
ECE 6504: Advanced Topics in 
Machine Learning 

Probabilistic Graphical Models and Large-Scale Learning 

 
Dhruv Batra  
Virginia Tech 

Topics 
–  Bayes Nets: Inference 

–  (Finish) Variable Elimination 
–  Graph-view of VE: Fill-edges, induced width 

Readings: KF 9.3,9.4; Barber 5.2 



Administrativia 
•  HW1  

–  Due in 2 weeks: Feb 17, Feb 19, 11:59pm 

•  Project Proposal 
–  Due: Mar 12, Mar 5, 11:59pm  
–  <=2pages, NIPS format 

•  HW2 
–  Out soon 
–  Due: Mar 5, Mar 12, 11:59pm 
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Project 
•  Individual or Groups of 2  

–  we prefer teams of 2 

•  Deliverables: 
–  5%: Project proposal (NIPS format): <= 2 pages 
–  10%: Midway presentations (in class) 
–  10%: Final report: webpage with results 
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Proposal 
•  2 Page (NIPS format) 

–  http://nips.cc/Conferences/2013/PaperInformation/StyleFiles 

•  Necessary Information: 
–  Project title  
–  Project idea.  

•  This should be approximately two paragraphs.  
–  Data set details 

•  Ideally existing dataset. No data-collection projects.  
–  Software  

•  Which libraries will you use? 
•  What will you write?  

–  Papers to read.  
•  Include 1-3 relevant papers.  You will probably want to read at least one of them 

before submitting your proposal. 
–  Teammate 

•  will you have a teammate?  If so, whom?  Maximum team size is two students.  
–  Mid-sem Milestone 

•  What will you complete by the project milestone due date?  Experimental results 
of some kind are expected here.  
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Project 
•  Main categories 

–  Application/Survey 
•  Compare a bunch of existing algorithms on a new application domain of 

your interest 
–  Formulation/Development 

•  Formulate a new model or algorithm for a new or old problem 
–  Theory 

•  Theoretically analyze an existing algorithm 

•  Rules 
–  Should fit in “Advanced Machine Learning” 
–  Can apply ML to your own research.  

•  Must be done this semester.  
–  OK to combine with other class-projects 

•  Must declare to both course instructors 
•  Must have explicit permission from BOTH instructors 
•  Must have a sufficient ML component  

–  Using libraries 
•  No need to implement all algorithms 
•  OK to use standard MRF, BN, Structured SVM, etc libraries 
•  More thought+effort => More credit 
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Recap of Last Time 
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Main Issues in PGMs 
•  Representation 

–  How do we store P(X1, X2, …, Xn) 
–  What does my model mean/imply/assume? (Semantics) 

•  Learning  
–  How do we learn parameters and structure of  

P(X1, X2, …, Xn) from data? 
–  What model is the right for my data? 

•  Inference 
–  How do I answer questions/queries with my model? such as 
–  Marginal Estimation: P(X5 | X1, X4) 
–  Most Probable Explanation: argmax P(X1, X2, …, Xn) 
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Possible Queries 
•  Evidence: E=e (e.g. N=t) 
•  Query variables of interest Y 

•  Conditional Probability: P(Y | E=e) 
–  E.g. P(F,A | N=t) 
–  Special case: Marginals P(F) 

•  Maximum a Posteriori: argmax P(All variables | E=e) 
–  argmax_{f,a,s,h} P(f,a,s,h | N = t) 

•  Marginal-MAP: argmax_y P(Y | E=e) 
–                      = argmax_{y}  Σo P(Y=y, O=o | E=e) 
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Flu Allergy 

Sinus 

Headache Nose=t 

Old-school terminology: MPE 

Old-school terminology: MAP 



Application: Medical Diagnosis 
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Sinus Nose 

P(S=f)=0.6 
P(S=t)=0.4  

P(N|S) 

Are MAP and Max of Marginals Consistent? 



Hardness 
•  Find P(All variables) 

•  MAP 
–  Find argmax P(All variables | E=e) 
–  Find any assignment P(All variables | E=e) > p 

•  Conditional Probability / Marginals 
–  Is P(Y=y | E=e) > 0 
–  Find P(Y=y | E=e) 
–  Find |P(Y=y | E=e) – p| <= ε 

•  Marginal-MAP 
–  Find argmax_{y}  Σo P(Y=y, O=o | E=e) 
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NP-hard 
NP-hard 

#P-hard 
NP-hard 

NP-hard 
for any ε<0.5 

NPPP-hard 

Easy for BN: O(n) 



Inference in BNs hopeless? 
•  In general, yes!  

–  Even approximate! 

