ECE 6504: Advanced Topics in Machine Learning

Probabilistic Graphical Models and Large-Scale Learning

Topics

- Bayes Nets

- (Finish) Structure Learning

Readings: KF 18.4; Barber 9.5, 10.4

Dhruv Batra Virginia Tech

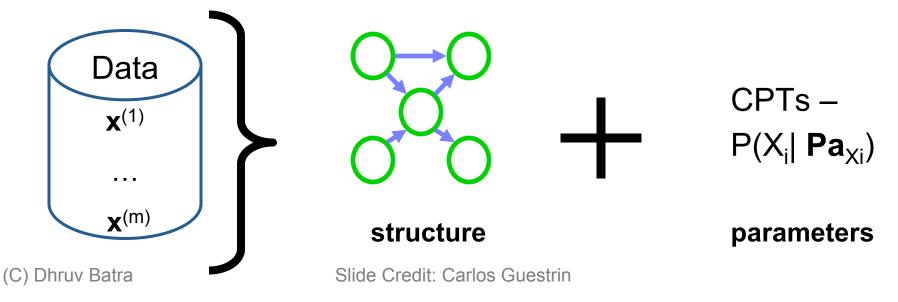
Administrativia

- HW1
 - Out
 - Due in 2 weeks: Feb 17, Feb 19, 11:59pm
 - Please please please please start early
 - Implementation: TAN, structure + parameter learning
 - Please post questions on Scholar Forum.

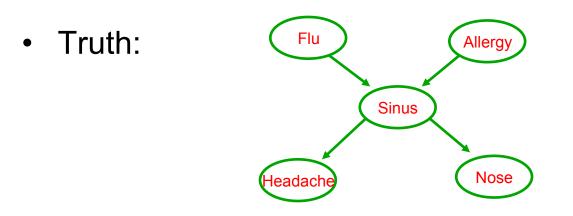
Recap of Last Time

Learning Bayes nets

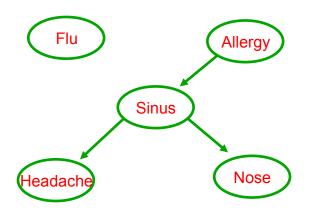
	Known structure	Unknown structure
Fully observable data	Very easy	Hard
Missing data	Somewhat easy (EM)	Very very hard

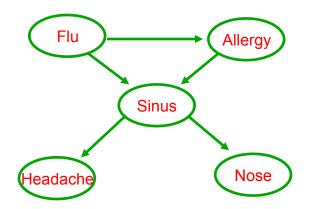


Types of Errors

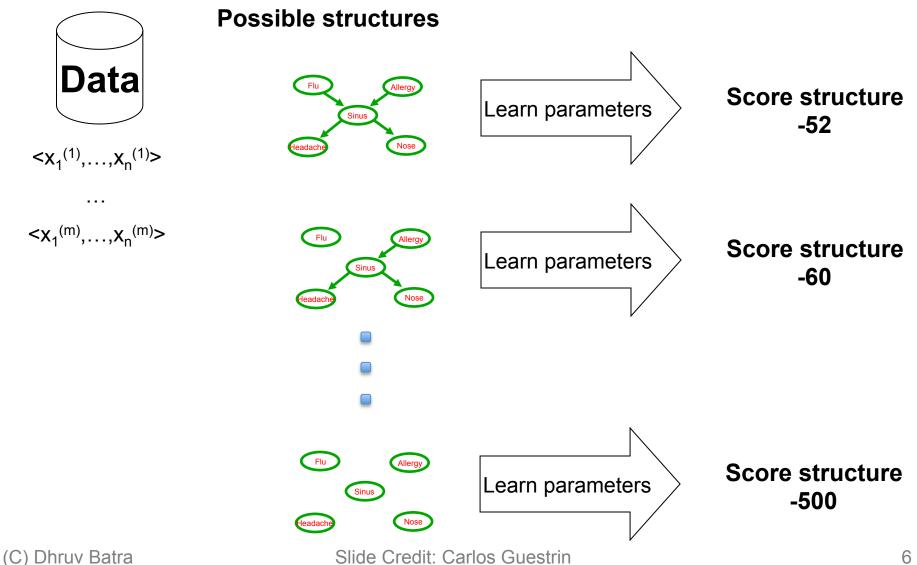


• Recovered:





Score-based approach



How many graphs?

- N vertices.
- How many (undirected) graphs?
- How many (undirected) trees?

What's a good score?

• Score(G) = log-likelihood(G : D, θ_{MLE}) = logP(D | θ_{MLE} , G)

Information-theoretic interpretation of Maximum Likelihood Score

$$\log \hat{P}(\mathcal{D} \mid \theta, \mathcal{G}) = m \sum_{i} \hat{I}(X_i, \mathbf{Pa}_{X_i}) - m \sum_{i} \hat{H}(X_i)$$

- Implications:
 - Intuitive: higher mutual info \rightarrow higher score
 - Decomposes over families in BN (node and it's parents)
 - Same score for I-equivalent structures!

