ECE 6504: Advanced Topics in Machine Learning

Probabilistic Graphical Models and Large-Scale Learning

Topics

- Bayes Nets: Inference
 - Marginals, MPE, MAP
 - Variable Elimination

Readings: KF 9.1,9.2; Barber 5.1

Dhruv Batra Virginia Tech

Administrativia

- HW1
 - Out
 - Due in 2 weeks: Feb 17, Feb 19, 11:59pm
 - Please please please please start early
 - Implementation: TAN, structure + parameter learning
 - Please post questions on Scholar Forum.
- HW2
 - Out soon
 - Due in 2 weeks: Mar 5, 11:59pm
- Project Proposal
 - Due: Mar 12, 11:59pm
 - <=2pages, NIPS format</p>

Recap of Last Time

Learning Bayes nets

	Known structure	Unknown structure	
Fully observable data	Very easy	Hard	
Missing data	Somewhat easy (EM)	Very very hard	

Main Issues in PGMs

- Representation
 - How do we store $P(X_1, X_2, ..., X_n)$
 - What does my model mean/imply/assume? (Semantics)
- Learning
 - How do we learn parameters and structure of P(X₁, X₂, ..., X_n) from data?
 - What model is the right for my data?
- Inference
 - How do I answer questions/queries with my model? such as
 - Marginal Estimation: $P(X_5 | X_1, X_4)$
 - Most Probable Explanation: argmax $P(X_1, X_2, ..., X_n)$

Plan for today

- BN Inference
 - Queries: Marginals, Conditional Probabilities, MAP, MPE
 - Variable Elimination

Example

• HW1 Inference:

Tree-Augmented Naïve Bayes (TAN)

(C) Dhruv Batra

Possible Queries

- Evidence: **E**=**e** (e.g. N=t)
- Query variables of interest Y

- Conditional Probability: P(Y | E=e)
 - E.g. P(F,A | N=t)
 - Special case: Marginals P(F)
- Maximum a Posteriori: argmax P(All variables | E=e)

 argmax_{f,a,s,h} P(f,a,s,h | N = t)
 Old-school terminology: MPE
- Marginal-MAP: argmax_y P(Y | E=e) Old-school terminology: MAP - = argmax_{y} $\Sigma_0 P(Y=y, O=o | E=e)$

Car starts BN

Application: Computer Vision

Grid model Markov random field (blue nodes) Semantic segmentation

(C) Dhruv Batra

Application: Computer Vision

Tree model

Parsing the human body

Application: Medical Diagnosis

Are MAP and Max of Marginals Consistent?

Hardness

 Find P(All variables) 	Easy for BN: O(n)
 MAP Find argmax P(All variables E=e) Find any assignment P(All variables E=e) > p 	NP-hard NP-hard
 Conditional Probability / Marginals Is P(Y=y E=e) > 0 Find P(Y=y E=e) Find P(Y=y E=e) - p <= ε 	NP-hard #P-hard NP-hard
 Marginal-MAP Find argmax_{y} Σ_o P(Y=y, O=o E=e) 	for any ε<0.5 NP ^{PP} -hard
(C) Dhruv Batra	15

Inference in BNs hopeless?

- In general, yes!
 - Even approximate!
- In practice
 - Exploit structure
 - Many effective approximation algorithms
 - some with guarantees
- Plan
 - Exact Inference
 - Transition to Undirected Graphical Models (MRFs)
 - Approximate inference in the unified setting

Algorithms

- Conditional Probability / Marginals
 - Variable Elimination
 - Sum-Product Belief Propagation
 - Sampling: MCMC
- MAP
 - Variable Elimination
 - Max-Product Belief Propagation
 - Sampling MCMC
 - Integer Programming
 - Linear Programming Relaxation
 - Combinatorial Optimization (Graph-cuts)

Marginal Inference Example

- Evidence: **E**=**e** (e.g. N=t)
- Query variables of interest Y

- Conditional Probability: P(Y | E=e)
 - P(F | N=t)
 - Derivation on board

Marginal Inference Example

Inference seems exponential in number of variables!

Actually, inference in graphical models is NP-hard 😕

Variable elimination algorithm

- Given a BN and a query $P(\mathbf{Y}|\mathbf{e}) \approx P(\mathbf{Y},\mathbf{e})$
- Choose an ordering on variables, e.g., X₁, ..., X_n
- For i = 1 to n, If $X_i \notin \{Y, E\}$
 - Collect factors f_1, \ldots, f_k that include X_i
 - Generate a new factor by eliminating X_i from these factors

$$g = \sum_{X_i} \prod_{j=1}^n f_j$$

- Variable X_i has been eliminated!
- Normalize P(Y,e) to obtain P(Y|e)

Complexity of variable elimination – Graphs with loops

Exponential in number of variables in largest factor generated

Pruning irrelevant variables

Prune all non-ancestors of query variables More generally: Prune all nodes not on active trail between evidence and query vars