
Real-Time Foosball Game State Tracking
Sven Bambach, Stefan Lee

School of Informatics and Computing
Indiana University
Bloomington, IN

sbambach@indiana.edu
steflee@indiana.edu

Abstract—In this report we present our project for the B657
computer vision class in the Spring 2012 semester. We imple-
mented a system that takes as input an overhead video stream
of a foosball match and, without manual assistance and in real-
time, outputs the per frame relevant data to describe the state
of the game: the current position and rotational angle of each
player and the current position of the ball.

I. INTRODUCTION

In recent years, computer vision techniques have found
commercial and technical success when applied to the domain
of organized sports; providing dynamic visualizations that aid
in interpreting the full breadth of information in a given frame
of a sports video stream. In designing this semester project, we
wished to apply this same paradigm of information gathering
and visualization to the game of foosball. Our overall goal for
the project was to produce a real-time system, which would
compute and display the state-of-play for a foosball game. We
define the state-of-play for a foosball game as the position of
the ball as well as the position and angular rotation of the
player bars. As our time available to execute this project was
short, we limited our ambition to a single Tornado F-5 foosball
table located in a lounge at the Indiana University Informatics
West building.

Related work on ball tracking for foosball has been done by
Janssen et. al. at the Eindhoven University of Technology in
the context of a semi-automated foosball table [1]. Their work
did produce a real-time tracking algorithm for the ball but
made no attempt to track the players or to provide a reasonable
visualization of the collected data.

Fig. 1. left: The Tornado F-5 foosball table at the Informatics West building
with the camera rig mounted on it. right: The table has eight bars with a
total of 13 yellow and 13 black players for each team.

II. DATA ACQUISITION

We made use of a Canon EOS Rebel T3i camera with an 18-
55mm lens to capture the gameplay video from a fixed height
and centered vantage point. In order to maintain this position,
we constructed a quad-legged camera rig, which fits into the
four cup-holders built into the foosball table. An image of our
rig is presented in figure 1. This construct has sufficient height
to capture the entire field of play.

We recorded two complete games containing 15 goals with
a total length of about five minutes. In post-production, the
video was cropped so that just the foosball field is visible and
cut into 15 single videos; one for each goal, starting when the
ball enters the field and ending at the actual goal. To reduce
the volume of data, we also decreased the video resolution
from 1080 lines to 240 lines, while retaining the 16:9 aspect
ratio and 30p frame rate of the source video.

Fig. 2. An example frame of the video stream after post-production, overlaid
with the image coordinate system for the foosball field.

III. OUR APPROACH

The goal of our project can be logically divided into the
following modules: we use a Hough transform to locate
the bars, a color matching approach to identify players and
determine the lengths and a template matching method in
a small window, localized by a Kalman filter, to find the
ball. We also implemented background removal to aid in the
localization of the ball and to provide easier detection of
occlusion. The following sections go into the details of these
methods.

A. Bar Localization

The first step in our system is the localization of the eight
bars on the table. To do this, we use a Hough transform line



detection algorithm, supported by some prior knowledge about
the table. First, when creating the edge map, we only look
at the horizontal derivatives of the image, as we know that
all bars are vertical. Second, when searching for lines, we
ignore a certain percentage of the center part and both the
left and right ends of the image in order to suppress potential
noise from the field lines and table edges. We then claim the
eight highest peaks in the Hough space to be our bars. As the
bars have a certain width and could potentially be somewhat
bent due to camera distortion, we need to slightly adjust the
initial line parameters to ensure that the lines we describe are
as well centered on the bars as possible. In addition to the
obvious increase in accuracy gained for the step, better fitting
lines also ease the problem of player localization and rotation
estimation in later stages. We improve the fit by defining an
error function for every potential vertical line within a close
neighborhood of the original line, where we check how much
each pixel of the line differs from the grey value that we expect
the bar center to have. We then pick the line with the lowest
median difference.

As the Hough transform is computationally expensive, we
only perform it once based on a ”calibration image” of the
table. This means the bars are located before the first frame
of the actual video stream is analyzed and we assume that
the bars will not change their position during the video. As
the camera rig is attached to the table, we feel that this is a
reasonable assumption.

