ECE 6504: Advanced Topics in Machine Learning

Probabilistic Graphical Models and Large-Scale Learning

Topics:

- Bayes Nets: Parameter Learning
- MLE, MAP, Bayesian Estimation

Readings: KF 16, 17.1-17.4; Barber 9.1-9.4

Dhruv Batra
Virginia Tech

Administrativia

- HW1
- Out soon
- Due in 2 weeks: Feb 17, 11:59pm
- Please please please please start early
- Implementation: TAN, structure + parameter learning
- Please post questions on Scholar Forum.

A general Bayes net

- Set of random variables
- Directed acyclic graph
- Encodes independence assumptions

- CPTs
- Conditional Probability Tables
- Joint distribution:

$$
P\left(X_{1}, \ldots, X_{n}\right)=\prod_{i=1}^{n} P\left(X_{i} \mid \mathbf{P} \mathbf{a}_{X_{i}}\right)
$$

Main Issues in PGMs

- Representation
- How do we store $P\left(X_{1}, X_{2}, \ldots, X_{n}\right)$
- What does my model mean/imply/assume? (Semantics)
- Learning
- How do we learn parameters and structure of $P\left(X_{1}, X_{2}, \ldots, X_{n}\right)$ from data?
- What model is the right for my data?
- Inference
- How do I answer questions/queries with my model? such as
- Marginal Estimation: $P\left(X_{5} \mid X_{1}, X_{4}\right)$
- Most Probable Explanation: $\operatorname{argmax} P\left(X_{1}, X_{2}, \ldots, X_{n}\right)$

Learning Bayes Nets

True Distribution P*

(Maybe corresponds to a BN G* maybe not)

Domain Experts

CPTs -
$\mathrm{P}\left(\mathrm{X}_{\mathrm{i}} \mid \mathrm{Pa}_{\mathrm{xi}}\right)$

Learning Bayes nets

	Known structure	Unknown structure
Fully observable data	Very easy	Hard
Missing data	Somewhat easy (EM)	Very very hard

Your first probabilistic learning algorithm

- After taking this ML class, you drop out of VT and join an illegal betting company.
- Your new boss asks you:
- If Rafael Nadal \& Stanislas Wawrinka play tomorrow, will Nadal win or lose W/L?
- You say: what happened in the past?
- W, W, W, W, L
- You say: $\mathrm{P}($ Nadal Wins $)=$...
- Why?

Simplest BN

- One variable X
- On board

Maximum Likelihood Estimation

- Goal: Find a good θ
- What's a good θ ?
- One that makes it likely for us to have seen this data
- Quality of $\theta=\operatorname{Likelihood}(\theta ; D)=P($ data $\mid \theta)$

Why Max-Likelihood?

- Leads to "natural" estimators
- MLE is OPT if model-class is correct
- Log-likelihood $(\theta)=$ entropy $\left(P^{*}\right)-K L\left(P^{*}, P(D \mid \theta)\right)$
- Maximizing LL = minimizing KL

Learning the CPTs

For each discrete variable X_{i}

$$
\hat{P}_{M L E}\left(X_{i}=a \mid \operatorname{Pa}_{X_{i}}=b\right)=\frac{\operatorname{Count}\left(X_{i}=a, \mathrm{~Pa}_{X_{i}}=b\right)}{\operatorname{Count}\left(\mathrm{Pa}_{X_{i}}=b\right)}
$$

WHY??????????

(C) Dhruv Batra

MLE of BN parameters - example

- Given structure, log likelihood of data:

Allergy
$\log P\left(\mathcal{D} \mid \theta_{\mathcal{G}}, \mathcal{G}\right)$

Name That Model

Naïve Bayes: $\quad p(y, \mathbf{x})=p(y) \prod_{j=1}^{D} p\left(x_{j} \mid y\right)$

Name That Model

Tree-Augmented Naïve Bayes (TAN)

Name That Model

Hidden Markov Model (HMM)

How much data?

$$
\hat{\theta}_{M L E}=\frac{m_{H}}{m_{H}+m_{T}}
$$

- Last year:
- 3 heads/wins; 2 tails/losses for Nadal.
- You say: $\theta=3 / 5$, I can prove it!
- 30 heads/wins; 20 tails/losses for Nadal.
- You say: Same answer, I can prove it!

Bayesian Estimation

- Boss says: What is I know Nadal is a better player on clay courts?
- You say: Bayesian it is then..

