GRAPHS + PROB REVIEN + BN
(1) Groph Concepls
$\rightarrow C_{Q}$ is an ordered pair or tuple of two zals

$$
G=(V, E)
$$

set of
Sel of edgeslarcs vertices /nodes

$$
\begin{aligned}
\rightarrow V & =\left\{A, B, C_{1} \ldots, \ldots\right\} \\
V & =\left\{V_{1}, V_{2}, \ldots V_{N}\right\}
\end{aligned}
$$

\rightarrow Edgeset: $\quad E=\{(i, j) / i \in V, j \in V\}$ Directed agophe
$E=\{\{i, j\} \mid i \in V, j \in V\}$ Undirecled graphe
typical assumptions: 1) No self. loop $i \neq j \quad \forall e=(i, j) \in E$
2) No ropealed edgs, $e_{1} \neq e_{2}$

$$
\forall e_{1}, e_{2} \in E
$$

\rightarrow Weighted Graph $G=C V, E, W\}$
where $W=\left\{w_{1}, w_{2} \ldots, w_{\mid E 1}\right\}$ weight associate with edge e_{1}
(i) $\xrightarrow{\mathrm{His}}(\mathrm{j})$
(1) $w_{i j}$ (i)
\rightarrow Neighbour \rightarrow Undirected $G: N(i)=\{j \mid\{i, j\} \in E\}$
\rightarrow Parent/Child (Directed graphs)
$(i, j) \in E \Rightarrow i$ is a parent of j
j is a child of i
\rightarrow Walk: Sequence of nerluces $v_{1} v_{2} \ldots v_{k}$

$$
\begin{aligned}
& \text { set }\left(V_{i}, v_{j}\right) \in E \\
& \text { or }\left\{V_{i}, V_{j}\right\} \in E
\end{aligned}
$$

\rightarrow Path: Walk with no repealed nodes
\rightarrow Cycle: Path weld $v_{1}=v_{k} \quad$ (start $=$ end $)$
\rightarrow Connected conaponant in G :
laraisel set of vertices $S \subseteq Y$ S.t
$\forall i, j \in S$ $J i-j$ path (undirected)
or $i \rightarrow j$ path (diecled)
\rightarrow Connecled Groph $\doteq \#$ Compononts $=1$
\rightarrow Tree: undirected $C a ;$ no cyeles

\rightarrow Spanning Tree of G is a graph $T=\left(V_{T}, E_{T}\right)$
s.t $\quad V_{T}=V$

$$
E_{T} \subseteq E
$$

be there are no cycles in E_{T}
\rightarrow Directed Acyclic Craph (DACr) direcled G; no directed oycles

Ancestor: i is an ancestor of j if $j i \rightarrow j$ palh Desendanl: j is a descendont of i if $\exists i \rightarrow j$ palh
(2) Probabilily Refresher
[As an appendix; Noles from $F^{\prime} 13: 498415984$]
(3) Bayes Nets
(301) Let's start with Chain Rule

$$
\begin{aligned}
P\left(x_{1}, \ldots, x_{n}\right) & =P\left(x_{1}\right) P\left(x_{2} \ldots x_{n} \mid x_{1}\right) \\
& =P\left(x_{1}\right) P\left(x_{2} \mid x_{1}\right) P\left(x_{3} \ldots x_{n} \mid x_{1}, x_{2}\right) \\
& \ldots \cdot\left(x_{1}\right) \prod_{j=2}^{n} P\left(x_{j} \mid x_{1} \ldots x_{j-1}\right) \\
& =P
\end{aligned}
$$

Let's toy to dons this as a graph.
$\rightarrow 1$ node pen variable
\rightarrow an edge $x_{i} \rightarrow x_{j}$. if $j>i \Rightarrow x_{1}$ appears to right of condition sign

$$
\text { \#edges }=1+2+\ldots+n-1=\frac{n(n-1)}{2}={ }^{n} C_{2} \text { complete graph }
$$

How about a sparse graph?
hook familiar? Mark chain!
factorization

$$
P\left(x_{1} \ldots x_{n}\right)=P\left(x_{1}\right) \prod_{j=2}^{n} P\left(x_{j} \mid x_{1} \ldots x_{j-1}\right): P\left(x_{1} \ldots x_{n}\right)=P\left(x_{1}\right) \prod_{j=2}^{n} P\left(x_{j} \mid x_{j-1}\right)
$$

ASSUMPTION
None

$$
\begin{aligned}
& P\left(x_{j} \mid x_{1}-x_{j-1}\right)=P\left(x_{j} \mid x_{j-1}\right) \quad \forall j \\
& \Rightarrow x_{j=2} \perp x_{j} \mid x_{j-1}
\end{aligned}
$$

