500 cycles from
800 cycles, and the receiver only needs a coarse-grained clock.

• Retention Time: This metric measures how long the channel can keep the secret. In some
of the covert channels (volatile channels in Section 5.3), no state is changed, e.g., the chan-
nel leveraging port contention [2]. The retention time of such channels is zero, and the
receiver must measure the channel concurrently when the sender is sending information.
Other covert channels (persistent channels in Section 5.4) leverage state change in micro-
architecture, and the retention time depends on how long the state will stay; for example,
the AVX2 unit will be powered off after about 1 ms. If the receiver does not measure the
state in time, he or she will obtain no information. For other states, such as register, cache,
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Table 5. Taxonomy of the Existing Transient Execution Attacks

Cause of Transient Execution

Covert Channel PHT BTB RSB STL LFB Exception
Execution Ports � [10] � � � �
L1 Cache Ports � � � � � �
Memory Bus � � � � � �
AVX2 unit [104] � � � � �
FP div unit [37] � � � � [37]
PHT [22] � � � � �
TLB � � � � � �
L1, L2 (tag, LRU) [64] [21, 64] [65, 78] [77, 84] [102, 115] [23, 63, 72, 107, 113,

114, 123]
LLC (tag, LRU) � � � � � �
Cache Coherence [111] � � � � [111]
Cache Directory � � � � � �
DRAM row buffer � � � � � �
Other Channel � � � � � �
� shows attacks that are possible but not demonstrated yet.

and so forth, the retention time depends on the usage of the unit and when the unit will be
used by another user.

5.7 Comparison of Covert Channels

Table 4 lists different micro-architectural covert channels. The existence of a covert channel de-
pends on whether the unit is shared in the attack setting. For example, AVX2 units, TLB, and the
L1/L2 caches are shared among programs using the same physical core. Therefore, a covert chan-
nel can be built among hyper-threads and threads sharing a logical core in a time-sliced setting.
The LLC, cache coherence states, and DRAM are shared among different cores on the chip, and
therefore, a covert channel can be built between different cores or different chips.

Some covert channels may use more than one component listed in Table 4. For example, in the
cache hierarchy, there could be multiple levels of caches shared among the sender and the receiver.
In the Flush+Reload cache covert channel, the receiver can use the clflush instruction to flush a
cache line from all the caches, and the sender may load the cache line into L1/L2 of that core or
the shared LLC. If the sender and the receiver are in the same core, then the receiver will reload
the data from L1. If the sender and the receiver are in different cores and only sharing the LLC, the
receiver will reload the data from the LLC. Therefore, even with the same covert channel protocol,
the location of the covert channel depends on the actual setting of the sender and the receiver.

As shown in Table 4, the channels in caches have relatively high bandwidth (∼1 MBits/s), which
allows the attacker to launch efficient attacks. Covert channels in AVX and TLB are slower but
enough for practical attacks.

6 EXISTING TRANSIENT EXECUTION ATTACKS

As we have discussed, the transient execution attacks contain two parts: triggering transient exe-
cution to obtain data that is otherwise not accessible (discussed in Section 4) and transferring the
data via a covert channel (discussed in Section 5). Table 5 shows the attacks that are demonstrated
in different academic publications and CVEs. For demonstrating different speculation primitives,
researchers usually use the covert channel in caches (row L1, L2 in Table 5). This is because the
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Table 6. Known Transient Execution Attacks on Different Platforms

Cause of Transient Execution Intel AMD [4, 16] Arm [5, 16] RISC-V[41]

Control Flow
PHT (V1) � � � �
BTB (V2) � � � �
RSB (V5) � � � �

Address Speculation
STL (V4,MDS) � � � �
LFB (MDS) � � � �

Exception

PF-US (V3) � � � �
PF-P (L1TF) � � � �
PF-RW (V1.2) � � � �
NM (LazyFP) � � � �
GP (V3a) � � � �
Other � � � �

� indicates that an attack of the type on the platform; � indicates that there is no known attack.

cache Flush+Reload covert channel is simple and efficient. For demonstrating different covert chan-
nels used in transient execution attacks, researchers usually use PHT (Spectre V1). This is because
Spectre V1 is easy to demonstrate. Note that every entry in the table can become an attack. For
mitigations, each entry of the table should be mitigated; either mitigate all the covert channels or
prevent accessing the secret data in transient execution.

