ECE 6504: Advanced Topics in Machine Learning

Probabilistic Graphical Models and Large-Scale Learning

Topics:

- Bayes Nets: Representation/Semantics
 - d-separation, Local Markov Assumption
 - Markov Blanket
 - I-equivalence, (Minimal) I-Maps, P-Maps

Readings: KF 3.2,, 3.4 Dhruv Batra Virginia Tech

Recap of Last Time

A general Bayes net

- Set of random variables
- Directed acyclic graph
 - Encodes independence assumptions
- CPTs
 - Conditional Probability Tables
- Joint distribution:

$$P(X_1,\ldots,X_n) = \prod_{i=1}^n P\left(X_i \mid \mathbf{Pa}_{X_i}\right)$$

Independencies in Problem

World, Data, reality:

True distribution *P* contains independence assertions

Bayes Nets

- BN encode (conditional) independence assumptions.
 - I(G) = {X indep of Y given Z}

- Which ones?
- And how can we easily read them?

Local Structures

• What's the smallest Bayes Net?

Local Structures

Indirect causal effect:

Indirect evidential effect:

Common cause:

Common effect:

Bayes Ball Rules

- Flow of information
 - on board

Plan for today

- Bayesian Networks: Semantics
 - d-separation
 - General (conditional) independence assumptions in a BN
 - Markov Blanket
 - (Minimal) I-map, P-map

Active trails formalized

- Let variables $\boldsymbol{O} \subseteq \{X_1, \dots, X_n\}$ be observed
- A path $X_1 X_2 \cdots X_k$ is an **active trail** if for each consecutive triplet:

-
$$X_{i-1}$$
→ X_i → X_{i+1} , and X_i is **not observed** ($X_i \notin O$)

-
$$X_{i-1}$$
 ← X_i ← X_{i+1} , and X_i is **not observed** ($X_i \notin O$)

-
$$X_{i-1}$$
 ← X_i → X_{i+1} , and X_i is **not observed** ($X_i \notin O$)

X_{i-1}→X_i←X_{i+1}, and X_i is observed (X_i∈O), or one of its descendents is observed

An active trail – Example

When are A and H independent?

d-Separation

- **Definition**: Variables **X** and **Y** are d-separated given **Z** if
 - no active trail between X_i and Y_j when variables Z⊆{X₁,...,X_n} are observed

d-Separation

• So what if **X** and **Y** are d-separated given **Z**?

Factorization + d-sep → Independence

- Theorem:
 - If
 - P factorizes over G
 - $d\text{-sep}_G(X, Y \mid Z)$
 - Then
 - $P \vdash (\mathbf{X} \perp \mathbf{Y} \mid \mathbf{Z})$
 - Corollary:
 - $I(G) \subseteq I(P)$
 - All independence assertions read from G are correct!

More generally: Completeness of d-separation

- Theorem: Completeness of d-separation
 - For "almost all" distributions where *P* factorizes over to *G*
 - we have that I(G) = I(P)
 - *"almost all" distributions*: except for a set of measure zero of CPTs
 - Means that if **X** & **Y** are not d-separated given **Z**, then $P\neg(X\perp Y|Z)$

Local Markov Assumption

A variable X is independent of its non-descendants given its parents and only its parents

 $(X_i \perp NonDescendants_{Xi} | Pa_{Xi})$

Markov Blanket

= Markov Blanket of variable x₈ – Parents, children and parents of children

Example

A variable is conditionally independent of all others, given its Markov Blanket

I-map

- Independency map
- Definition:
 - If I(G) \subseteq I(P)
 - G is an I-map of P

Factorization + d-sep → Independence

- Theorem:
 - If
 - P factorizes over G
 - $d\text{-sep}_G(X, Y \mid Z)$
 - Then
 - $P \vdash (\mathbf{X} \perp \mathbf{Y} \mid \mathbf{Z})$
 - Corollary:
 - $I(G) \subseteq I(P)$
 - G is an I-map of P
 - All independence assertions read from G are correct!

The BN Representation Theorem

Important because: Read independencies of *P* from BN structure *G*

(C) Dhruv Batra

Slide Credit: Carlos Guestrin

I-Equivalence

• Two graphs G_1 and G_2 are **I-equivalent** if - $I(G_1) = I(G_2)$

- Equivalence class of BN structures
 - Mutually-exclusive and exhaustive partition of graphs

Minimal I-maps & P-maps

- Many possible I-maps
- Is there a "simplest" I-map?
- Yes, two directions
 - Minimal I-maps
 - P-maps

Minimal I-map

- *G* is a **minimal I-map** for *P* if
 - deleting any edges from G makes it no longer an I-map

P-map

- Perfect map
- G is a P-map for P if
 I(P) = I(G)

• Question: Does every distribution *P* have P-map?

BN: Representation: What you need to know

- Bayesian networks
 - A compact **representation** for large probability distributions
 - Not an algorithm
- Representation
 - BNs represent (conditional) independence assumptions
 - BN structure = family of distributions
 - BN structure + CPTs = 1 single distribution
 - Concepts
 - Active Trails (flow of information); d-separation;
 - Local Markov Assumptions, Markov Blanket
 - I-map, P-map
 - BN Representation Theorem (I-map ←→ Factorization)

Main Issues in PGMs

- Representation
 - How do we store $P(X_1, X_2, ..., X_n)$
 - What does my model mean/imply/assume? (Semantics)
- Learning
 - How do we learn parameters and structure of P(X₁, X₂, ..., X_n) from data?
 - What model is the right for my data?
- Inference
 - How do I answer questions/queries with my model? such as
 - Marginal Estimation: $P(X_5 | X_1, X_4)$
 - Most Probable Explanation: argmax $P(X_1, X_2, ..., X_n)$

Learning Bayes nets

	Known structure	Unknown structure
Fully observable data	Very easy	Hard
Missing data	Somewhat easy (EM)	Very very hard

