Applications of Variational Bayes & DAGs in Neuroimaging

ECE 6504: Advanced Topics in Machine Learning

> Rosalyn Moran rosalynj@vtc.vt.edu

Overview

1. Dynamics in Dynamic Causal Modeling

- 2. Graphical Model
- Variational Inversion
- Statistical Inference from VB
- 3. ExamplesAttention in the Human BrainSynesthesia

Dynamic Causal Modelling

DCM is not intended for 'modelling'

DCM is an analysis framework for empirical data

DCM uses a times series to test mechanistic hypotheses

Hypotheses *are constrained* by the underlying dynamic generative (biological) model

Friston et al 2003; Stephan et al 2008 Kiebel et al, 2006; Garrido et al, 2007 David et al, 2006; Moran et al, 2007

Dynamic Causal Modelling (DCM)

Neuronal model

Aim: model temporal evolution of a set of neuronal states x_t

System states x_t x_1 x_2 x_3 Inputs u_t

Connectivity parameters ϑ

State *changes* are dependent on:

- the current state x
- external inputs *u*
- its connectivity ϑ

dx $\frac{dt}{dt} = F(x, u, \theta)$

 $\dot{x}_1 = a_{11}x_1 + a_{12}x_2 + a_{13}x_3 + c_{12}u_2$ $\dot{x}_2 = a_{21}x_1 + a_{22}x_2 + a_{24}x_4 + c_{21}u_1$

Visual input in the visual field

- left (LVF)
- right (RVF)

LG = lingual gyrus FG = fusiform gyrus

$$\dot{x}_{1} = a_{11}x_{1} + a_{12}x_{2} + a_{13}x_{3} + c_{12}u_{2}$$
$$\dot{x}_{2} = a_{21}x_{1} + a_{22}x_{2} + a_{24}x_{4} + c_{21}u_{1}$$
$$\dot{x}_{3} = a_{31}x_{1} + a_{33}x_{3} + a_{34}x_{4}$$
$$\dot{x}_{4} = a_{42}x_{2} + a_{43}x_{3} + a_{44}x_{4}$$

(-

$$\dot{x} = (A + \sum_{j=1}^{m} u_j B^{(j)})x + Cu$$

$$\begin{bmatrix} \dot{x}_{1} \\ \dot{x}_{2} \\ \dot{x}_{3} \\ \dot{x}_{4} \end{bmatrix} = \left\{ \begin{bmatrix} a_{11} & a_{12} & a_{13} & 0 \\ a_{21} & a_{22} & 0 & a_{24} \\ a_{31} & 0 & a_{33} & a_{34} \\ 0 & a_{42} & a_{43} & a_{44} \end{bmatrix} + u_{3} \begin{bmatrix} 0 & b_{12}^{(3)} & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & b_{34}^{(3)} \\ 0 & 0 & 0 & 0 \end{bmatrix} \right\} \begin{bmatrix} x_{1} \\ x_{2} \\ x_{3} \\ x_{4} \end{bmatrix} + \begin{bmatrix} 0 & c_{12} & 0 \\ c_{21} & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} u_{1} \\ u_{2} \\ u_{3} \end{bmatrix}$$

Deterministic Bilinear DCM

driving Simply a two-dimensional input taylor expansion (around $x_0=0$, $u_0=0$): $\frac{dx}{dt} = f(x,u) \approx f(x_0,0) + \frac{\partial f}{\partial x}x + \frac{\partial f}{\partial u}u + \frac{\partial^2 f}{\partial x \partial u}ux + \dots$ modulation $A = \frac{\partial f}{\partial x}\Big|_{u=0}$ $C = \frac{\partial f}{\partial f}$ ди Bilinear state equation: |x=0 $\partial^2 f$ $\frac{dx}{dt} = \left(A + \sum_{i=1}^{m} u_i B^{(i)}\right) x + Cu$ R $\partial x \partial u$

Context-dependent enhancement

Stephan & Friston (2007), Handbook of Brain Connectivity

DCM: Neuronal and hemodynamic level

Cognitive system is modelled at its underlying <u>neuronal level</u> (not directly accessible for fMRI).

