ECE 6504: Advanced Topics in Machine Learning

Probabilistic Graphical Models and Large-Scale Learning

Topics:

- Bayes Nets: Parameter Learning
 - MLE, MAP, Bayesian Estimation

Readings: KF 16, 17.1-17.4; Barber 9.1-9.4

Dhruv Batra Virginia Tech

Administrativia

- HW1
 - Out soon
 - Due in 2 weeks: Feb 17, 11:59pm
 - Please please please please start early
 - Implementation: TAN, structure + parameter learning
 - Please post questions on Scholar Forum.

A general Bayes net

- Set of random variables
- Directed acyclic graph
 - Encodes independence assumptions
- CPTs
 - Conditional Probability Tables
- Joint distribution:

$$P(X_1,\ldots,X_n) = \prod_{i=1}^n P\left(X_i \mid \mathbf{Pa}_{X_i}\right)$$

Main Issues in PGMs

- Representation
 - How do we store $P(X_1, X_2, ..., X_n)$
 - What does my model mean/imply/assume? (Semantics)
- Learning
 - How do we learn parameters and structure of P(X₁, X₂, ..., X_n) from data?
 - What model is the right for my data?
- Inference
 - How do I answer questions/queries with my model? such as
 - Marginal Estimation: $P(X_5 | X_1, X_4)$
 - Most Probable Explanation: argmax $P(X_1, X_2, ..., X_n)$

Learning Bayes Nets

Learning Bayes nets

	Known structure	Unknown structure
Fully observable data	Very easy	Hard
Missing data	Somewhat easy (EM)	Very very hard

Your first probabilistic learning algorithm

- After taking this ML class, you drop out of VT and join an illegal betting company.
- Your new boss asks you:
 - If Rafael Nadal & Stanislas Wawrinka play tomorrow, will Nadal win or lose W/L?
- You say: what happened in the past?
 W, W, W, W, L
- You say: P(Nadal Wins) = ...
- Why?

Simplest BN

- One variable X
 - On board

Maximum Likelihood Estimation

- Goal: Find a good θ
- What's a good θ ?
 - One that makes it likely for us to have seen this data
 - Quality of θ = Likelihood(θ ; D) = P(data | θ)

Why Max-Likelihood?

- Leads to "natural" estimators
- MLE is OPT if model-class is correct
 - Log-likelihood(θ) = entropy(P*) KL(P*,P(D| θ))
 - Maximizing LL = minimizing KL

Learning the CPTs

MLE of BN parameters – example

• Given structure, log likelihood of data:

 $\log P(\mathcal{D} \mid \theta_{\mathcal{G}}, \mathcal{G})$

Sinus

Nose

Name That Model

Slide Credit: Erik Sudderth

Name That Model

Tree-Augmented Naïve Bayes (TAN)

Slide Credit: Erik Sudderth

Name That Model

Hidden Markov Model (HMM)

How much data?

$$\hat{\theta}_{MLE} = \frac{m_H}{m_H + m_T}$$

- Last year:
 - 3 heads/wins; 2 tails/losses for Nadal.
 - You say: θ = 3/5, I can prove it!
 - 30 heads/wins; 20 tails/losses for Nadal.
 - You say: Same answer, I can prove it!

Bayesian Estimation

- Boss says: What is I know Nadal is a better player on clay courts?
- You say: Bayesian it is then..

Priors

- What are priors?
 - Express beliefs before experiments are conducted
 - Computational ease: lead to "good" posteriors
 - Help deal with unseen data
 - Regularizers: bias us towards "simpler" models
- Conjugate Priors
 - Prior is conjugate to likelihood if it leads to itself as posterior
 - Closed form representation of posterior

Beta prior distribution – $P(\theta)$

$$P(\theta) = \frac{\theta^{\alpha_H - 1} (1 - \theta)^{\alpha_T - 1}}{B(\alpha_H, \alpha_T)} \sim Beta(\alpha_H, \alpha_T)$$

- Demo:
 - http://demonstrations.wolfram.com/BetaDistribution/

Slide Credit: Carlos Guestrin

Posterior

• Benefits of conjugate priors

$$P(\mathcal{D} \mid \theta) = \theta^{m_H} (1 - \theta)^{m_T}$$
$$P(\theta) = \frac{\theta^{\alpha_H - 1} (1 - \theta)^{\alpha_T - 1}}{B(\alpha_H, \alpha_T)} \sim Beta(\alpha_H, \alpha_T)$$

$$P(\theta \mid D) \propto P(D \mid \theta)P(\theta)$$
$$P(\theta \mid D) \sim Beta(m_H + \alpha_H, m_T + \alpha_T)$$

MAP for Beta distribution

$P(\theta \mid D) \sim Beta(m_H + \alpha_H, m_T + \alpha_T)$

• MAP: use most likely parameter:

$$\widehat{\theta} = \arg \max_{\theta} P(\theta \mid \mathcal{D}) =$$

- Beta prior equivalent to extra W/L matches
- As $m \rightarrow \inf$, prior is "forgotten"
- But, for small sample size, prior is important!

Effect of Prior

- Prior = Beta(2,2)
 - $\theta_{prior} = 0.5$

Dataset = {H}

$$- L(\theta) = \theta$$

$$- \theta_{MLE} = 1$$

Posterior = Beta(3,2)
 - θ_{MAP} = (3-1)/(3+2-2) = 2/3

Effect of Prior

Using Bayesian posterior

• Posterior distribution:

 $P(\theta \mid \mathcal{D}) \sim Beta(m_H + \alpha_H, m_T + \alpha_T)$

- Bayesian inference:
 - No longer single parameter:

$$E[f(\theta)] = \int_0^1 f(\theta) P(\theta \mid \mathcal{D}) d\theta$$

Integral is often hard to compute

Beta(30,20)

0.8

Bayesian learning for multinomial

- What if you have a k sided coin???
- Likelihood function if **categorical**:
- **Conjugate** prior for multinomial is **Dirichlet**:

 $\theta \sim \mathsf{Dirichlet}(\alpha_1, \dots, \alpha_k) \sim \prod_i \theta_i^{\alpha_i - 1}$

- **Observe** *m* data points, *m_i* from assignment i, **posterior**:
- Prediction:

Dirichlet Probability Densities

- Matlab Demo
 - Written by Iyad Obeid

Dirichlet Samples

Slide Credit: Erik Sudderth

Priors for BN CPTs

- Consider each CPT: P(X_i|Pa(X_i)=b)
- Conjugate prior:
 - Dirichlet($\alpha_{Xi=1|Pa(Xi)=b}, ..., \alpha_{Xi=k|Pa(Xi)=b}$)
- More intuitive:
 - prior counts

An example