If the victim executes transiently, the victim will encode the secret into the channel, and the be-
havior cannot be analyzed from the software semantics without a hardware model of how the hard-
ware executes the software and how prediction mechanisms behave (and what micro-architectural
states they change). If the attacker executes transiently, the micro-architecture propagates data
that is not allowed to propagate at the ISA level (propagation is not visible at the ISA level but
can be reconstructed through covert channels that observe the changes in the micro-architecture
states). To formally model and detect the behavior, a new micro-architectural model, including the
transient behavior, should be used [20, 46, 47, 49, 82].

6.1 Feasibility of Existing Attacks

Attacks leveraging mis-speculation require the attacker to mis-train the prediction unit in the
setup phase to let the victim execute gadgets speculatively (Section 3.3.3 and Section 4.8). To be
able to mis-train, the attacker either needs to control part of the victim’s execution to generate
the desired history for prediction or needs to co-locate with the victim on the same core. MDS
attacks also require the attacker and the victim to share the same address speculation unit. As
shown in Table 3 on the level of sharing required for the setup phase, the prediction unit is shared
only within a physical core, and for some prediction unit, they may not even be shared between
hyper-threads. In practice, it is not trivial to co-locate the setup phase and the transient execution
phase on the same core.

When a covert channel across processes is required, the sharing of hardware is needed (Table 1
on the attack scenarios and Section 5.7), which requires the co-location between the transient
execution phase and the decoding phase. Furthermore, for a specific attack implementation, only
one disclosure primitive is used, and the attack can be mitigated by blocking the covert channel.

6.2 Attacks on Different Commercial Platforms

Most of the existing studies focus on Intel processors, Table 6lists the known attacks on processors
from different venders, such as AMD [4, 16], Arm [5, 16], and RISC-V [41]. As shown in the table,
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Table 7. Comparison of Different Mitigation Schemes in Micro-architecture

Mitigation Schemes Performance Overhead

Fence after each branch 88% [132]
Stop propagating all data 30–55% [8]; 21% [7]; 20–51% [122]; 8.5% [139];

4.19% [138]
Stop propagating all data to cache changes 7.7% [110], 13% [68]
Stop propagating all data to Flush+Reload 7% [68]
Stop propagating all tagged secret data 71% for security-critical applications, < 1% for

real-world workloads [38, 100]
Partitioned cache 1–15% [62]
Stop (Undo) speculative change in caches 7.6% [132]; 11% [98]; 4% [1]; 5.1% [97]; 2–6% [61];

8.3% [125];

Spectre attack and its variants using branch prediction are found on all the platforms; this is be-
cause branch speculation is fundamental in modern processors. Other types of transient execution
depend on the micro-architecture implementation of speculation units and show different results
on different platforms.

7 MITIGATIONS IN MICRO-ARCHITECTURE DESIGN

Given the severity of transient execution attacks, numerous mitigations have been proposed. In
this section, we focus on micro-architectural mitigations to attacks that occur when the victim
executes transiently under wrong control flow prediction. As shown in Table 6, such attacks that
leverage control flow prediction are more fundamental and affect all modern computer architec-
tures. Attacks that leverage address speculation and exceptions are implementation dependent,
and we consider them as implementation bugs. They can be fixed, although the performance
penalty is unknown for now. We focus on the possible future micro-architectural designs that
are safe against control flow prediction. Thus, software mitigation schemes, such as [17, 18, 88],
and software vulnerability detection schemes [89, 116, 117] are not discussed in detail.

7.1 Mitigating Transient Execution

The simplest mitigation is to stop any transient execution. However, it will come with a huge
performance overhead; e.g., adding a fence after each branch to stop branch prediction causes 88%
performance loss [132].

