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Topics:  
–  Bayes Nets: Representation/Semantics 

–  d-separation, Local Markov Assumption 
–  Markov Blanket 
–  I-equivalence, (Minimal) I-Maps, P-Maps 

Readings: KF 3.2,, 3.4 



Recap of Last Time 
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A general Bayes net 
•  Set of random variables 

•  Directed acyclic graph  
–  Encodes independence assumptions 

•  CPTs 
–  Conditional Probability Tables 

•  Joint distribution: 
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Independencies in Problem 

BN: 

Graph G 
encodes local 

independence 

assumptions 

World, Data, reality: 

True distribution P 
contains independence  

assertions 
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Bayes Nets 
•  BN encode (conditional) independence assumptions.  

–  I(G) = {X indep of Y given Z} 

•  Which ones?  
•  And how can we easily read them? 
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Local Structures 
•  What’s the smallest Bayes Net? 
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Local Structures 
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Indirect evidential effect: 

Common cause: 

Common effect: 



Bayes Ball Rules 
•  Flow of information  

–  on board 
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Plan for today 
•  Bayesian Networks: Semantics 

–  d-separation 
–  General (conditional) independence assumptions in a BN 
–  Markov Blanket 
–  (Minimal) I-map, P-map 
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Active trails formalized 
•  Let variables O ⊆ {X1,…,Xn} be observed  

•  A path X1 – X2 – · · · –Xk is an active trail if for each 
consecutive triplet: 

–  Xi-1→Xi→Xi+1, and Xi is not observed (Xi∉O) 

–  Xi-1←Xi←Xi+1, and Xi is not observed (Xi∉O) 

–  Xi-1←Xi→Xi+1, and Xi is not observed (Xi∉O) 

–  Xi-1→Xi←Xi+1, and Xi is observed (Xi∈O), or one of its 
descendents is observed  
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A H C 
E G 

D B F 

F’’ 

F’ 

When are A and H independent? 

An active trail – Example 



d-Separation 

•  Definition: Variables X and Y 
are d-separated given Z if  
–  no active trail between Xi and Yj 

when variables Z⊆{X1,…,Xn} are 
observed 
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d-Separation 
•  So what if X and Y are d-separated given Z? 
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Factorization + d-sep è Independence 
•  Theorem:  

–  If  
•  P factorizes over G 
•  d-sepG(X, Y | Z) 

–  Then 
•  P Ⱶ (X ⊥ Y | Z) 

–  Corollary: 
•  I(G) ⊆ I(P)  

•  All independence assertions read from G are correct! 
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More generally: Completeness of d-separation 

•  Theorem: Completeness of d-separation 
–  For “almost all” distributions where P factorizes over to G  
–  we have that I(G) = I(P) 

•  “almost all” distributions: except for a set of measure zero of CPTs 
•  Means that if X & Y are not d-separated given Z, then P¬ (X⊥Y|Z) 
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A variable X is independent of 
its non-descendants given its 
parents and only its parents  
(Xi ⊥ NonDescendantsXi | PaXi) 

Local Markov Assumption 

Flu Allergy 

Sinus 

Headache Nose 



 = Markov Blanket of variable x8	  – Parents, 
children and parents of children  	  

Markov Blanket 
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 A variable is conditionally independent of all others, 
given its Markov Blanket 	  

Example 

(C) Dhruv Batra  18 Slide Credit: Simon J.D. Prince 



I-map 
•  Independency map 

•  Definition:  
–  If I(G) ⊆ I(P) 
–  G is an I-map of P 
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Factorization + d-sep è Independence 
•  Theorem:  

–  If  
•  P factorizes over G 
•  d-sepG(X, Y | Z) 

–  Then 
•  P Ⱶ (X ⊥ Y | Z) 

–  Corollary: 
•  I(G) ⊆ I(P)  
•  G is an I-map of P 
•  All independence assertions read from G are correct! 
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Important because:  
Every P has at least one BN structure G 

If G is an I-map of P Obtain 
P factorizes to G 

P factorizes to G 
Obtain G is an I-map of P 
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Important because:  
Read independencies of P from BN structure G 

The BN Representation Theorem 

Homework 1!!!! J 



I-Equivalence 
•  Two graphs G1 and G2 are I-equivalent if  

–  I(G1) = I(G2) 

•  Equivalence class of BN structures 
–  Mutually-exclusive and exhaustive partition of graphs 
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Minimal I-maps & P-maps 
•  Many possible I-maps 
•  Is there a “simplest” I-map? 

•  Yes, two directions 
–  Minimal I-maps 
–  P-maps 
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Minimal I-map 
•  G is a minimal I-map for P if  

–  deleting any edges from G makes it no longer an I-map 
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P-map 
•  Perfect map 

•  G is a P-map for P if 
–  I(P) = I(G)   

•  Question: Does every distribution P have P-map? 
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BN: Representation: What you need to know 

•  Bayesian networks 
–  A compact representation for large probability distributions  
–  Not an algorithm 

•  Representation 
–  BNs represent (conditional) independence assumptions 
–  BN structure = family of distributions 
–  BN structure + CPTs = 1 single distribution 
–  Concepts 

•  Active Trails (flow of information); d-separation;  
•  Local Markov Assumptions, Markov Blanket 
•  I-map, P-map 
•  BN Representation Theorem (I-map çè Factorization) 
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Main Issues in PGMs 
•  Representation 

–  How do we store P(X1, X2, …, Xn) 
–  What does my model mean/imply/assume? (Semantics) 

•  Learning  
–  How do we learn parameters and structure of  

P(X1, X2, …, Xn) from data? 
–  What model is the right for my data? 

•  Inference 
–  How do I answer questions/queries with my model? such as 
–  Marginal Estimation: P(X5 | X1, X4) 
–  Most Probable Explanation: argmax P(X1, X2, …, Xn) 
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Learning Bayes nets 

Known structure Unknown structure 

Fully observable 
data 
Missing data  

 

x(1) 

… 

 x(m) 

Data 

structure parameters 

CPTs –  
P(Xi| PaXi) 
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Very easy 

Somewhat easy  
       (EM) 

Hard 

Very very hard 


