ECE 6504: Advanced Topics In

Machine Learning
Probabilistic Graphical Models and Large-Scale Learning

Topics:
— Bayes Nets: Representation/Semantics
— d-separation, Local Markov Assumption
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— l-equivalence, (Minimal) [-Maps, P-Maps
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Recap of Last Time
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A general Bayes net

Set of random variables @
Directed acyclic graph /.\I

— Encodes independence assumptions

CPTs
— Conditional Probability Tables

Joint distribution:

n
P(X1,...,Xn) =[] P(XZ- | PaXi)
1=1
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Independencies in Problem

World, Data, reality: | BN:
—
True distribution P
contains independence
assertions
Graph G

encodes local

independence

assumptions

REALITY
(C Worst game ever. - Carlos Guestrin



Bayes Nets

* BN encode (conditional) independence assumptions.
— I(G) ={X indep of Y given Z}

« Which ones?
« And how can we easily read them?

(C) Dhruv Batra 3



-]
Local Structures

« What's the smallest Bayes Net?

(C) Dhruv Batra 6



Local Structures

Indirect causal effect:

Indirect evidential effect:; Common effect:

Q0RO

Common cause;

ofa0
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Bayes Ball Rules

 Flow of information
— on board
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Plan for today

« Bayesian Networks: Semantics
— d-separation
— General (conditional) independence assumptions in a BN
— Markov Blanket
— (Minimal) I-map, P-map
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Active trails formalized

« Let variables O C {X,,...,X.} be observed

« Apath X;—-X,—- - - =X Is an active trail if for each
consecutive triplet:

— X ,—X—X.,,,and X is not observed (XO0)
— X _4<=X<X,,,and X is not observed (XO0)
— X 4<=X—=X,,,and X is not observed (XZO)

— X, 1—X<=X,4,and X, is observed (X£0), or one of its
descendents is observed
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An active trail — Example

@—

When are A and H independent?

O-@



d-Separation

Definition: Variables X and Y
are d-separated given Z if

— no active trail between X;and ¥, &
when variables Z&{X,,...,X } are
observed
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d-Separation

« Sowhatif Xand Y are d-separated given Z?
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e
Factorization + d-sep = Independence

e Theorem:
— |If

» P factorizes over G
* d-seps(X,Y | 2)

— Then
« PFXL1Y|2)

— Corollary:
- I(G)CI(P)

» All independence assertions read from G are correct!
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More generally: Completeness of d-separation

« Theorem: Completeness of d-separation
— For “almost all” distributions where P factorizes over to G
— we have that [(G) = [(P)

« “almost all” distributions: except for a set of measure zero of CPTs
 Means that if X & Y are not d-separated given Z, then P (X_LY|Z)
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Local Markov Assumption

A variable X is independent of
its non-descendants given its
parents and only its parents

(X; L NonDescendantsy; | Pay;)
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Markov Blanket

= Markov Blanket of variable x;,— Parents,
children and parents of children

Slide Credit: Simon J.D. Prince
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A variable is conditionally independent of all others,
given its Markov Blanket
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l-map

* Independency map

* Definition:
— IfI(G) CI(P)
— Gisanl|-map of P
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e
Factorization + d-sep = Independence

 Theorem:
— |If
» P factorizes over G
* d-seps(X,Y | 2)
— Then
s PF(XLY|2)

— Corollary:
 I(G)CI(P)
« Gisanl-map of P
» All independence assertions read from G are correct!
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The BN Representation Theorem

P factorizes to G
If G is an I-map of P n
P(X1,..,Xn) =[] P(XZ- | PaXi)
1=1

ortant because:

m G is an benap of

Im

P factorizes to G

..... X,) = ﬁ P(XZ- | PaXi>

=1

Important because:

Read independencies of P from BN structure G
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|-Equivalence

« Two graphs G, and G, are l-equivalent if
- (Gy) =1(Gy)

« Equivalence class of BN structures
— Mutually-exclusive and exhaustive partition of graphs
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Minimal I-maps & P-maps

* Many possible [-maps
* Is there a “simplest” I-map?

* Yes, two directions
— Minimal I-maps
— P-maps
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Minimal I-map

(G is a minimal I-map for P if
— deleting any edges from G makes it no longer an I-map
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P-map
* Perfect map
« GisaP-map for P if

- 1(P)=1(G)

* Question: Does every distribution P have P-map?
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BN: Representation: What you need to know

« Bayesian networks
— A compact representation for large probability distributions
— Not an algorithm

 Representation
— BNs represent (conditional) independence assumptions
— BN structure = family of distributions
— BN structure + CPTs = 1 single distribution

— Concepts
« Active Trails (flow of information); d-separation;
* Local Markov Assumptions, Markov Blanket
* |-map, P-map
BN Representation Theorem (I-map €=» Factorization)
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Main Issues in PGMs

* Representation
— How do we store P(X,, X, ..., X))
— What does my model mean/imply/assume? (Semantics)

* Learning

— How do we learn parameters and structure of
P(X4, X, ..., X)) from data?

— What model is the right for my data?

 Inference

— How do | answer questions/queries with my model? such as
— Marginal Estimation: P(X;s | X,, X,)
— Most Probable Explanation: argmax P(X,, X,, ..., X\)
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Learning Bayes nets

Known structure Unknown structure
Fully observable Verv eas
data y y Hard
Missing data Somewhat easy
(EM) Very very hard
-
CPTs —
x(1)
| P(Xi| Pay;)
x(m structure parameters
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