•  In practice 
–  Exploit structure 
–  Many effective approximation algorithms 

•  some with guarantees 

•  Plan 
–  Exact Inference 
–  Transition to Undirected Graphical Models (MRFs) 
–  Approximate inference in the unified setting 



Algorithms 
•  Conditional Probability / Marginals 

–  Variable Elimination 
–  Sum-Product Belief Propagation 
–  Sampling: MCMC 

•  MAP 
–  Variable Elimination 
–  Max-Product Belief Propagation 
–  Sampling MCMC 

–  Integer Programming 
•  Linear Programming Relaxation 

–  Combinatorial Optimization (Graph-cuts) 
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Marginal Inference Example 
•  Evidence: E=e (e.g. N=t) 
•  Query variables of interest Y 

•  Conditional Probability: P(Y | E=e) 
–  P(F | N=t) 

–  Derivation on board 
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Variable Elimination algorithm 

IMPORTANT!!! 
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•  Given a BN and a query P(Y|e) ≈ P(Y,e) 
–  “Instantiate Evidence” 

•  Choose an ordering on variables, e.g., X1, …, Xn  

•  For i = 1 to n, If Xi ∉{Y,E} 
–  Collect factors f1,…,fk that include Xi 
–  Generate a new factor by eliminating Xi from these factors 

–  Variable Xi has been eliminated! 

•  Normalize P(Y,e) to obtain P(Y|e) 



Plan for today 
•  BN Inference 

–  (Finish) Variable Elimination 
•  VE for MAP Inference 

–  Graph-view of VE 
•  Moralization 
•  Fill edges 
•  Induced Width 
•  Tree width 

–  (Start) Undirected Graphical Models 
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VE for MAP Inference 
•  Evidence: E=e (e.g. N=t) 
•  Query variables of interest Y 

•  Conditional Probability: P(Y | E=e) 
–  P(F | N=t) 

•  Maximum a Posteriori: argmax P(All variables | E=e) 
–  argmax_{f,a,s,h} P(f,a,s,h | N = t) 
–  Derivation on board 

•  VE or Dynamic Programming extends to arbitrary 
commutative semi-rings! 
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VE for MAP – Forward Pass 
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•  Given a BN and a MAP query maxx1,…,xn
P(x1,…,xn,e) 

–  “Instantiate Evidence” 

•  Choose an ordering on variables, e.g., X1, …, Xn  

•  For i = 1 to n, If Xi ∉ E 
–  Collect factors f1,…,fk that include Xi 
–  Generate a new factor by eliminating Xi from these factors 

–  Variable Xi has been eliminated! 



VE for MAP – Backward Pass 
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•  {x1
*,…, xn

*} will store maximizing assignment 

•  For i = n to 1, If Xi ∉ E 
–  Take factors f1,…,fk used when Xi was eliminated 
–  Instantiate f1,…,fk, with {xi+1

*,…, xn
*} 

•  Now each fj depends only on Xi 

–  Generate maximizing assignment for Xi: 



Instantiating Evidence 
•  Given a BN and a query P(Y|e) ≈ P(Y,e) 

–  This step “reduces” the size of factors 
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Hidden Markov Model (HMM) 

Y1 = {a,…z} 

X1 =           

Y5 = {a,…z} Y3 = {a,…z} Y4 = {a,…z} Y2 = {a,…z} 

X2 = X3 =           X4 =           X5 =           



Graph-view of VE 
•  So far: Algorithmic / Algebriac view of VE 

•  Next: Graph-based view of VE 
–  Modifications to graph-structure as VE is running 
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Connect nodes that appear together in an initial factor 

Difficulty 

SAT Grade 

Happy 
Job 

Coherence 

Letter 

Intelligence 

Moralize graph: 
Connect parents 
into a clique and  

remove edge directions 

Moralization – “Marry” Parents 
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Eliminate variable 
add Fill Edges: 
Connect neighbors 

Difficulty 

SAT Grade 

Happy 
Job 

Coherence 

Letter 

Intelligence 

Eliminating a node – Fill edges 
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Elimination order: 
O = {C,D,S,I,L,H,J,G} 

Difficulty 

SAT Grade 

Happy 
Job 

Coherence 

Letter 

Intelligence 

The induced graph IFO  for elimination order O   
has an edge Xi – Xj if Xi and Xj appear together 

in a factor generated by VE for elimination order O  
on factors F  

Induced graph 
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Elimination order: 
O = {G,C,D,S,I,L,H,J} 

Different elimination order can  
lead to different induced graph 

Difficulty 

SAT Grade 

Happy 
Job 

Coherence 

Letter 

Intelligence 
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Difficulty 

SAT Grade 

Happy 
Job 

Coherence 

Letter 

Intelligence 

•  Structure of induced graph 
encodes complexity of VE!!! 