B. Player Detection

Fig. 3. The raw distribution in a) is very noisy and finding a peak proved
difficult. In b) the smoothed distribution has five very clear peaks. The peak
locations have been plotted as blue stars on the corresponding bar in c).

Using the bar locations calculated in the previous step,
we localize the players on each bar. To accomplish this for
each bar we take a 10 pixel wide vertical strip centered on
the bar location and for each row of the strip compute the
negative mean distance between the pixel colors in the row
and the known player color. This results in a distribution of
the likelihood of each row containing a part of a player. The
distribution is very noisy however and varies in magnitude due
to specularities and motion (see figure 3a), so we convolve it

with a Gaussian kernel to produce a distribution with well-
defined peaks (see figure 3b). These peaks (except for an offset
due to the smoothing) are the vertical center locations of the
players on that bar and can be extracted in linear time. We
perform this algorithm for each bar each frame.

C. Rotation Estimation
The basic idea behind the rotation estimation is to determine

the rotation angle of each player trigonometrically based on
its projective length in the image.

We already determined the center point of each player along
a bar, as described in section III-B. Now, for each player p,
we sample a one pixel wide and eleven pixel tall strip from
the center point of the player and save the values as xp

ref . We
then iteratively sample the same sized strip from consecutive
columns to the left and right and save them as xp

left and
xp
right respectively; each iteration moves the sample areas one

column further away from the center. During each iteration we
check how likely it is that the sampled pixels still belong to
the player. We do so by first calculating the delta terms for
each player individually:

∆p
left = ‖xp

left − xp
ref‖2 (1)

∆p
right = ‖xp

right − xp
ref‖2 (2)

Then we determine the delta terms for the whole bar as

∆b
left =

N∑
i=1

∆p
lefti

N
(3)

∆b
right =

N∑
i=1

∆p
righti

N
(4)

where N is the number of players per bar. If ∆b
left or ∆b

right

is above a certain threshold, we stop sampling further for that
direction. Once we stop iterating in both directions, we assume
the current distance between our endpoints to be the length of
the player. Estimating the player length based on this global
observation rather than looking at each player individually
decreases the sensitivity to noise and is a reasonable approach,
as the projective lengths of all players that belong to the same
bar should be approximately equal.

Once we have the player length lb for a bar, the correspond-
ing rotation angle is given as:

θb = |arcsin(
lb − lmin

lmax − lmin
)| (5)

where lmin and lmax are predefined values that we manually
measured in advance. With respect to the image coordinate
system, we define a rotation to the right to be positive and to
the left to be negative. We can easily determine the sign of
the rotation angle by comparing how far we moved to the left
and to the right while estimating the player length.

We do not make special considerations for rotational angles
that would place the player foot above the horizontal plane and
as such, our minimal and maximal angle measures are −90
and 90 degrees. If such a rotation were to occur, our system
would view it the same as if the player was headed back to
zero degrees.



D. Ball Tracking

To track the ball, we essentially use a color template
matching method in combination with background masking
and Kalman filtering. We use the Kalman filter to both improve
the accuracy of our measurements and constrain the search
space for the ball to a local window based on the state
prediction of the filter.

1) Background Masking: To simplify the task of our
template matching algorithm, we initially try to eliminate
everything in the image that is not the ball by replacing it
with a cyan colored mask. We choose a cyan mask for the
stark visual contrast and high red channel difference with
respect to the red(ish) ball. We accomplish this by overwriting
every pixel in the image that is outside the interval [Rball ±
∆R, Gball ± ∆G, Bball ± ∆B ], where [Rball, Gball, Bball] is
the reference color of the ball. The background-masking step
is also essential for handling situations where the ball is
occluded, as will be explained in section III-D4. An example
of the masked image can be seen in figure 4.

Fig. 4. left: The white rectangle indicates the search window for the ball,
which is slowly moving towards the left. The light green rectangle indicates
the measured position of the ball while the cyan rectangle indicates the
updated position estimation of the Kalman filter. right: The corresponding
masked image on which the template matching is performed.