Flu

Sinus

Allergy

Log-Likelihood Score Overfits

$$\log \hat{P}(\mathcal{D} \mid \theta, \mathcal{G}) = m \sum_{i} \hat{I}(X_i, \mathbf{Pa}_{X_i}) - m \sum_{i} \hat{H}(X_i)$$

- Adding an edge only improves score!
 - Thus, MLE = complete graph
- Two fixes:
 - Restrict space of graphs
 - say only d parents allowed (d=1 → trees)
 - Put priors on graphs
 - Prefer sparser graphs

Chow-Liu tree learning algorithm 1

- For each pair of variables X_i,X_i
 - Compute empirical distribution:

$$\hat{P}(x_i, x_j) = \frac{\operatorname{Count}(x_i, x_j)}{m}$$

Compute mutual information:

$$\widehat{I}(X_i, X_j) = \sum_{x_i, x_j} \widehat{P}(x_i, x_j) \log \frac{\widehat{P}(x_i, x_j)}{\widehat{P}(x_i) \widehat{P}(x_j)}$$

- Define a graph
 - Nodes X_1, \dots, X_n
 - Edge (i,j) gets weight $\widehat{I}(X_i, X_j)$

Chow-Liu tree learning algorithm 2

- Optimal tree BN
 - Compute maximum weight spanning tree
 - Directions in BN: pick any node as root, and direct edges away from root
 - breadth-first-search defines directions

Can we extend Chow-Liu?

- Tree augmented naïve Bayes (TAN) [Friedman et al. '97]
 - Naïve Bayes model overcounts, because correlation between features not considered
 - Same as Chow-Liu, but score edges with:

$$\widehat{I}(X_i, X_j \mid C) = \sum_{c, x_i, x_j} \widehat{P}(c, x_i, x_j) \log \frac{\widehat{P}(x_i, x_j \mid c)}{\widehat{P}(x_i \mid c) \widehat{P}(x_j \mid c)}$$

Plan for today

- (Finish) BN Structure Learning
 - Bayesian Score
 - Heuristic Search
 - Efficient tricks with decomposable scores

Bayesian score

- Bayesian view \rightarrow Prior distributions:
 - Over structures
 - Over parameters of a structure

• Posterior over structures given data:

 $\log P(\mathcal{G} \mid D) \propto \log P(\mathcal{G}) + \log \int_{\theta_{\mathcal{G}}} P(D \mid \mathcal{G}, \theta_{\mathcal{G}}) P(\theta_{\mathcal{G}} \mid \mathcal{G}) d\theta_{\mathcal{G}}$

Structure Prior

 $\log P(\mathcal{G} \mid D) \propto \log P(\mathcal{G}) + \log \int_{\theta_{\mathcal{G}}} P(D \mid \mathcal{G}, \theta_{\mathcal{G}}) P(\theta_{\mathcal{G}} \mid \mathcal{G}) d\theta_{\mathcal{G}}$

- Common choices:
 - Uniform: $P(G) \alpha c$
 - Sparsity prior: $P(G) \alpha c^{|G|}$
 - Prior penalizing number of parameters
 - P(G) should decompose like the family score

Parameter Prior and Integrals $\log P(\mathcal{G} \mid D) \propto \log P(\mathcal{G}) + \log \int_{\theta_{\mathcal{G}}} P(D \mid \mathcal{G}, \theta_{\mathcal{G}}) P(\theta_{\mathcal{G}} \mid \mathcal{G}) d\theta_{\mathcal{G}}$

- Important Result:
 - If $P(\theta_G | G)$ is Dirichlet, then integral has closed form!
 - And it factorizes according to families in G

$$P(\mathcal{D} \mid \mathcal{G}) = \prod_{i} \prod_{pa_{i}^{\mathcal{G}}} \text{Dirichlet marginal likelihood for multinomial } P(X_{i} \mid pa_{i})$$

$$\prod_{i} \Gamma(\alpha(pa_{i}^{\mathcal{G}})) \prod_{x_{i}} \Gamma(\alpha(x_{i}, pa_{i}^{\mathcal{G}}) + N(x_{i}, pa_{i}^{\mathcal{G}})) \prod_{x_{i}} \Gamma(\alpha(x_{i}, pa_{i}^{\mathcal{G}})) \prod_{x_{i}} \Gamma(\alpha(x_{i}, pa_{i}^{\mathcal{G}}))$$

Parameter Prior and Integrals $\log P(\mathcal{G} \mid D) \propto \log P(\mathcal{G}) + \log \int_{\theta_{\mathcal{G}}} P(D \mid \mathcal{G}, \theta_{\mathcal{G}}) P(\theta_{\mathcal{G}} \mid \mathcal{G}) d\theta_{\mathcal{G}}$

