## ECE 6504: Advanced Topics in Machine Learning

Probabilistic Graphical Models and Large-Scale Learning

Topics

- Bayes Nets: Inference
- (Finish) Variable Elimination
- Graph-view of VE: Fill-edges, induced width

Readings: KF 9.3,9.4; Barber 5.2
Dhruv Batra
Virginia Tech

## Administrativia

- HW1
- Due in 2 weeks: Feb 17, Feb 19, 11:59pm
- Project Proposal
- Due: Mar 12, Mar 5, 11:59pm
- <=2pages, NIPS format
- HW2
- Out soon
- Due: Mar 5, Mar 12, 11:59pm


## Project

- Individual or Groups of 2
- we prefer teams of 2
- Deliverables:
- 5\%: Project proposal (NIPS format): <= 2 pages
- 10\%: Midway presentations (in class)
- 10\%: Final report: webpage with results


## Proposal

- 2 Page (NIPS format)
- http://nips.cc/Conferences/2013/PaperInformation/StyleFiles
- Necessary Information:
- Project title
- Project idea.
- This should be approximately two paragraphs.
- Data set details
- Ideally existing dataset. No data-collection projects.
- Software
- Which libraries will you use?
- What will you write?
- Papers to read.
- Include 1-3 relevant papers. You will probably want to read at least one of them before submitting your proposal.
- Teammate
- will you have a teammate? If so, whom? Maximum team size is two students.
- Mid-sem Milestone
- What will you complete by the project milestone due date? Experimental results of some kind are expected here.


## Project

- Main categories
- Application/Survey
- Compare a bunch of existing algorithms on a new application domain of your interest
- Formulation/Development
- Formulate a new model or algorithm for a new or old problem
- Theory
- Theoretically analyze an existing algorithm
- Rules
- Should fit in "Advanced Machine Learning"
- Can apply ML to your own research.
- Must be done this semester.
- OK to combine with other class-projects
- Must declare to both course instructors
- Must have explicit permission from BOTH instructors
- Must have a sufficient ML component
- Using libraries
- No need to implement all algorithms
- OK to use standard MRF, BN, Structured SVM, etc libraries
- More thought+effort => More credit


## Recap of Last Time

## Main Issues in PGMs

- Representation
- How do we store $P\left(X_{1}, X_{2}, \ldots, X_{n}\right)$
- What does my model mean/imply/assume? (Semantics)
- Learning
- How do we learn parameters and structure of $\mathrm{P}\left(\mathrm{X}_{1}, \mathrm{X}_{2}, \ldots, \mathrm{X}_{\mathrm{n}}\right)$ from data?
- What model is the right for my data?
- Inference
- How do I answer questions/queries with my model? such as
- Marginal Estimation: $\mathrm{P}\left(\mathrm{X}_{5} \mid \mathrm{X}_{1}, \mathrm{X}_{4}\right)$
- Most Probable Explanation: $\operatorname{argmax} P\left(X_{1}, X_{2}, \ldots, X_{n}\right)$


## Possible Queries

- Evidence: E=e (e.g. $\mathrm{N}=\mathrm{t}$ )
- Query variables of interest $\mathbf{Y}$

- Conditional Probability: $\mathrm{P}(\mathrm{Y} \mid \mathrm{E}=\mathbf{e})$
- E.g. $P(F, A \mid N=t)$
- Special case: Marginals P(F)
- Maximum a Posteriori: argmax $P($ All variables $\mid E=e)$
- argmax_\{f,a,s,h\} P(f,a,s,h | N = t)

Old-school terminology: MPE

- Marginal-MAP: argmax_y P(Y|E=e) Old-school terminology: MAP
$=\operatorname{argmax}\{y\} \Sigma_{0} P(\mathbf{Y}=\mathbf{y}, \mathbf{O}=\mathbf{o} \mid E=\mathbf{e})$


## Application: Medical Diagnosis

diseases


## Are MAP and Max of Marginals Consistent?



## Hardness

- Find $P($ All variables $)$
- MAP
- Find argmax $P($ All variables $\mid E=e)$
- Find any assignment $P($ All variables $\mid E=\mathbf{e})>p$
- Conditional Probability / Marginals
- Is $P(Y=y \mid E=e)>0$
- Find $P(Y=y \mid E=e)$
- Find $|\mathrm{P}(\mathrm{Y}=\mathrm{y} \mid \mathrm{E}=\mathbf{e})-\mathrm{p}|<=\varepsilon$

NP-hard
\#P-hard
NP-hard
for any $\varepsilon<0.5$

- Marginal-MAP
- Find argmax_\{y\} $\Sigma_{0} P(\mathbf{Y}=\mathbf{y}, \mathbf{O}=\mathbf{o} \mid \mathbf{E}=\mathbf{e})$


## Inference in BNs hopeless?

- In general, yes!
- Even approximate!
- In practice
- Exploit structure
- Many effective approximation algorithms
- some with guarantees
- Plan
- Exact Inference
- Transition to Undirected Graphical Models (MRFs)
- Approximate inference in the unified setting


