ECE 6504: Advanced Topics in Machine Learning

Probabilistic Graphical Models and Large-Scale Learning

Topics

- Bayes Nets: Inference
 - (Finish) Variable Elimination
 - Graph-view of VE: Fill-edges, induced width

Readings: KF 9.3,9.4; Barber 5.2

Dhruv Batra Virginia Tech

Administrativia

- HW1
 - Due in 2 weeks: Feb 17, Feb 19, 11:59pm
- Project Proposal
 - Due: Mar 12, Mar 5, 11:59pm
 - <=2pages, NIPS format</p>
- HW2
 - Out soon
 - Due: Mar 5, Mar 12, 11:59pm

Project

- Individual or Groups of 2
 - we prefer teams of 2
- Deliverables:
 - 5%: Project proposal (NIPS format): <= 2 pages</p>
 - 10%: Midway presentations (in class)
 - 10%: Final report: webpage with results

Proposal

- 2 Page (NIPS format)
 - http://nips.cc/Conferences/2013/PaperInformation/StyleFiles
- Necessary Information:
 - Project title
 - Project idea.
 - This should be approximately two paragraphs.
 - Data set details
 - Ideally existing dataset. No data-collection projects.
 - Software
 - Which libraries will you use?
 - What will you write?
 - Papers to read.
 - Include 1-3 relevant papers. You will probably want to read at least one of them before submitting your proposal.
 - Teammate
 - will you have a teammate? If so, whom? Maximum team size is two students.
 - Mid-sem Milestone
 - What will you complete by the project milestone due date? Experimental results of some kind are expected here.

Project

- Main categories
 - Application/Survey
 - Compare a bunch of existing algorithms on a new application domain of your interest
 - Formulation/Development
 - Formulate a new model or algorithm for a new or old problem
 - Theory
 - Theoretically analyze an existing algorithm
- Rules
 - Should fit in "Advanced Machine Learning"
 - Can apply ML to your own research.
 - Must be done this semester.
 - OK to combine with other class-projects
 - Must declare to both course instructors
 - Must have explicit permission from BOTH instructors
 - Must have a sufficient ML component
 - Using libraries
 - No need to implement all algorithms
 - OK to use standard MRF, BN, Structured SVM, etc libraries
 - More thought+effort => More credit

Recap of Last Time

Main Issues in PGMs

- Representation
 - How do we store $P(X_1, X_2, ..., X_n)$
 - What does my model mean/imply/assume? (Semantics)
- Learning
 - How do we learn parameters and structure of P(X₁, X₂, ..., X_n) from data?
 - What model is the right for my data?
- Inference
 - How do I answer questions/queries with my model? such as
 - Marginal Estimation: $P(X_5 | X_1, X_4)$
 - Most Probable Explanation: argmax $P(X_1, X_2, ..., X_n)$

Possible Queries

- Evidence: **E**=**e** (e.g. N=t)
- Query variables of interest Y

- Conditional Probability: P(Y | E=e)
 - E.g. P(F,A | N=t)
 - Special case: Marginals P(F)
- Maximum a Posteriori: argmax P(All variables | E=e)

 argmax_{f,a,s,h} P(f,a,s,h | N = t)
 Old-school terminology: MPE
- Marginal-MAP: argmax_y P(Y | E=e) Old-school terminology: MAP - = argmax_{y} $\Sigma_0 P(Y=y, O=o | E=e)$

Application: Medical Diagnosis

Are MAP and Max of Marginals Consistent?

Hardness

 Find P(All variables) 	Easy for BN: O(n)
 MAP Find argmax P(All variables E=e) Find any assignment P(All variables E=e) > p 	NP-hard NP-hard
• Conditional Probability / Marginals - Is P(Y=y F=0) > 0	
= 1S F(1-y L-e) > 0 Find $P(Y-y E-e)$	NP-hard
	#P-hard
– Find P(Y=y E=e) – p <= ε	NP-hard for any ε<0.5
 Marginal-MAP 	
– Find argmax_{y} Σ _o P(Y=y, O=o E=e)	NP ^{PP} -hard
(C) Dhruv Batra	11

Inference in BNs hopeless?