7.1.1 Mitigating the Triggering of Transient Execution. To mitigate attacks where the victim
executes transiently, one solution is to limit the attackers’ ability to mis-train the prediction units
to prevent the disclosure gadget to be executed transiently (the first metric in Section 4.6). The
prediction units (e.g., PHT, BTB, RSB, STL) should not be shared among different users. This can be
achieved by static partition for concurrent users and flushing the state during context switches. For
example, there are ISA extensions for controlling and stopping indirect branch predictions [3, 54].
In [110], a decode-level branch predictor isolation technique is proposed, where a special micro-
op that clears the branch predictor states will be executed when the security domain switches.
In [143], it is proposed to use a thread-private random number to encode the branch prediction
table, to build isolation between threads in the branch predictor. However, for both proposals, if
the attacker can train the prediction unit by executing victim code with certain input (e.g., always
provide valid input in Spectre V1), isolation is not enough.
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There is also mitigation in software to stop speculation by making the potential secret data
depend on the result of the branch condition leveraging data dependency, e.g., masking the data
with the branch condition [17, 88], because current processors do not speculate on data. However,
this solution requires identifying all control flow dependency and all disclosure gadgets, to figure
out all possible control flow that could lead to the execution of the disclosure gadgets, and to
patch each of them. It is a challenge to identify all (current and future) disclosure gadgets, because
disclosure gadgets may vary due to the encoding used for different covert channels, and formal
methods that model the micro-architecture behavior are required [46, 47].

7.1.2 Mitigating Transient Execution of the Disclosure Gadget. To mitigate leaking secrets dur-
ing the transient execution attacks, one way is to prevent the transient execution of the disclosure
gadget, i.e., to stop loading of secrets in transient execution or stop propagating the secret to
younger instructions in the disclosure gadget transiently. For attacks where the attacker executes
transiently, it means stopping propagating secret data to the younger instructions. For attacks
where the victim executes transiently, however, the logic may not know which data is secret. To
mitigate the attacks, secret data should be tagged with metadata as in secure architecture designs,
which will be discussed in Section 7.1.3.

Another solution is that data cannot be propagated speculatively, and thus, cannot be sent to
covert channels speculatively, which can potentially prevent transient execution attacks with any
covert channel. In Context-Sensitive Fencing [110], fences will be injected at the decoder level to
stop speculative data propagation if there are potential Spectre attacks. In NDA [122], a set of
propagation policies are designed for defending the attacks leveraging different types of transient
executions (e.g., transient execution due to branch prediction or all transient execution), showing
the trade-off between security and performance. Similarly, in SpecShield [7, 8], different propa-
gation policies are designed and evaluated. In Conditional Speculation [68], the authors propose
a defense scheme targeting covert channels in the memory system and propose an architecture
where data cannot be transiently propagated to instructions that lead to changes in the memory
system showing 13% performance overhead. To reduce performance overhead of the defense, they
further change the design to only target Flush+Reload cache side channels, resulting in perfor-
mance overhead of 7%. Furthermore, in STT [139], a dynamic information flow tracking-based
micro-architecture is proposed to stop the propagation of speculative data to covert channels but
reduce the performance overhead by waking up instructions as early as possible. Speculative

data-oblivious (SDO) execution [138] is based on STT. To reduce performance overhead, SDO
introduces new predictions that do not depend on operands (holding data potentially depending
on speculative data). Specifically, speculative data-oblivious loads are designed to allow safe spec-
ulative load. The overhead to defend Spectre attacks is moderate, e.g., 7.7% reported in Context-

Sensitive Fencing [110], 21% reported in SpecShield [7], 20 ∼ 51% (113% for defending all transient
execution attacks) reported in NDA [122], 8.5% for branch speculation (14.5% for all transient ex-
ecution) in STT [139], and 4.19% for branch speculation (10.05% for all transient execution) in
STT+SDO [138].