The modelled neuronal dynamics (x) are transformed into area-specific BOLD signals (y) by a hemodynamic model (λ) .

- Overcomes regional variability at the hemodynamic level
- DCM not based on temporal precedence at measurement level

The hemodynamic "Balloon" model

Hemodynamic model

y represents the simulated observation of the bold response, including noise, i.e.

 $y=h(u,\vartheta){+}e$

Z: neuronal activity Y: BOLD response

Overview

1. Dynamics in Dynamic Causal Modeling

2. Graphical Model

- Variational Inversion

Bayesian Statistical Inference from VB

3. Examples
Attention in the Human Brain
Synesthesia

Parameter estimation: Bayesian inversion

Estimate neural & hemodynamic parameters such that the **MODELLED** and **MEASURED** BOLD signals are similar (model evidence is optimised), using variational bayes under mean field: $P(X, \lambda, A, B, C | Y)$

Recall from Tuesday

Main Issues in PGMs VB: A procedure to do inference: That implicitly 'does double duty' in Directed Graphs!

Representation

- How do we store $P(X_1, X_2, ..., X_N)$
- What does my model mean/imply/assume? (Semantics)

• Inference

- How do I answer questions/queries with my model, such as
- Marginal Estimation: P(X₅ | X₁, X₄)
- Most Probable Explanation: $\operatorname{argmax} P(X_1, X_2, ..., X_N)$
- Learning
 - How do we learn parameters and structure of $P(X_1, X_2, ..., X_N)$ from data
 - What is the right model for my data?

Key Results for VB

- Approximate Inference using constrained optimization
- Where: The approximation arises from constructing an approximating distribution over X: q(X) which is closest in p(X) "in the KL sense"
- Derived a cost function Which can be maximized

$$F = \sum_{\phi} \left\langle \ln \phi \right\rangle_{q} + H[q]$$

- And is equivalent to minimizing KL(q|p) $F = \ln Z KL(q|p)$
- Z: Partition Function; a normalization function equal to the probability of the evidence in directed graphs

Key Result for Mean-Field, Structured VB

- The structured variational approach aims to optimize *F* over a *coherent* distribution *q* (ie. giving a proper joint distribution), at the expense of capturing all the information in *p*.
- Assume the approximating or proposal density factorizes over groups of parameters - where this factorization is *a relaxation* (a superspace) of the space of true marginals.
- Approximate q using a factorization

$$q(X) = \prod_i q(x_i)$$

• Found iterative update equations for *q* using fixed point solutions

$$q(x_i) = \frac{\exp[I(x_i)]}{Z}$$

$$F = \ln Z - KL(q \mid p)$$

• *F* is a guaranteed lower bound on *ln(Z)*

N =Time steps x # Regions

N =Time steps x # Regions

Goal: Find the set of latent variables θ , given y: $p(\theta|y)$ le. inference or Query for the marginal distribution of the connectivity parameters given data, marginalized w.r.t noise parameter

θ

Goal: Find the set of latent variables θ , given y: $p(\theta|y)$ le. inference or Query for the marginal distribution of the connectivity parameters given data, marginalized w.r.t noise parameter

Given this type of graph we know:

$$p(\theta, \lambda | y) = \frac{p(\theta) p(\lambda) p(y | \theta, \lambda)}{p(y)}$$

V

Goal: Find the set of latent variables θ , given y: $p(\theta|y)$ le. inference or Query for the marginal distribution of the connectivity parameters given data, marginalized w.r.t noise parameter

Given this type of graph we know: $p(\theta, \lambda|y) = \frac{p(\theta)p(\lambda)p(y|\theta, \lambda)}{p(y)}$ and $\theta \not\perp \lambda |y|$