2) Template Matching: As a part of the tracking scheme
we need to locate the best match for the ball within some
search window (the details of how this window is selected are
given in section III-D3). Our template is a 5-by-5 red square
which is smaller than the ball. We use this template because
it is robust to partial occlusions and the bright red color will
match horribly with the cyan background masking discussed
above, allowing us a sizable difference between occlusion
and non-occlusion states. We only examine differences in the
red channel when evaluating the fitness of the template at
a location. We do this as a time efficient matching strategy
that works well in practice due in no small part to the cyan
background masking. To find the best fitting location of the
template within the region we calculate the sum of absolute
differences of the red values between the template and each
possible template location in the region.

3) Kalman Filtering: Our raw observations of template
location might be poor so we turn to a Kalman filter to model
the linear dynamics of the moving foosball. We define the
state of the ball as its position and velocity which we describe
at time t as a normal distribution about the column-vector

St = [x, y, vx, vy]T with covariance Ht. We borrow from the
basic kinematics equations to obtain a state prediction matrix
as:

A =

1 0 1 0
0 0 drag 0
0 0 0 drag

 (6)

In our work the fundamental unit of time is 1 frame, so all
speeds are pixels per frame. The drag value is set to 0.85 in
our experiments and indicates a 15% velocity loss per frame.
As we are only observing the position our observation matrix
is simply:

C =

[
1 0 0 0
0 1 0 0

]
(7)

We experimentally derived a prediction noise matrix as:

Q =


0.2 0 0 0
0 0.2 0 0
0 0 0.2 0
0 0 0 0.2

 (8)

Using these matrices we can calculate a predicted state using
the standard Kalman equations [2] as:

Stpred = ASt−1 (9)

Htpred = ACt−1A
T +Q (10)

We use this predicted state to designate the search space
for our template matching. We first center a 40-by-40 square
on the predicted location and extend this box in the direction
of the ball’s movement as a linear function of the predicted
velocity. Using the template matching we get an observation
of the state:

Zt =

[
zx
zy

]
(11)

In addition to this point, the template matching also returns
the associated error value. We use this error value to calculate
an estimate for the observation covariance as:

R =
error

100

[
1 0
0 1

]
(12)

The denominator was derived experimentally but it makes
intuitive sense. As a good match for the template reports an
error of around 10 and a poor match moves towards 40, this
divisor provides low or high covariance in response to the
quality of the template match. With this final set of matrices
we can compute the final Kalman filter state estimate as:

k = HtpredC
T (HtpredC

T +R)−1 (13)
St = Stpred + k(Zt − Stpred) (14)
Ht = (I − kC)Htpred (15)



4) Occlusion Handling: The template matching procedure,
as described in section III-D2, always provides an error term
that directly tells us how certain we are that whatever we
found as the best location is actually the ball. Due to the
cyan background masking, this error term should be fairly
large whenever we do not find the ball due to occlusion. This
allows us to introduce an error threshold to decide whether
the ball is occluded or not. We adjust our threshold as a linear
function based on the ball velocity. This adaptive threshold
allows for very sensitive occlusion detection for slow moving,
non-blurred balls and a looser condition at higher velocities
to account for the higher error of the motion blurred balls.

Once we detect an occlusion, we stop updating the ball state
(as described in section III-D3), i.e. we assume that the ball has
the same position and velocity as in the previous frame. This
is a reasonable assumption, as there are no large-scale spatial
occlusions possible (in fact, the only sources of occlusion are
players or bars), so it is unlikely that the ball will be occluded
for a long period of time while at the same time drastically
changing its position or velocity.

IV. RESULTS

We implemented our approach in MATLAB Simulink 7.7
(R2011a) with the Computer Vision Toolbox installed. We
made extensive use of the built-in modules for result visu-
alization (see figure 5). All of our experiments were run on a
personal laptop computer with a 2 GHz Intel Core i7 processor,
4GB of DDR3 memory, and a AMD Radeon HD 6490M
256MB graphics card. In this environment our application ran
at an average of 27 frames per second. We feel that this speed
performs at near real-time and demonstrates no significant
algorithmic hurdles for real-time given upgraded hardware.
In the following sections we provide both qualitative and
quantitative analysis of our work. Additionally, the complete
video footage of our results can be found online [3].

Fig. 5. A screenshot of our game state data output: Red lines mark the bars.
Green crosses and blue stars mark the location of the detected yellow and
black players respectively. The rotational angles are shown at the bottom of
each bar. The white rectangle indicates the current search window of the ball.
Semi-transparent blue and green squares indicate predicted and measured ball
position, while the cyan bordered square marks the ball position estimation.