InvarSpec [144] uses a combined compiler and hardware scheme. The compiler analyzes the
control flow and data flow of the program to identify a set of safe instructions for each instruc-
tion. Here, for an instruction i , safe instructions are older instructions that cannot prevent i from
becoming speculation invariant, even if they are not committed. Thus, instruction i can execute
safely without waiting for safe instructions to reach the head of ROB. This method further reduces
performance overhead upon other protections, e.g., reduces the overhead of InvisiSpec [132] from
15.4% to 10.9% on SPEC17. Different from STT, SpecShield, NDA, and others, the InvarSpec protects
all data (including those in the register files) from leaking in transient execution.
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There should be a large enough speculative window to let the disclosure gadget execute tran-
siently for the attack to happen. The micro-architecture may be able to limit the speculation win-
dow size to prevent the encoding to the covert channel (the fourth metric in Section 4.6). However,
the disclosure gadget can be very small and only contain two loads from L1 [129], which is only
about 20 cycles in total. Detecting a malicious windowing gadget accurately can be challenging.

7.1.3 Mitigations in Secure Architectures. Secure architectures are designed to protect the con-
fidentiality (or integrity) of certain data or code. Thus, secure architectures usually come with
ISA extensions to identify the data or code to be protected, e.g., secret data region, and micro-
architecture designs to isolate the data and code to be protected [25, 69, 108].

With knowledge about the data to be protected, hardware can further stop propagating secret
data during speculation. The hardware can identify data that depends on the secret with taint
checking, as proposed in [38, 64, 100, 110], and forbid tainted data to have micro-architectural side
effects, or flush all the states on exit from the protected domain, to defend against persistent covert
channels, and disable SMT to defend volatile covert channels. The overhead of such mitigation
depends on the size of secret data to be protected. For example, as reported in ConTExT [100],
the overhead is 71.14% for OpenSSL RSA encryption and less than 1% for real-world workloads.
Similar overhead is reported in SpectreGuard [38]. Intel also proposes a new memory type, named
speculative-access protected memory (SAPM) [58]. Any access to the SAPM region will cause
instruction-level serialization, and speculative execution beyond the SAPM-accessing instruction
will be stopped until the retirement of that instruction.

7.2 Mitigating Covert Channels

To limit the covert channels, one way is to isolate all the hardware across the sender and receiver,
so any state changes caused by the sender will not be observable to the receiver. However, this is
not always possible; e.g., in some attack types such as Meltdown, the attacker is both the sender
and the receiver of the channel.

Another mitigation is to eliminate the sender of the covert channel in transient execution.
For volatile covert channels, the mitigation is challenging. For permanent covert channels, there
should not be speculative change to any micro-architectural states, or any micro-architectural state
changes should be rolled back when the pipeline is squashed. Covert channels in memory systems,
such as caches and TLBs, are most commonly used. Hence, most of the existing mitigations focus
on cache and TLB side channels.

InvisiSpec [132] proposes the concept of “visibility point” of a load, which indicates the time
when a load is safe to cause micro-architecture state changes that are visible to attackers. Before
the visibility point, a load may be squashed and should not cause any micro-architecture state
changes visible to the attackers. To reduce performance overhead, a “speculative buffer” is used to
temporarily cache the load, without modifications in the local cache. After the “visibility point,”
the data will be fetched into the cache. For cache coherency, a new coherency policy is designed
such that the data will be validated when stale data is potentially fetched. The gem5 [11] simulation
results show a 7.6% performance loss for the SPEC 2006 benchmark [52]. Similarly, SafeSpec [60]
proposes to add “shadow buffers” to caches and TLBs, so that transient changes in the caches and
TLBs do not happen.

In Muontrap [1], “filter cache” (L0 cache) is added to each physical thread to hold speculative
data. The proposed filter cache only holds data that is in Shared state, so it will not change the
timing of accessing other caches. If the data is in Modified or Exclusive state in another cache and
shared state in L0 is not possible without state change in the other cache, the access will be delayed
until it is at the head of ROB. The cache line will be written through to L1 when the corresponding
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instruction commits. Different from the buffers in InvisiSpec [132] and SafeSpec [60], the filter
cache is a real cache that is cleared upon a context switch, syscall, or when the execution changes
security boundaries (e.g., explicit flush when exiting sandbox) to ensure isolation between security
boundaries. Muontrap results in a 4% slowdown for SPEC 2006.