- In general, yes!
 - Even approximate!
- In practice
 - Exploit structure
 - Many effective approximation algorithms
 - some with guarantees
- Plan
 - Exact Inference
 - Transition to Undirected Graphical Models (MRFs)
 - Approximate inference in the unified setting

Algorithms

- Conditional Probability / Marginals
 - Variable Elimination
 - Sum-Product Belief Propagation
 - Sampling: MCMC
- MAP
 - Variable Elimination
 - Max-Product Belief Propagation
 - Sampling MCMC
 - Integer Programming
 - Linear Programming Relaxation
 - Combinatorial Optimization (Graph-cuts)

Marginal Inference Example

- Evidence: **E**=**e** (e.g. N=t)
- Query variables of interest Y

- Conditional Probability: P(Y | E=e)
 - P(F | N=t)
 - Derivation on board

Variable Elimination algorithm

- Given a BN and a query $P(\mathbf{Y}|\mathbf{e}) \approx P(\mathbf{Y},\mathbf{e})$
 - "Instantiate Evidence"
- Choose an ordering on variables, e.g., X₁, ..., X_n
- For i = 1 to n, If X_i ∉{Y,E}
 - Collect factors f_1, \ldots, f_k that include X_i
 - Generate a new factor k_{k} by eliminating X_{i} from these factors

$$g = \sum_{X_i} \prod_{j=1} f_j$$

- Variable X_i has been eliminated!
- Normalize P(Y,e) to obtain P(Y|e)

IMPORTANT!!!

Plan for today

- BN Inference
 - (Finish) Variable Elimination
 - VE for MAP Inference
 - Graph-view of VE
 - Moralization
 - Fill edges
 - Induced Width
 - Tree width
 - (Start) Undirected Graphical Models

VE for MAP Inference

- Evidence: **E**=**e** (e.g. N=t)
- Query variables of interest Y

- Conditional Probability: P(Y | E=e)
 P(F | N=t)
- Maximum a Posteriori: argmax P(All variables | E=e)
 - argmax_{f,a,s,h} P(f,a,s,h | N = t)
 - Derivation on board
- VE or Dynamic Programming extends to arbitrary commutative semi-rings!

VE for MAP – Forward Pass

- Given a BN and a MAP query $max_{x_1,...,x_n}P(x_1,...,x_n,e)$
 - "Instantiate Evidence"
- Choose an ordering on variables, e.g., X₁, ..., X_n
- For i = 1 to n, If $X_i \notin E$
 - Collect factors f_1, \ldots, f_k that include X_i
 - Generate a new factor by eliminating X_i from these factors

$$g = \max_{x_i} \prod_{\substack{j=1 \\ j = 1}}^{n} f_j$$

Variable X_i has been eliminated!

VE for MAP – Backward Pass

- $\{x_1^*, \dots, x_n^*\}$ will store maximizing assignment
- For i = n to 1, If $X_i \notin E$
 - Take factors f_1, \dots, f_k used when X_i was eliminated
 - Instantiate f_1, \dots, f_k , with $\{x_{i+1}^*, \dots, x_n^*\}$
 - Now each f_i depends only on X_i
 - Generate maximizing assignment for X_i:

$$x_i^* \in \operatorname*{argmax}_{x_i} \prod_{j=1}^{\kappa} f_j$$

Instantiating Evidence

- Given a BN and a query $P(Y|e) \approx P(Y,e)$
 - This step "reduces" the size of factors

Hidden Markov Model (HMM)

Graph-view of VE

- So far: Algorithmic / Algebriac view of VE
- Next: Graph-based view of VE
 - Modifications to graph-structure as VE is running

Moralization – "Marry" Parents

Connect nodes that appear together in an initial factor

Eliminating a node – Fill edges

Induced graph

Different elimination order can lead to different induced graph

Induced graph and complexity of VE

Read complexity from cliques in induced graph

 Structure of induced graph encodes complexity of VE!!!