A. Player Detection

To evaluate the performance of our player detection algo-
rithm, we did a manual frame-per-frame inspection and defined
a player as not found if its position marker misses the player.
It turns out that, for all 15 videos, we do not miss any of the
players in any frame. We accredit this success to the highly
constrained nature of the player locations along the bar and
the wide disparity between the player colors and the field.
We do not, however, always detect the exact center of each
player along the bar. This issue mainly affects the outer black
players, as each one is close to a black stopper that resembles
the player.

B. Rotation Estimation

We provide some qualitative analysis and general qualita-
tive results for our rotation estimation approach. We do not
provide qualitative results because we found producing them
to be troublesome, as we had no ground truth and extracting
estimates from the video would require tedious pixel counting
to determine player length for every bar on every frame. In
addition, any method involving player length including our
method presented here suffers from a discretization of the
arcsine function based on video resolution. If we were to
take hand calculations based on pixel counting, this would
improperly inflate our real world accuracy figures, as the
discretization would exactly line up with that of our approach.
In figure 6 below we plot the arcsine value for each possible
player length ratio in our videos. This discretization causes
uneven jumps between sample points with magnitudes ranging
from three or four degrees up to a gap of seventeen degrees
between a player length of 24 and 25.

0 0.2 0.4 0.6 0.8 1
0

20

40

60

80

100

R
o
ta

ti
o
n
 A

n
g
le

Player Length Ratio

Fig. 6. Rotation angles for all possible discrete player lengths.

Qualitatively we found the results to be fairly good with
some noise due to the video quality and this discretization
problem but few glaring failures presented themselves and we
feel it acts as a reasonable estimate.

C. Ball Tracking

To evaluate our ball-tracking performance, we define two
kinds of criteria:

First, whenever we closely miss the non-occluded ball based
on a manual frame-per-frame inspection, we consider this to
be a minor loss and declare the frame to be a failure. We



measure the accuracy for each video as the ratio of successful
frames over total frames, as shown in table I.

Second, whenever the ball exits the search window and we
lose track of it entirely, we consider this to be a major loss. In
all videos, we had one major loss during goal six of the first
game (see table 1). For this case, the accuracy is expressed as
the ratio of successful frames over the number of frames until
we lost the ball (380).

TABLE I
BALL TRACKING ACCURACY

Video Total Frames Failed Frames AccuracyGame Goal
1 1 239 12 0.950
1 2 162 3 0.981
1 3 888 8 0.990
1 4 546 9 0.983
1 5 201 3 0.985
1 6 380 9 0.976
1 7 885 14 0.984
1 8 819 27 0.967
2 1 200 3 0.985
2 2 1379 23 0.983
2 3 314 2 0.994
2 4 485 16 0.967
2 5 62 3 0.952
2 6 566 7 0.988
2 7 761 7 0.991

total 7887 146 0.981

The total loss is due to a combination of occlusion and rapid
acceleration changes. In the frames leading up to the failure,
the ball is traveling upward in-between the third and forth
player bars. It is then occluded by the very end of the black
player to its left, which hits it and accelerates it to the left
at a high velocity. The ball is moving so quickly that in the
frame that it exits the occlusion it approaches the next player
bar and is well outside the search region.

V. CONCLUSION

We both enjoyed working on the project but found some
of our initial time estimates to be poor with portions of the
project requiring far more attention than we had previously
assumed. Our unfamiliarity with Simulink presented a rather
steep learning curve and resulted in periods of time when
our algorithm ran well below real time due mainly to poor
simulation configurations and costly display mechanisms.

All in all the final output of our project matches what we
initially imagined quite well in terms of accuracy, visualiza-
tion, and speed, so we are fairly pleased.

REFERENCES

[1] Rob Janssen, Jeroen de Best, and Rene van de Molengraft Real-Time
Ball Tracking in a Semi-automated Foosball Table RoboCup 2009, LNAI
5949, pp. 128-139, 2010

[2] Tristan Fletcher, The Kalman Filter Explained, December 2010
[3] http://www.youtube.com/watch?v=Q80WH4OIqJM