CleanupSpec [97] proposes to use a combination of undoing the speculative changes and secure
cache designs. When mis-speculation is detected and the pipeline is squashed, the changes to the
L1 cache are rolled back. For tracking the line addresses of speculative changes, 1 Kbyte storage
overhead is introduced. To prevent the cross-core or multi-thread covert channel, partitioned L1
with random replacement policy and randomized L2/LLC are used. Because only a small portion of
transient executions result in mis-speculations, the method shows an average slowdown of 5.1%.
Similarly, ReViCe [61] proposes an undoing approach by adding a victim cache that stores the cache
lines replaced by speculative loads. With 32-entry victim cache for L1 and 64-entry victim cache
for L2, the performance overhead is 2–6%.

ReversiSpec [125] proposes a comprehensive cache coherence protocol considering speculative
cache accesses. The proposed cache coherence protocol interface includes three operations: (1)
speculative load, (2) merge when a speculative load is safe, and (3) purge when a speculative load
is squashed. Compared to InvisiSpec [132], the speculative buffer only stores data when the data is
not in the cache, and thus, less data movement will occur when a load is safe (merge). Compared to
CleanupSpec [97], purge is fast as not all the changes have propagated into cache. The performance
overhead is 8.3%.

Moreover, accessing speculative loads that hit in L1 cache will not cause side effects (except
LRU state updates) in the memory system. Therefore, only allowing speculative L1 hits can mit-
igate transient execution attacks using covert channels (other than LRU) in the memory system.
In Selective Delay [98], to improve performance, for a speculative load that misses in L1, value
prediction is used. The load will fetch from deeper layers in the memory hierarchy until the load
is not speculative. In their solution, 11% performance overhead is shown.

Meanwhile, many secure cache architectures are proposed to use randomization to mitigate the
cache covert channels in general (not only the transient execution attacks). For example, Ran-

dom Fill cache [74] decouples the load and the data that is filled into the cache, and thus, the
cache state will no longer reflect the sender’s memory access pattern. Random Permutation

(RP)cache [120], Newcache cache [75, 121], CEASER cache [95], and ScatterCache [124] random-
ize memory-to-cache-set mapping to mitigate contention-based occupancy-based covert chan-
nels in the cache. Non Deterministic cache [59] randomizes cache access delay and de-couples
the relation between cache block access and cache access timing. Secure TLBs [29] are also
proposed to mitigate covert channels in TLBs. But again, all the possible covert channels need
to be mitigated to fully mitigate transient execution attacks. Further, Cyclone [48] and PerSpec-

tron [85] propose micro-architecture designs to detect cache information leaks across security
domains.

Another mitigation is to degrade the quality of the channel or even make the channel unusable
for a practical attack. For example, many timing covert channels require the receiver to have a
fine-grained clock to observe the channel (the second metric in Section 5.6). Limiting the receiver’s
observation will reduce the bandwidth or even mitigate the covert channel [94, 101]. Noise can also
be added to the channel to reduce the bandwidth (the third metric in Section 5.6).

However, the above mitigations only cover covert channels in memory systems. To mitigate
other covert channels, there are the following challenges: (1) identify all possible covert channels
in micro-architecture, including future covert channels, and (2) mitigate each of the possible covert
channels. Formal methods are required in this process. For example, information flow tracking,
such as methods in [28, 140, 141], can be used to analyze the hardware components, where the
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data of transient execution could flow to. Then, it can be analyzed if each of the components could
result in a permanent or transient covert channel.

7.2.1 Mitigations in Secure Architectures. With a clearly defined security domain, isolation can
be designed to mitigate not only transient covert channels but also conventional covert channels.
For example, to defend cache covert channels, a number of partitioned caches to different security
domains are proposed, either statically [14, 26, 50, 62, 67, 73, 120, 133, 140, 141] or dynamically [31,
118]. With partition, shared resource no longer exists between the sender and the receiver, and the
receiver cannot observe secret dependent behavior to decode the secret.