But Employ Approximating Density q, Using the mean field structure:

Goal: Find the set of latent variables θ , given y: $p(\theta|y)$ le. inference or Query for the marginal distribution of the connectivity parameters given data, marginalized w.r.t noise parameter

Given this type of graph we know:

 $p(\theta, \lambda | y) = \frac{p(\theta) p(\lambda) p(y | \theta, \lambda)}{p(y)}$

But Employ Approximating Density q, Using the mean field structure:

Where:

$$p(\theta, \lambda | y) = q(\theta | y)q(\lambda | y)$$
$$q(\theta | y) \rightarrow N(\mu, \Sigma)$$
$$q(\lambda | y) \rightarrow N(0, \lambda I)$$

Goal: Find the set of latent variables θ , given y: $p(\theta|y)$ le. inference or Query for the marginal distribution of the connectivity parameters given data, marginalized w.r.t noise parameter

Given this type of graph we know:

 $p(\theta, \lambda | y) = \frac{p(\theta) p(\lambda) p(y | \theta, \lambda)}{p(y)}$

But Employ Approximating Density q, Using the mean field structure:

Where:

$$p(\theta, \lambda | y) = q(\theta | y)q(\lambda | y)$$
$$q(\theta | y) \rightarrow N(\mu, \Sigma)$$
$$q(\lambda | y) \rightarrow N(0, \lambda I)$$

Goal: Find the set of latent variables θ , given y,

- Assuming Independence of parameters & hyperparameters
- And a Gaussian form on the PDF

VB with a mean-field approximation

Free-energy approx.
to model evidence.

$$F = \left\langle \ln p(y,\theta,\lambda) \right\rangle_q - KL(q(\theta,\lambda \mid y) \| p(\theta,\lambda \mid y))$$

2 Mean field approx.

$$p(\theta, \lambda | y) = q(\theta | y)q(\lambda | y)$$

• Fixed point solutions for two factors

$$q(\theta) \propto \exp(I_{\theta}) = \exp\left[\left\langle \ln p(y,\theta,\lambda) \right\rangle_{q(\lambda)}\right]$$
$$q(\lambda) \propto \exp(I_{\lambda}) = \exp\left[\left\langle \ln p(y,\theta,\lambda) \right\rangle_{q(\theta)}\right]$$

 Iterative updating of sufficient statistics of approx. posteriors by gradient ascent.

How independent are neural and hemodynamic parameter estimates?

 $q(\theta|y) \rightarrow N(\mu, \Sigma)$

Stephan et al. (2007) NeuroImage

Roadmap inversion

Inference about DCM parameters: Bayesian single subject analysis

- Gaussian assumptions about the posterior distributions of the parameters
- posterior probability that a certain parameter (or contrast of parameters) is above a chosen threshold γ:
- **Proof** By default, γ is chosen as zero the prior ("does the effect exist?").

Inference about DCM parameters: Bayesian parameter averaging

FFX group analysis

- Likelihood distributions from different subjects are independent
- Under Gaussian assumptions, this is easy to compute
- Simply 'weigh' each subject's contribution by your certainty of the parameter

group posterior covariance

Inference about DCM parameters: RFX analysis (frequentist)

'Summary Statistic Approach'

Inference about models: Bayesian model comparison

- Prior / instead of to inference on parameters
- Which of various mechanisms / models best explains my data
- Use model evidence

accounts for both accuracy and complexity of the model

allows for inference about structure (generalisability) of the model

Fixed Effects Model selection via

log Group Bayes factor:

$$BF_{1,2} = \sum_{k} \ln p(y|m_1) - \sum_{k} \ln p(y|m_2)$$

Random Effects Model selection via Model probability: $p(r | y, \alpha)$ $\langle r_k \rangle_q = \alpha_k / (\alpha_1 + ... + \alpha_K)$

Bayes factors

For a given dataset, to compare two models, we compare their evidences.

$$B_{12} = \frac{p(y \mid m_1)}{p(y \mid m_2)}$$

Kass & Raftery classification: or their log evidences

$$\ln(B_{12}) \approx F_1 - F_2$$

Kass & Raftery 1995, J. Am. Stat. Assoc.