Futere is indep of pasl given presenl
(1). Probability Concepts
\rightarrow Sample Space
(The space of events)

$$
\begin{aligned}
\Omega & =\{H, T\} \text { (for a coin) } \\
& =\{\text { spare, no-spam }\} \text { (for email) } \\
& =\{\text { car, boat, person, }\} \text { for an }
\end{aligned}
$$

Discrete
\rightarrow Random Variable (Mapping, from Sample Space)
(capital)
\rightarrow Notation: X, Y random variables (egg Y could be label we x, y : their states (egg 0 or 1)
\rightarrow Probability Mass $\quad \sum_{x=0}^{k} P(X=x)=1$
Sometimes. it is veeful to thunk of prob as a

$$
\left.\vec{p}=\left[\begin{array}{c}
p_{0} \\
\vdots \\
P_{k}
\end{array}\right] \quad \begin{array}{l}
\vec{p} \in \mathbb{R}^{k} \\
\vec{p} \geqslant 0 \\
\sum p_{i}=1
\end{array}\right\} \longleftarrow \text { SIMPLEX }
$$

$$
3-1(k=3)
$$

For Continuous R.V. Prob. Densily Function

$$
\int_{x} p(x) d x=1
$$

$$
P(x) \geqslant 0
$$

$p(x)$ con be >1
same symbol p; Discrete or Continuous, clear from
\rightarrow Expectation of $f(x)$ « some function of $R \cdot Y \cdot X$

$$
\begin{aligned}
& E_{p}[f(x)]=\sum_{x=0}^{k} f(x) p(x) \text { (Discroile) } \\
& \text { \& [Averghtide value of } f(x) \text {] } \\
& =\int_{x} f(x) p(x) d x
\end{aligned}
$$

Con think of $E[f(x)]$ as inner-producl (or linear) for discrete $R X_{s}$.

$$
E[f(x)]=[f(0) \cdots f(k)] \cdot\left[\begin{array}{c}
p(0) \\
\vdots \\
p(k)
\end{array}\right]=\sum_{x=0}^{k} f(x) p(x)
$$

\rightarrow Mean Value of x under $p: \operatorname{set} f(x)=x$

$$
\begin{aligned}
\mu=E[x]= & \sum_{x=0}^{n} x p(t) \\
& =3.5(\text { for fair dice })
\end{aligned}
$$

\rightarrow Variance: Estimate of "spread" dround u

$$
\begin{aligned}
& f(x)=(x-\mu)^{2} \\
& \operatorname{Var}(x)=E\left[(x-\mu)^{2}\right]
\end{aligned}
$$

Example:
p(t)

$$
\mu=0
$$

$$
\operatorname{Var}(x)=E\left[x^{2}\right]
$$

$$
\begin{gathered}
\mu=0 \\
\operatorname{Var}(x)=0+0+0+0
\end{gathered}
$$

$$
=\frac{(-1)^{2}}{3}+\frac{0}{3}+\frac{2}{3}
$$

No spead.

$$
=\left|\frac{2}{3}\right|
$$

\rightarrow Marginalizalion
\rightarrow Conditional Prob.

$$
P(Y=y \mid X=x)=\frac{P(Y=y, X=x)}{P(X=x)}
$$

Chain Rule $P(X=x, Y=y)=P(Y=y / X=r) P(X=x)$
[Recursive Application]

$$
\begin{array}{r}
P\left(X_{1}=x_{1}, X_{2}=x_{2}, X_{d}=x_{a}, Y=y\right)=P\left(X_{2}=x_{2}, \ldots, X_{d d}=x_{d}, \quad Y=y \mid X_{X_{1}+1}\right) \\
\\
\left.=P\left(Y=y \mid X_{1}=x_{1} \ldots, x_{d}=x_{d}\right) \cdot P\left(X_{d_{d}}=x_{d}\right) \mid X_{1}=x_{1}: \ldots, X_{d+}=x_{d}\right) \\
\cdots \cdots\left(X_{2}=x_{2} \mid x_{1}=x_{1}\right) P\left(X_{1}=x_{1}\right)
\end{array}
$$

\rightarrow Independence:

$$
P(Y=y, X=x)=P(Y=y) \cdot P(X=x) \mid \forall y, x
$$

Very Imp!

$$
\rightarrow \operatorname{Cov}(X, Y)=E\left[\left(X-\mu_{x}\right)\left(Y-\mu_{y}\right)\right]
$$

where $\mu_{x}=E[X] \quad u_{y}=E[Y]$

$$
\operatorname{Core}-\operatorname{Coiff}(x, y)=\frac{\operatorname{Cov}(x, y)}{\operatorname{Var}(x) \cdot \operatorname{Var}(y)}
$$

Bayes Rule

$$
P(Y=y \mid X=x)=\frac{P(X=x \mid Y=y) P(Y=y)}{P(X=x)}
$$