The above proposal assumes the hardware is isolated for each security domain. However, there
is also a scenario where software outside the security domain may use the same hardware after
a context switch. In the Mi6 processor [14], cache and port partitionings are used to isolate soft-
ware on different cores. Further, when there is a context switch, a security monitor flushes the
architecture and micro-architecture states, which holds the information of in-flight speculation
from the previously executing program. To protect the security monitor, speculation is not used
in the execution of the security monitor. In OPTIMUS [90], a dynamic partitioning scheme in the
granularity of the core is proposed to achieve both security and high performance.

8 OTHER ATTACKS LEVERAGING TRANSIENT EXECUTION

Another category of attacks that can be mistaken with the transient execution attacks is the covert
channel attacks leveraging transient execution. Different from the transient execution attacks,
where the goal of the attacker is to compromise the confidentiality of the victim’s secret, these
attacks have the goal to build novel covert channels leveraging the hardware units for transient
execution [33, 34, 36, 56], such as the branch prediction unit, STL, and so forth.

Modern computer architectures gain performance benefits from transient execution. A correct
prediction results in useful transient execution results and makes the execution faster. When a
wrong prediction is made, the results of transient execution will be discarded and sometimes cause
a small penalty. Therefore, there is a time difference in the execution due to transient execution,
and a timing-based covert channel can be built.

As shown in Table 3, prediction units are shared between different users. The sender can train
a prediction unit, and then the receiver can observe different prediction results. Practical covert
channel attacks have been demonstrated by leveraging the prediction units, such as Branchscope

attack, which uses PHT [33, 36, 139]; Jump over ASLR, which uses BTB [34, 122]; and Spoiler attack,
which uses STL [56]. Other than building covert channels across processes and SGX enclaves [36],
these attacks also break Kernel address space layout randomization (KASLR) [34] and leak
the physical address mapping [56].

9 OPEN RESEARCH CHALLENGES

One research direction is to further discover new attacks. Since the detailed designs of commer-
cial processors are not public, there might be unknown attacks. There could be more data that
is exploitable in transient execution. In attacks where the victim executes transiently, as shown
in Table 2, we assume the victim is executing transiently and the attacker then can access data
that the victim could access architecturally. As demonstrated in Spectre V1 attack using SWAPGS
instruction [12], the attacker can learn data that the victim could access architecturally even after
context switch. The security boundaries that are broken in the attacks depend on the implemen-
tation and can be explored in the future. Meanwhile, there could also be new covert channels in
the micro-architecture. As shown in Table 5, new combinations of transient execution and covert
channel can be demonstrated for different attack scenarios.
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Another research direction is to design hardware to defend the transient execution attacks.
Transient execution is critical to the performance of processors and is also the root cause of the
attacks. A couple of mitigation strategies are proposed and discussed in Section 7. Proposals and
optimization to defend the attack with lower performance overhead are desired. The mitigations
can come with different threat models to provide a trade-off between performance and security.

The transient execution attacks also affect the formal analysis of software behavior. In the past,
the software analysis was based on either software semantics or an ISA level hardware model. To
analyze the transient execution attacks rigorously, a formal micro-architecture level or RTL level
model is required [20, 46, 82].

10 CONCLUSION

Transient execution attacks can cause critical data leakage across security boundaries in the ma-
jority of today’s processors. These attacks leverage the micro-architectural states that cannot be
reasoned about in the software semantics on the ISA level. This survey analyzed in detail the two
main components of the attacks, transient execution and covert channels, and proposed a set of
metrics to evaluate the feasibility of the attacks. A taxonomy of the attacks was presented, and the
existing attacks were compared using our categorization. In the end, different mitigation schemes
at the micro-architecture level were discussed. As this survey demonstrates, much future work is
still needed to defend the transient execution attacks efficiently.
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