B ₁₂	p(m ₁ y)	Evidence
1 to 3	50-75%	weak
3 to 20	75-95%	positive
20 to 150	95-99%	strong
≥ 150	≥ 99%	Very strong

Ketamine modulates:

- 1. All extrinsic connections,
- 2. Intrinsic NMDA and
- 3. Inhibitory / Modulatory processes (one of the red arrows) : use log bayes factors

Bayesian Model Comparison

One other way to view F!!

$$F = \log p(y \mid m) - KL[q(\theta), p(\theta \mid y, m)]$$

Accuracy - Complexity

$$KL[q(\theta), p(\theta \mid m)] = \frac{1}{2} \ln \left| \Sigma_{\theta} \right| - \frac{1}{2} \ln \left| \Sigma_{\theta|y} \right| + \frac{1}{2} \left(\mu_{\theta|y} - \mu_{\theta} \right)^{T} \Sigma_{\theta}^{-1} \left(\mu_{\theta|y} - \mu_{\theta} \right)^{T}$$

The complexity term of *F* is higher

- the more independent the prior parameters († effective DFs)
- the more dependent the posterior parameters
- the more the posterior mean deviates from the prior mean

Overview

1. Dynamics in Dynamic Causal Modeling

- 2. Graphical Model
- Variational Inversion
- Statistical Inference from VB
- 3. ExamplesAttention in the Human BrainSynesthesia

Example: Attention to motion

We used this model to assess the site of *attention modulation* during *visual motion processing* in an fMRI paradigm reported by *Büchel & Friston*.

Bayesian model selection

Parameter inference

Stephan et al. 2008, NeuroImage

Data fits

Example 2: Brain Connectivity in Synesthesia

- Specific sensory stimuli lead to unusual, additional experiences
- Grapheme-color synesthesia: color
- Involuntary, automatic; stable over time, prevalenc
- Potential cause: aberrant cross-activation between
 - grapheme encoding area
 - color area V4
 - superior parietal lobule (SPL)

Hubbard, 2007

Can changes in effective connectivity explain synesthesia activity in V4?

DCM of Synesthesia

Van Leeuwen, den Ouden, Hagoort (2011) JNeurosci

DCM of Synesthesia

Van Leeuwen, den Ouden, Hagoort (2011) JNeurosci

Relative model evidence predicts sensory experience

Van Leeuwen, den Ouden, Hagoort (2011) JNeurosci

DCM Roadmap

Some useful references

- 10 Simple Rules for DCM (2010). Stephan et al. NeuroImage 52.
- The first DCM paper: Dynamic Causal Modelling (2003). Friston et al. *NeuroImage* 19:1273-1302.
- Physiological validation of DCM for fMRI: Identifying neural drivers with functional MRI: an electrophysiological validation (2008). David et al. *PLoS Biol.* 6 2683–2697
- Hemodynamic model: Comparing hemodynamic models with DCM (2007). Stephan et al. *NeuroImage* 38:387-401
- Nonlinear DCM:Nonlinear Dynamic Causal Models for FMRI (2008). Stephan et al. *NeuroImage* 42:649-662
- Two-state DCM: Dynamic causal modelling for fMRI: A two-state model (2008). Marreiros et al. *NeuroImage* 39:269-278
- Stochastic DCM: Generalised filtering and stochastic DCM for fMRI (2011). Li et al. *NeuroImage* 58:442-457.
- Bayesian model comparison: Comparing families of dynamic causal models (2010). Penny et al. *PLoS Comput Biol.* 6(3):e1000709.

How independent are neural and hemodynamic parameter estimates?

Stephan et al. (2007) NeuroImage