## Algorithms

- Conditional Probability / Marginals
- Variable Elimination
- Sum-Product Belief Propagation
- Sampling: MCMC
- MAP
- Variable Elimination
- Max-Product Belief Propagation
- Sampling MCMC
- Integer Programming
- Linear Programming Relaxation
- Combinatorial Optimization (Graph-cuts)


## Marginal Inference Example

- Evidence: $\mathrm{E}=\mathrm{e}$ (e.g. $\mathrm{N}=\mathrm{t}$ )
- Query variables of interest Y

- Conditional Probability: $\mathrm{P}(\mathbf{Y} \mid \mathrm{E}=\mathbf{e})$
- $P(F \mid N=t)$
- Derivation on board


## Variable Elimination algorithm

- Given a $B N$ and a query $P(\mathbf{Y} \mid \mathbf{e}) \approx P(\mathbf{Y}, \mathbf{e})$
- "Instantiate Evidence"
- Choose an ordering on variables, e.g., $X_{1}, \ldots, X_{n}$
- For $\mathrm{i}=1$ to n , If $\mathrm{X}_{\mathrm{i}} \notin\{\mathrm{Y}, \mathrm{E}\}$
- Collect factors $f_{1}, \ldots, f_{k}$ that include $X_{i}$
- Generate a new factor by eliminating $X_{i}$ from these factors

$$
g=\sum_{X_{i}} \prod_{j=1} f_{j}
$$

- Variable $X_{i}$ has been eliminated!
- Normalize $\mathrm{P}(\mathrm{Y}, \mathrm{e})$ to obtain $\mathrm{P}(\mathrm{Y} \mid \mathrm{e})$


## Plan for today

- BN Inference
- (Finish) Variable Elimination
- VE for MAP Inference
- Graph-view of VE
- Moralization
- Fill edges
- Induced Width
- Tree width
- (Start) Undirected Graphical Models


## VE for MAP Inference

- Evidence: E=e (e.g. $\mathrm{N}=\mathrm{t}$ )
- Query variables of interest $\mathbf{Y}$
- Conditional Probability: $\mathrm{P}(\mathrm{Y} \mid \mathrm{E}=\mathbf{e})$

- $P(F \mid N=t)$
- Maximum a Posteriori: argmax $P($ All variables $\mid \mathrm{E}=\mathbf{e})$
$-\operatorname{argmax}\{f, a, s, h\} P(f, a, s, h \mid N=t)$
- Derivation on board
- VE or Dynamic Programming extends to arbitrary commutative semi-rings!


## VE for MAP - Forward Pass

- Given a BN and a MAP query $\max _{\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}}} \mathrm{P}\left(\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}}, \mathbf{e}\right)$
- "Instantiate Evidence"
- Choose an ordering on variables, e.g., $\mathrm{X}_{1}, \ldots, \mathrm{X}_{\mathrm{n}}$
- For $i=1$ to $n$, If $X_{i} \notin E$
- Collect factors $f_{1}, \ldots, f_{k}$ that include $X_{i}$
- Generate a new factor by eliminating $X_{i}$ from these factors

$$
g=\max _{x_{i}} \prod_{j=1} f_{j}
$$

- Variable $X_{i}$ has been eliminated!


## VE for MAP - Backward Pass

- $\left\{\mathrm{x}_{1}{ }^{*}, \ldots, \mathrm{x}_{\mathrm{n}}{ }^{*}\right\}$ will store maximizing assignment
- For $\mathrm{i}=\mathrm{n}$ to 1 , If $\mathrm{X}_{\mathrm{i}} \notin \mathrm{E}$
- Take factors $f_{1}, \ldots, f_{k}$ used when $X_{i}$ was eliminated
- Instantiate $\mathrm{f}_{1}, \ldots, \mathrm{f}_{\mathrm{k}}$, with $\left\{\mathrm{x}_{\mathrm{i}+1}{ }^{*}, \ldots, \mathrm{x}_{\mathrm{n}}{ }^{*}\right\}$
- Now each $f_{j}$ depends only on $X_{i}$
- Generate maximizing assignment for $X_{i}$ :

$$
x_{i}^{*} \in \underset{x_{i}}{\operatorname{argmax}} \prod_{j=1}^{k} f_{j}
$$

## Instantiating Evidence

- Given a $B N$ and a query $P(Y \mid e) \approx P(Y, e)$
- This step "reduces" the size of factors


Hidden Markov Model (HMM)

## Graph-view of VE

- So far: Algorithmic / Algebriac view of VE
- Next: Graph-based view of VE
- Modifications to graph-structure as VE is running


## Moralization - "Marry" Parents



Connect nodes that appear together in an initial factor

## Eliminating a node - Fill edges



## Induced graph



The induced graph $\mathrm{I}_{\mathrm{FO}}$ for elimination order O has an edge $X_{i}-X_{j}$ if $X_{i}$ and $X_{j}$ appear together in a factor generated by VE for elimination order $O$ on factors $F$