•  Theorem: 
–  Every factor generated by VE is a 

clique in IFO  
–  Every maximal clique in IFO 

corresponds to a factor generated by 
VE  

•  Induced width 
–  Size of largest clique in IFO minus 1 

•  Treewidth 
–  induced width of best order O* 

Read complexity from cliques in induced graph 

Elimination order: 
O = {C,D,I,S,L,H,J,G} 

Induced graph and complexity of VE 
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Compact representation ⇒ Easy inference L 

Example: Large induced-width 
with small number of parents 
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Finding optimal elimination order 

Difficulty 

SAT Grade 

Happy 
Job 

Coherence 

Letter 

Intelligence 

•  Theorem: Finding best elimination 
order is NP-complete: 
–  Decision problem: Given a graph, 

determine if there exists an elimination 
order that achieves induced width ≤ K 

•  Interpretation: 
–  Hardness of finding elimination order in 

addition to hardness of inference 
–  Actually, can find elimination order in time 

exponential in size of largest clique – same 
complexity as inference Elimination order: 

{C,D,I,S,L,H,J,G} 
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•  Min (weighted) fill heuristic 
–  Often very effective 

•  Initialize unobserved nodes X as 
unmarked 

•  For k = 1 to |X| 
–  O(next) ç unmarked var whose 

elimination adds fewest edges 
–  Mark X 
–  Add fill edges introduced by eliminating X 

•  Weighted version: 
–  Consider size of factor rather than number 

of edges 

Difficulty 

SAT Grade 

Happy 
Job 

Coherence 

Letter 

Intelligence 

Minimum (weighted) fill heuristic 
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Elimination order: 

{C,D,I,S,L,H,J,G} 



Demo 
•  http://www.cs.us.es/~cgdiaz/CIspace/bayes.html 
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BN: Exact Inference:  
What you need to know 

•  Types of queries 
–  Conditional probabilities / Marginals 
–  maximum a posteriori (MAP) 
–  Marginal-MAP 
–  Different queries give different answers 

•  Hardness of inference 
–  Exact and approximate inference are NP-hard 
–  MAP is NP-complete 
–  Conditional Probabilities #P-complete 
–  Marginal-MAP is much harder (NPPP-complete) 

•  Variable elimination algorithm 
–  Eliminate a variable: 

•  Combine factors that include this var into single factor 
•  Marginalize/Maximize var from new factor 

–  Efficient algorithm (“only” exponential in induced-width, not number of variables) 
•  If you hear: “Exact inference only efficient in tree graphical models” 
•  You say: “No! Any graph with low induced width” 

•  Elimination order is important! 
–  NP-complete problem 
–  Many good heuristics 

(C) Dhruv Batra  31 



Main Issues in PGMs 
•  Representation 

–  How do we store P(X1, X2, …, Xn) 
–  What does my model mean/imply/assume? (Semantics) 

•  Learning  
–  How do we learn parameters and structure of  

P(X1, X2, …, Xn) from data? 
–  What model is the right for my data? 

•  Inference 
–  How do I answer questions/queries with my model? such as 
–  Marginal Estimation: P(X5 | X1, X4) 
–  Most Probable Explanation: argmax P(X1, X2, …, Xn) 
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New Topic: Markov Nets / MRFs 
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Synonyms 
•  Markov Networks 

•  Markov Random Fields 
•  Gibbs Distribution 

•  In vision literature 
–  MAP inference in MRFs = Energy Minimization 
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A general Bayes net 
•  Set of random variables 

•  Directed acyclic graph  
–  Encodes independence assumptions 

•  CPTs 
–  Conditional Probability Tables 

•  Joint distribution: 
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Markov Nets 
•  Set of random variables 

•  Undirected graph  
–  Encodes independence assumptions 

•  Unnormalized Factor Tables 

•  Joint distribution: 
–  Product of Factors 
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Local Structures in BNs 
•  Causal Trail 

–  X à Y à Z 

•  Evidential Trail 
–  X ß Y ß Z 

•  Common Cause 
–  X ß Y à Z 

•  Common Effect (v-structure) 
–  X à Y ß Z 
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Local Structures in MNs 
•  On board 
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Active Trails and Separation 
•  A path X1 – … – Xk is active when set of variables Z 

are observed  
–  if none of Xi ∈ {X1,…,Xk} are observed (are part of Z)  

•  Variables X are separated from Y given Z in graph 
–  If no active path between any X ∈ X and any Y ∈ Y given Z 
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T1 

T3 
T4 

T5 T6 

T2 

T7 T8 T9 

Independence Assumptions in MNs 
•  Separation defines global independencies 

•  Pairwise Markov Independence: 
–  Pairs of non-adjacent variables A,B are  
   independent given all others 

•  Markov Blanket:  
–  Variable A independent of rest given its neighbors 
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