ECE 6504: Advanced Topics in Machine Learning

Probabilistic Graphical Models and Large-Scale Learning

Topics:

- Bayes Nets: Representation/Semantics
 - v-structures
 - Probabilistic influence, Active Trails

Readings: Barber 3.3; KF 3.3.1-3.3.2

Dhruv Batra Virginia Tech

Plan for today

- Notation Clarification
- Errata #1: Number of parameters in disease network
- Errata #2: Car start v-structure example
- Bayesian Networks
 - Probabilistic influence & active trails
 - d-separation
 - General (conditional) independence assumptions in a BN

A general Bayes net

- Set of random variables
- Directed acyclic graph
 - Encodes independence assumptions
- CPTs
 - Conditional Probability Tables
- Joint distribution:

$$P(X_1,\ldots,X_n) = \prod_{i=1}^n P\left(X_i \mid \mathbf{Pa}_{X_i}\right)$$

Factorized distributions

- Given
 - Random vars X_1, \dots, X_n
 - P distribution over vars
 - BN structure G over same vars

• *P* factorizes according to *G* if

$$P(X_1,\ldots,X_n) = \prod_{i=1}^n P\left(X_i \mid \mathbf{Pa}_{X_i}\right)$$

How many parameters in a BN?

- Discrete variables X₁, ..., X_n
- Graph
 - Defines parents of X_i , Pa_{X_i}
- CPTs $P(X_i | Pa_{X_i})$

Independencies in Problem

World, Data, reality:

True distribution *P* contains independence assertions

Bayes Nets

- BN encode (conditional) independence assumptions.
 - I(G) = {X indep of Y given Z}

- Which ones?
- And how can we easily read them?

Local Structures

• What's the smallest Bayes Net?

Local Structures

Indirect causal effect:

Indirect evidential effect:

Common cause:

Common effect:

Car starts BN

Bayes Ball Rules

- Flow of information
 - on board

Active trails formalized

- Let variables $\boldsymbol{O} \subseteq \{X_1, \dots, X_n\}$ be observed
- A path $X_1 X_2 \cdots X_k$ is an **active trail** if for each consecutive triplet:

-
$$X_{i-1}$$
→ X_i → X_{i+1} , and X_i is **not observed** ($X_i \notin O$)

-
$$X_{i-1}$$
 ← X_i ← X_{i+1} , and X_i is **not observed** ($X_i \notin O$)

-
$$X_{i-1}$$
 ← X_i → X_{i+1} , and X_i is **not observed** ($X_i \notin O$)

X_{i-1}→X_i←X_{i+1}, and X_i is observed (X_i∈O), or one of its descendents is observed

Active trails and Independence

- Theorem: Variables X_i and X_j are independent given Z if
 - no active trail between X_i and X_j when variables Z⊆{X₁,...,X_n} are observed

Name That Model

Slide Credit: Erik Sudderth

Name That Model

Tree-Augmented Naïve Bayes (TAN)

Slide Credit: Erik Sudderth

Name That Model

Hidden Markov Model (HMM)