## Different elimination order can lead to different induced graph



## Induced graph and complexity of VE

## Read complexity from cliques in induced graph

- Structure of induced graph encodes complexity of VE!!!
- Theorem:
- Every factor generated by VE is a clique in $\mathrm{I}_{\mathrm{FO}}$
- Every maximal clique in $\mathrm{I}_{\mathrm{FO}}$ corresponds to a factor generated by VE
- Induced width
- Size of largest clique in $\mathrm{I}_{\mathrm{Fo}}$ minus 1
- Treewidth
- induced width of best order $\mathrm{O}^{*}$


# Example: Large induced-width with small number of parents 

## Compact representation $\vDash$ Easy inference $: ~ B$

## Finding optimal elimination order

- Theorem: Finding best elimination order is NP-complete:
- Decision problem: Given a graph, determine if there exists an elimination order that achieves induced width $\leq \mathrm{K}$
- Interpretation:
- Hardness of finding elimination order in addition to hardness of inference
- Actually, can find elimination order in time exponential in size of largest clique - same complexity as inference


## Minimum (weighted) fill heuristic

- Min (weighted) fill heuristic
- Often very effective
- Initialize unobserved nodes $\mathbf{X}$ as unmarked
- For $\mathrm{k}=1$ to $|\mathbf{X}|$
- O (next) $\leftarrow$ unmarked var whose elimination adds fewest edges
- Mark X
- Add fill edges introduced by eliminating $X$
- Weighted version:
- Consider size of factor rather than number of edges


## Demo

- http://www.cs.us.es/~cgdiaz/Clspace/bayes.html


## BN: Exact Inference: What you need to know

- Types of queries
- Conditional probabilities / Marginals
- maximum a posteriori (MAP)
- Marginal-MAP
- Different queries give different answers
- Hardness of inference
- Exact and approximate inference are NP-hard
- MAP is NP-complete
- Conditional Probabilities \#P-complete
- Marginal-MAP is much harder (NPPP-complete)
- Variable elimination algorithm
- Eliminate a variable:
- Combine factors that include this var into single factor
- Marginalize/Maximize var from new factor
- Efficient algorithm ("only" exponential in induced-width, not number of variables)
- If you hear: "Exact inference only efficient in tree graphical models"
- You say: "No! Any graph with low induced width"
- Elimination order is important!
- NP-complete problem
- Many good heuristics


## Main Issues in PGMs

- Representation
- How do we store $P\left(X_{1}, X_{2}, \ldots, X_{n}\right)$
- What does my model mean/imply/assume? (Semantics)
- Learning
- How do we learn parameters and structure of $\mathrm{P}\left(\mathrm{X}_{1}, \mathrm{X}_{2}, \ldots, \mathrm{X}_{\mathrm{n}}\right)$ from data?
- What model is the right for my data?
- Inference
- How do I answer questions/queries with my model? such as
- Marginal Estimation: $\mathrm{P}\left(\mathrm{X}_{5} \mid \mathrm{X}_{1}, \mathrm{X}_{4}\right)$
- Most Probable Explanation: $\operatorname{argmax} P\left(X_{1}, X_{2}, \ldots, X_{n}\right)$


## New Topic: Markov Nets / MRFs



## Synonyms

- Markov Networks
- Markov Random Fields
- Gibbs Distribution
- In vision literature
- MAP inference in MRFs = Energy Minimization


## A general Bayes net

- Set of random variables
- Directed acyclic graph
- Encodes independence assumptions

- CPTs
- Conditional Probability Tables
- Joint distribution:

$$
P\left(X_{1}, \ldots, X_{n}\right)=\prod_{i=1}^{n} P\left(X_{i} \mid \mathbf{P} \mathbf{a}_{X_{i}}\right)
$$

## Markov Nets

- Set of random variables
- Undirected graph
- Encodes independence assumptions
- Unnormalized Factor Tables
- Joint distribution:
- Product of Factors


## Local Structures in BNs

- Causal Trail
$-X \rightarrow Y \rightarrow Z$
- Evidential Trail
$-X \leftarrow Y \leftarrow Z$
- Common Cause
$-X \leftarrow Y \rightarrow Z$
- Common Effect (v-structure)
$-X \rightarrow Y \leftarrow Z$


## Local Structures in MNs

- On board


## Active Trails and Separation

- A path $X_{1}-\ldots-X_{k}$ is active when set of variables $\mathbf{Z}$ are observed
- if none of $X_{i} \in\left\{X_{1}, \ldots, X_{k}\right\}$ are observed (are part of $\mathbf{Z}$ )
- Variables $\mathbf{X}$ are separated from $\mathbf{Y}$ given $\mathbf{Z}$ in graph
- If no active path between any $X \in \mathbf{X}$ and any $Y \in \mathbf{Y}$ given $\mathbf{Z}$


## Independence Assumptions in MNs

- Separation defines global independencies
- Pairwise Markov Independence:
- Pairs of non-adjacent variables $A, B$ are independent given all others
- Markov Blanket:
- Variable A independent of rest given its neighbors