Theorem:

- Every factor generated by VE is a clique in I_{FO}
- Every maximal clique in I_{FO} corresponds to a factor generated by VE

Induced width

Size of largest clique in I_{FO} minus 1

Treewidth

induced width of best order O*

Example: Large induced-width with small number of parents

Compact representation \Rightarrow Easy inference \otimes

Finding optimal elimination order

- Theorem: Finding best elimination order is NP-complete:
 - Decision problem: Given a graph, determine if there exists an elimination order that achieves induced width ≤ K

Interpretation:

- Hardness of finding elimination order in addition to hardness of inference
- Actually, can find elimination order in time exponential in size of largest clique – same complexity as inference

Minimum (weighted) fill heuristic

- Min (weighted) fill heuristic
 Often very effective
- Initialize unobserved nodes X as unmarked
 - For k = 1 to |**X**|
 - O(next) ← unmarked var whose elimination adds fewest edges
 - Mark X
 - Add fill edges introduced by eliminating X
- Weighted version:
 - Consider size of factor rather than number of edges

Demo

http://www.cs.us.es/~cgdiaz/CIspace/bayes.html

BN: Exact Inference:

What you need to know

- Types of queries
 - Conditional probabilities / Marginals
 - maximum a posteriori (MAP)
 - Marginal-MAP
 - Different queries give different answers
- Hardness of inference
 - Exact and approximate inference are NP-hard
 - MAP is NP-complete
 - Conditional Probabilities #P-complete
 - Marginal-MAP is much harder (NP^{PP}-complete)
- Variable elimination algorithm
 - Eliminate a variable:
 - Combine factors that include this var into single factor
 - Marginalize/Maximize var from new factor
 - Efficient algorithm ("only" exponential in induced-width, not number of variables)
 - If you hear: "Exact inference only efficient in tree graphical models"
 - You say: "No! Any graph with low induced width"
- Elimination order is important!
 - NP-complete problem
 - Many good heuristics

Main Issues in PGMs

- Representation
 - How do we store $P(X_1, X_2, ..., X_n)$
 - What does my model mean/imply/assume? (Semantics)
- Learning
 - How do we learn parameters and structure of P(X₁, X₂, ..., X_n) from data?
 - What model is the right for my data?
- Inference
 - How do I answer questions/queries with my model? such as
 - Marginal Estimation: $P(X_5 | X_1, X_4)$
 - Most Probable Explanation: argmax $P(X_1, X_2, ..., X_n)$

New Topic: Markov Nets / MRFs

Synonyms

- Markov Networks
- Markov Random Fields
- Gibbs Distribution
- In vision literature
 - MAP inference in MRFs = Energy Minimization

A general Bayes net

- Set of random variables
- Directed acyclic graph
 - Encodes independence assumptions
- CPTs
 - Conditional Probability Tables
- Joint distribution:

$$P(X_1,\ldots,X_n) = \prod_{i=1}^n P\left(X_i \mid \mathbf{Pa}_{X_i}\right)$$

Markov Nets

- Set of random variables
- Undirected graph
 - Encodes independence assumptions
- Unnormalized Factor Tables

- Joint distribution:
 - Product of Factors

Local Structures in BNs

- Causal Trail - $X \rightarrow Y \rightarrow Z$
- Evidential Trail
 X ← Y ← Z
- Common Cause $- X \leftarrow Y \rightarrow Z$
- Common Effect (v-structure) - $X \rightarrow Y \leftarrow Z$

Local Structures in MNs

On board

Active Trails and Separation

 A path X₁ – ... – X_k is active when set of variables Z are observed

- if none of $X_i \in \{X_1, ..., X_k\}$ are observed (are part of **Z**)

• Variables **X** are **separated** from **Y** given **Z** in graph

– If no active path between any $X \in \mathbf{X}$ and any $Y \in \mathbf{Y}$ given \mathbf{Z}

Independence Assumptions in MNs

- Separation defines global independencies
- Pairwise Markov Independence:
 - Pairs of non-adjacent variables A,B are independent given all others

- Markov Blanket:
 - Variable A independent of rest given its neighbors