ECE 6504: Advanced Topics in Machine Learning

Probabilistic Graphical Models and Large-Scale Learning

Topics:

- Bayes Nets: Representation/Semantics
- d-separation, Local Markov Assumption
- Markov Blanket
- I-equivalence, (Minimal) I-Maps, P-Maps

Readings: KF 3.2,, 3.4
Dhruv Batra
Virginia Tech

Recap of Last Time

A general Bayes net

- Set of random variables
- Directed acyclic graph
- Encodes independence assumptions

- CPTs
- Conditional Probability Tables
- Joint distribution:

$$
P\left(X_{1}, \ldots, X_{n}\right)=\prod_{i=1}^{n} P\left(X_{i} \mid \mathbf{P} \mathbf{a}_{X_{i}}\right)
$$

Independencies in Problem

World, Data, reality:

True distribution P contains independence assertions

BN:

Graph G encodes local independence assumptions

Bayes Nets

- BN encode (conditional) independence assumptions.
$-I(G)=\{X$ indep of Y given $Z\}$
- Which ones?
- And how can we easily read them?

Local Structures

- What's the smallest Bayes Net?

Local Structures

Indirect causal effect:

Indirect evidential effect:

Common cause:

Common effect:

Bayes Ball Rules

- Flow of information
- on board

Plan for today

- Bayesian Networks: Semantics
- d-separation
- General (conditional) independence assumptions in a BN
- Markov Blanket
- (Minimal) I-map, P-map

Active trails formalized

- Let variables $\boldsymbol{O} \subseteq\left\{\mathrm{X}_{1}, \ldots, \mathrm{X}_{\mathrm{n}}\right\}$ be observed
- A path $X_{1}-X_{2}-\cdots-X_{k}$ is an active trail if for each consecutive triplet:
$-X_{i-1} \rightarrow X_{i} \rightarrow X_{i+1}$, and X_{i} is not observed ($\left.X_{i} \notin \mathbf{O}\right)$
$-X_{i-1} \leftarrow X_{i} \leftarrow X_{i+1}$, and X_{i} is not observed ($X_{i} \notin \mathbf{O}$)
$-X_{i-1} \leftarrow X_{i} \rightarrow X_{i+1}$, and X_{i} is not observed ($X_{i} \notin \mathbf{O}$)
$-X_{i-1} \rightarrow X_{i} \leftarrow X_{i+1}$, and X_{i} is observed ($X_{i} \in \mathbf{O}$), or one of its descendents is observed

An active trail - Example

When are A and H independent?

d-Separation

- Definition: Variables \mathbf{X} and \mathbf{Y} are d-separated given \mathbf{Z} if
- no active trail between X_{i} and Y_{j} when variables $\mathbf{Z} \subseteq\left\{X_{1}, \ldots, X_{n}\right\}$ are observed

d-Separation

- So what if \mathbf{X} and \mathbf{Y} are d-separated given \mathbf{Z} ?

Factorization + d-sep \rightarrow Independence

- Theorem:
- If
- P factorizes over G
- d-sep ${ }_{G}(\mathbf{X}, \mathbf{Y} \mid \mathbf{Z})$
- Then
- $P \vdash(\mathbf{X} \perp \mathbf{Y} \mid \mathbf{Z})$
- Corollary:
- $I(G) \subseteq I(P)$
- All independence assertions read from G are correct!