Priors

- What are priors?
- Express beliefs before experiments are conducted
- Computational ease: lead to "good" posteriors
- Help deal with unseen data
- Regularizers: bias us towards "simpler" models
- Conjugate Priors
- Prior is conjugate to likelihood if it leads to itself as posterior
- Closed form representation of posterior

Beta prior distribution - $P(\theta)$

$$
P(\theta)=\frac{\theta^{\alpha_{H}-1}(1-\theta)^{\alpha_{T}-1}}{B\left(\alpha_{H}, \alpha_{T}\right)} \sim \operatorname{Beta}\left(\alpha_{H}, \alpha_{T}\right)
$$

- Demo:
- http://demonstrations.wolfram.com/BetaDistribution/

Posterior

- Benefits of conjugate priors

$$
\begin{array}{r}
P(\mathcal{D} \mid \theta)=\theta^{m_{H}}(1-\theta)^{m_{T}} \\
P(\theta)=\frac{\theta^{\alpha_{H}-1}(1-\theta)^{\alpha_{T}-1}}{B\left(\alpha_{H}, \alpha_{T}\right)} \sim \operatorname{Beta}\left(\alpha_{H}, \alpha_{T}\right)
\end{array}
$$

$$
P(\theta \mid \mathcal{D}) \propto P(\mathcal{D} \mid \theta) P(\theta)
$$

$$
P(\theta \mid \mathcal{D}) \sim \operatorname{Beta}\left(m_{H}+\alpha_{H}, m_{T}+\alpha_{T}\right)
$$

MAP for Beta distribution

$P(\theta \mid \mathcal{D}) \sim \operatorname{Beta}\left(m_{H}+\alpha_{H}, m_{T}+\alpha_{T}\right)$

- MAP: use most likely parameter:
$\widehat{\theta}=\arg \max _{\theta} P(\theta \mid \mathcal{D})=$
- Beta prior equivalent to extra W/L matches
- As $m \rightarrow$ inf, prior is "forgotten"
- But, for small sample size, prior is important!

Effect of Prior

- Prior $=\operatorname{Beta}(2,2)$
- $\theta_{\text {prior }}=0.5$

- Dataset $=\{\mathrm{H}\}$
$-L(\theta)=\theta$
- $\theta_{\text {MLE }}=1$

- Posterior $=\operatorname{Beta}(3,2)$
- $\theta_{\text {MAP }}=(3-1) /(3+2-2)=2 / 3$

Effect of Prior

(C) Dhruv Batra

Using Bayesian posterior

- Posterior distribution:
$P(\theta \mid \mathcal{D}) \sim \operatorname{Beta}\left(m_{H}+\alpha_{H}, m_{T}+\alpha_{T}\right)$
- Bayesian inference:
- No longer single parameter:

$$
E[f(\theta)]=\int_{0}^{1} f(\theta) P(\theta \mid \mathcal{D}) d \theta
$$

- Integral is often hard to compute

Bayesian learning for multinomial

- What if you have a k sided coin???
- Likelihood function if categorical:
- Conjugate prior for multinomial is Dirichlet:

$$
\theta \sim \operatorname{Dirichlet}\left(\alpha_{1}, \ldots, \alpha_{k}\right) \sim \prod_{i} \theta_{i}^{\alpha_{i}-1}
$$

- Observe m data points, m_{i} from assignment i , posterior:
- Prediction:

Simplex

(C) Dhruv Batra

Dirichlet Probability Densities

Dirichlet Probability Densities

- Matlab Demo
- Written by Iyad Obeid

Dirichlet Samples

Samples from Dir (alpha=1)

$\operatorname{Dir}(\theta \mid 1.0,1.0,1.0,1.0,1.0)$

Priors for BN CPTs

- Consider each CPT: $\mathrm{P}\left(\mathrm{X}_{\mathrm{i}} \mid \mathrm{Pa}\left(\mathrm{X}_{\mathrm{i}}\right)=\mathbf{b}\right)$
- Conjugate prior:
$-\operatorname{Dirichlet}\left(\alpha_{\left.\mathrm{Xi}_{\mathrm{i}=1 \mid \mathrm{Pa}\left(\mathrm{X}_{\mathrm{i}}\right)=\mathrm{b}}, \ldots, \alpha_{\mathrm{X}=\mathrm{K} \mid \mathrm{Pa}\left(\mathrm{X}_{\mathrm{i}}\right)=\mathrm{b}}\right)}\right)$
- More intuitive:
- prior counts

An example