- How should we choose Dirichlet hyperparameters?
 - *K2 prior*: fix an α , P($\theta_{Xi|PaXi}$) = Dirichlet(α ,..., α)
 - K2 is "inconsistent"

BDe Prior

 $\log P(\mathcal{G} \mid D) \propto \log P(\mathcal{G}) + \log \int_{\theta_{\mathcal{C}}} P(D \mid \mathcal{G}, \theta_{\mathcal{G}}) P(\theta_{\mathcal{G}} \mid \mathcal{G}) d\theta_{\mathcal{G}}$

- BDe Prior
 - Remember that Dirichlet parameters are analogous to "fictitious samples"
 - Pick a fictitious sample size m'
 - Pick a "prior" BN
 - Usually independent (product of marginals)
 - Compute $P(X_i, \mathbf{Pa}_{X_i})$ under this prior BN
- BDe prior:
- Has consistency property

Chow-Liu for Bayesian score

- Edge weight $w_{Xj \rightarrow Xi}$ is advantage of adding X_j as parent for X_i

- Now have a directed graph, need directed spanning forest
 - Note that adding an edge can hurt Bayesian score choose forest not tree
 - Maximum spanning forest algorithm works

Structure learning for general graphs

- In a tree, a node only has one parent
- Theorem:
 - The problem of learning a BN structure with at most *d* parents is NP-hard for any (fixed) *d*≥2
- Most structure learning approaches use heuristics
 - Exploit score decomposition
 - (Quickly) Describe two heuristics that exploit decomposition in different ways

Structure learning using local search

Starting from Chow-Liu tree

Local search, possible moves: Only if acyclic!!!

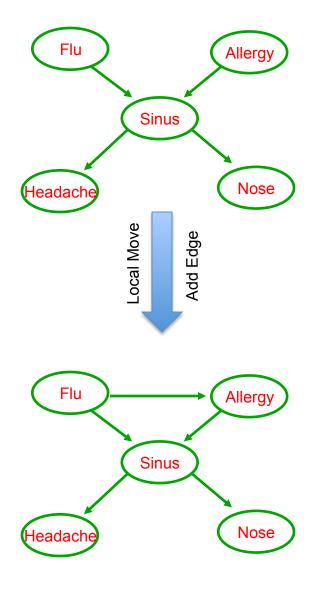
- Add edge
- Delete edge
- Invert edge

Select using favorite score

Structure learning using local search

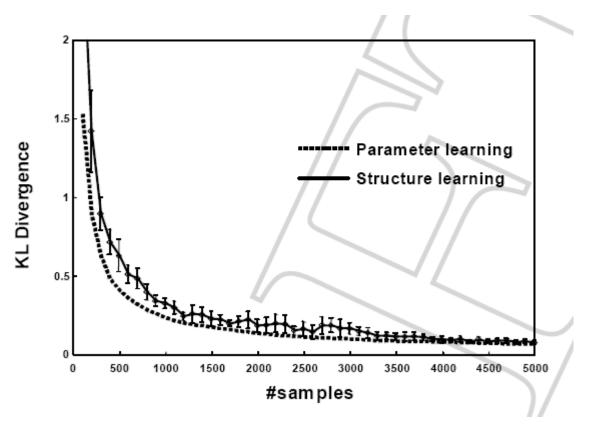
- Problems:
 - Local maximum
 - Plateau
- Strategies
 - Random restart
 - Tabu list

Exploit score decomposition in local search



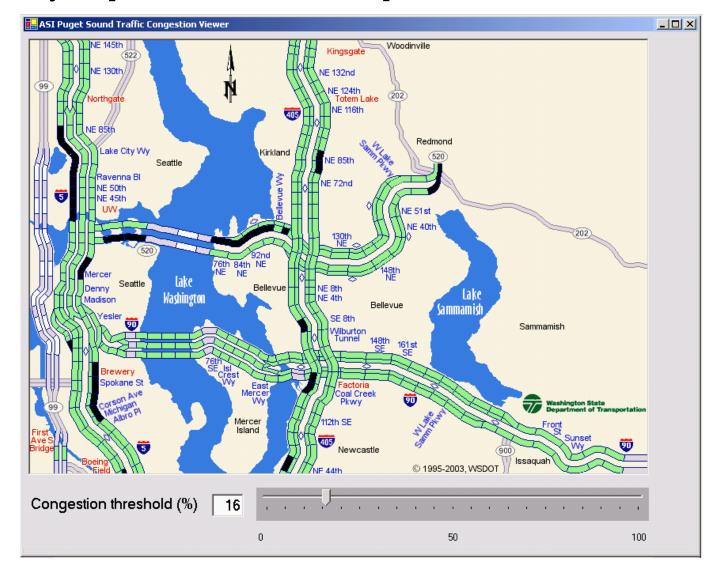
- Add edge and delete edge:
 - Only rescore one family!