More generally: Completeness of d-separation

- Theorem: Completeness of d-separation
- For "almost all" distributions where P factorizes over to G
- we have that $I(G)=I(P)$
- "almost all" distributions: except for a set of measure zero of CPTs
- Means that if $\mathbf{X} \& \mathbf{Y}$ are not d-separated given \mathbf{Z}, then $\mathrm{P} \neg(\mathbf{X} \perp \mathbf{Y} \mid \mathbf{Z})$

Local Markov Assumption

A variable X is independent of its non-descendants given its parents and only its parents $\left(\mathrm{X}_{\mathrm{i}} \perp\right.$ NonDescendants $\left._{\mathrm{xi}_{\mathrm{i}}} \mid \mathrm{Pa}_{\mathrm{x}_{\mathrm{i}}}\right)$

Markov Blanket

$=$ Markov Blanket of variable $\mathrm{x}_{8}-$ Parents, children and parents of children

Example

A variable is conditionally independent of all others, given its Markov Blanket

I-map

- Independency map
- Definition:
- If $\mathrm{I}(G) \subseteq \mathrm{I}(P)$
- G is an I-map of P

Factorization + d-sep \rightarrow Independence

- Theorem:
- If
- P factorizes over G
- d-sep ${ }_{G}(\mathbf{X}, \mathbf{Y} \mid \mathbf{Z})$
- Then
- $P \vdash(\mathbf{X} \perp \mathbf{Y} \mid \mathbf{Z})$
- Corollary:
- $\mathrm{I}(G) \subseteq \mathrm{I}(P)$
- G is an I-map of P
- All independence assertions read from G are correct!

The BN Representation Theorem

If \mathbf{G} is an I-map of P
Pbactorizes to \mathbf{G}
$P\left(X_{1}, \ldots, X_{n}\right)=\prod_{i=1}^{n} P\left(X_{i} \mid \mathbf{P a}_{X_{i}}\right)$

Important because:
${ }^{\text {E }}$ Homework 1!!!! ©
P factorizes to \mathbf{G}
$P\left(X_{1}, \ldots, X_{n}\right)=\prod_{i=1}^{n} P\left(X_{i} \mid \mathbf{P a}_{X_{i}}\right) \quad$ Obtain
G is an I-map of P

Important because:
Read independencies of P from BN structure G

I-Equivalence

- Two graphs G_{1} and G_{2} are l-equivalent if
$-\mathrm{I}\left(\mathrm{G}_{1}\right)=\mathrm{I}\left(\mathrm{G}_{2}\right)$
- Equivalence class of BN structures
- Mutually-exclusive and exhaustive partition of graphs

Minimal I-maps \& P-maps

- Many possible I-maps
- Is there a "simplest" I-map?
- Yes, two directions
- Minimal I-maps
- P-maps

Minimal I-map

- G is a minimal I-map for P if
- deleting any edges from G makes it no longer an I-map

P-map

- Perfect map
- G is a P-map for P if
- $I(P)=I(G)$
- Question: Does every distribution P have P-map?

BN: Representation: What you need to know

- Bayesian networks
- A compact representation for large probability distributions
- Not an algorithm
- Representation
- BNs represent (conditional) independence assumptions
- BN structure = family of distributions
- BN structure + CPTs $=1$ single distribution
- Concepts
- Active Trails (flow of information); d-separation;
- Local Markov Assumptions, Markov Blanket
- I-map, P-map
- BN Representation Theorem (I-map $\Leftarrow \rightarrow$ Factorization)

Main Issues in PGMs

- Representation
- How do we store $P\left(X_{1}, X_{2}, \ldots, X_{n}\right)$
- What does my model mean/imply/assume? (Semantics)
- Learning
- How do we learn parameters and structure of $\mathrm{P}\left(\mathrm{X}_{1}, \mathrm{X}_{2}, \ldots, \mathrm{X}_{\mathrm{n}}\right)$ from data?
- What model is the right for my data?
- Inference
- How do I answer questions/queries with my model? such as
- Marginal Estimation: $\mathrm{P}\left(\mathrm{X}_{5} \mid \mathrm{X}_{1}, \mathrm{X}_{4}\right)$
- Most Probable Explanation: $\operatorname{argmax} P\left(X_{1}, X_{2}, \ldots, X_{n}\right)$

Learning Bayes nets

	Known structure	Unknown structure
Fully observable data	Very easy	Hard
Missing data	Somewhat easy (EM)	Very very hard