- Reverse edge
 - Rescore only two families



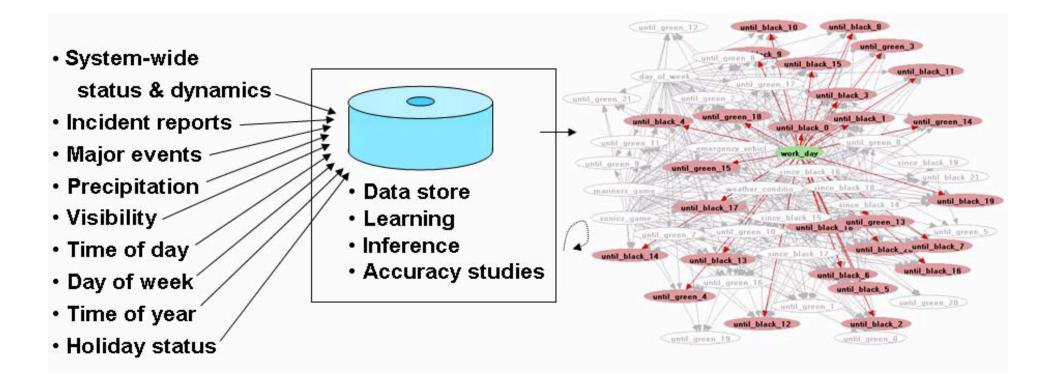
Alarm network

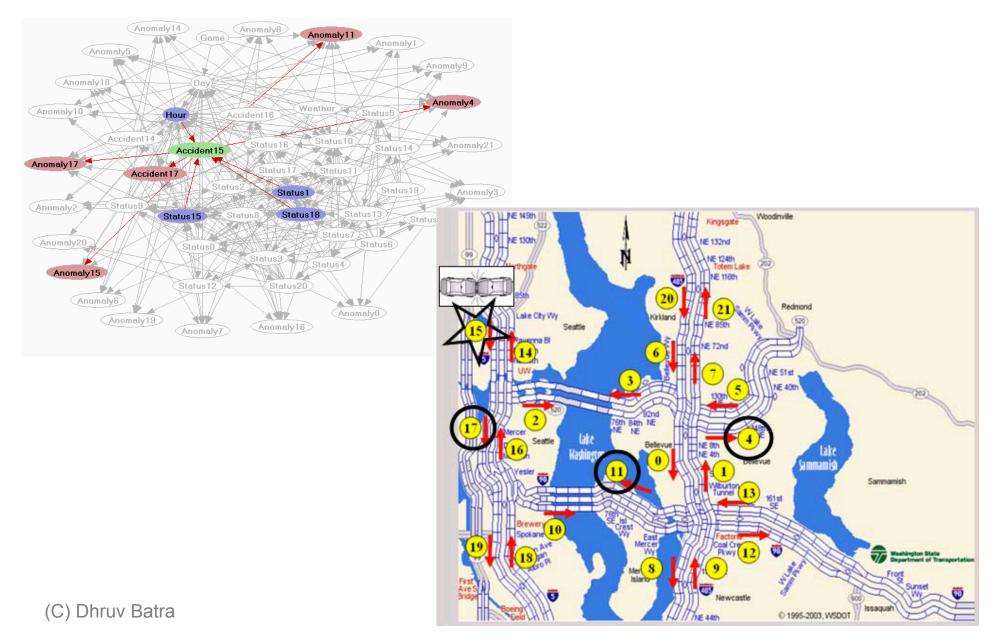
• JamBayes [Horvitz et al UAI05]



(C) Dhruv Batra

• JamBayes [Horvitz et al UAI05]





Bayesian model averaging

- So far, we have selected a single structure
- But, if you are really Bayesian, must average over structures
 - Similar to averaging over parameters

$$\log P(D \mid \mathcal{G}) = \log \int_{\theta_{\mathcal{G}}} P(D \mid \mathcal{G}, \theta_{\mathcal{G}}) P(\theta_{\mathcal{G}} \mid \mathcal{G}) d\theta_{\mathcal{G}}$$

BN: Structure Learning: What you need to know

- Score-based approach
 - Log-likelihood score
 - Use θ_{MLE}
 - Information theoretic interpretation
 - Overfits! Adding edges only helps
 - Bayesian Score
 - Priors over structure and priors over parameters for a structure
 - If dirichlet closed form expression for P(D|G)
 - K2 dirichlet not enough; Need BDe for consistency
- Structure Search
 - For trees
 - Chow-Liu: max-weight spanning tree
 - Can be extended to forests and TAN
 - General graphs
 - Heuristic Search
 - Efficiency tricks due to decomposable score