ECE 6504: Advanced Topics In

Machine Learning
Probabilistic Graphical Models and Large-Scale Learning

Topics
— Summary of Class
— Advanced Topics

Dhruv Batra
Virginia Tech



HW1 Grades
« Mean: 28.5/38 ~=74.9%
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Administrativia

« (Mini-)HW4
— Out now
— Due: May 7, 11:55pm

— Implementation:
Parameter Learning with Structured SVMs and Cutting-Plane

« Final Project Webpage
— Due: May-+#, May 13 11:55pm
— Gan-use-late-days Can’t use late days any more
— 1-3 paragraphs
+ Goal
lllustrative figure

* Approach
Results (with figures or tables)

« Take Home Final
— Out: May 8
— Due: May 13, 11:55pm
— No late days
— Open book, open notes, open internet. Cite your sources.
— No discussions!
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A look back: PGMs

* One of the most exciting advancements in statistical
Al in the last 10-20 years

* Marriage
— Graph Theory + Probability

« Compact representation for exponentially-large
probability distributions

— Exploit conditional independencies

« (Generalize
— naive Bayes
— logistic regression
— Many more ...
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A look back: what you learnt

» Directed Graphical Models (Bayes Nets)

— Representation: Directed Acyclic Graphs (DAGs), Conditional
FK/?bability Tables (CPTs), d-Separation, v-structures, Markov Blanket,
-Maps

— Parameter Learning: MLE, MAP, EM
— Structure Learning: Chow-Liu, Decomposable scores, hill climbing
— Inference: Marginals, MAP/MPE, Variable Elimination

» Undirected Graphical Models (MRFs/CRFs)

— Representation: Junction trees, Factor graphs, treewidth, Local Makov
Assumptions, Moralization, Triangulation

— Inference: Belief Propagation, Message Passing, Linear Programming
Relaxations, Dual-Decomposition, Variational Inference, Mean Field

— Parameter Learning: MLE, gradient descent
— Structured Prediction: Structured SVMs, Cutting-Plane training

« Large-Scale Learning
— Online learning: (sub-)gradients
Dual Decomposition,

(C) Dhruv Batra 6
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Main Issues in PGMs

* Representation
— How do we store P(X,, X, ..., X))
— What does my model mean/imply/assume? (Semantics)

 Inference

— How do | answer questions/queries with my model? such as
— Marginal Estimation: P(Xs | X,, X,)
— Most Probable Explanation: argmax P(X,, X,, ..., X\)

* Learning

— How do we learn parameters and structure of
P(X4, X, ..., X)) from data?

— What model is the right for my data?
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What is this class about?

« Making global predictions from local observations

(C) Dhruv Batra 8



-]
A look forward

« Stuff we couldn’t teach you
— A.K.A: Stuff that’s not on the exam!

* What do people in this area work on?
— What is being published in PGMs / Structured Prediction?
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Error Decomposition

Reality

horse Perso
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Error Decomposition
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Error Decomposition
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Focus of MAP Inference
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Continuous-Variable PGMs
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Multivariate Gaussian
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Canonical form

1 1 _
I O (= E x|

1
= Kexp {nTX — EXT/\X}

p(X1,...,Xn)

 Standard form and canonical forms are related:
—1
p N n
> A1

« Conditioning is easy in canonical form
« Marginalization easy in standard form
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What you've learned so far

« VE & Junction Trees
— Exact inference
— Exponential in tree-width

« Belief Propagation, Mean Field
— Approximate inference for marginals/conditionals
— Fast, but can get inaccurate estimates

« Sample-based Inference
— Approximate inference for marginals/conditionals

— With “enough” samples, will converge to the right answer (or
a high accuracy estimate)

(If you want to be cynical, replace “enough” with “ridiculously many”)



Goal

« Often we want expectations given samples
X[1] ... X][M] from a distribution P.

M
1
Ep[fl~ = > f(x[m]) x[i] ~ P(X)
m=1
1 M
P(X =x) =~ i Z 1(x|m| = x)
m=1
Discrete Random Variables: X = {Xl, ey Xn}

Number of samples from P(X): M



Forward Sampling

Easy | Hard Low High

06 | o4 07 [ 03 *Sample nodes in topological order

Intelligence

*Assignment to parents selects P(X|Pa(X))

Int_| Diff | [80,100] ] [50,60) | [0,50) ( oo > - *End result is one Sample from P(X)
Low | Easy 0.3 0.4 0.3
rign | Easy |05 008 | 003 T e [ Goi | oRepeat to get more samples
High | Hard 0.5 0.3 0.2 High 0.2 08
Grade | Fail | Pass
[80,100] | 0.1 | 09
[50,80) 0.4 0.6
[0,50) | 0.99 | 0.01
D x[m,D]~ (Easy:0.6,Hard:0.4) D = Easy
| x|m, I| ~ (Low : 0.7, High : 0.3) | = High
G xm,G|D=4d,I=1]~(]80,100]:0.9,[50,80) :0.08,[0,50) : 0.02) G =[80,100]
S xm,S|I=i]~(Bad:0.2,Good :0.8) S =Bad
L x[m,L|G=g|~ (Fail:0.1,Pass:0.9) L = Pass
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Multinomial Sampling

« Given an assignment to its parents,
X, Is a multinomial random variable.

x\m,G|D =d,I =1 ~ (v1 :0.9,v3 : 0.08,v3 : 0.02)

U -~ Unif|0,1]
| |
| |
| |
Vi 1 21 V3
- | T
0.90 10.08 1 0.02



- ________000000__"]
Sample-based probability estimates

« Have a set of M samples from P(X)
« Can estimate any probability by counting records:

Marglnals

P(D = Easy, S = Bad) 1(x = Easy, x[m, S| = Bad)

HMi

Conditionals: M
A 1 Dl =E — Bad
P(D = Easy|S = Bad) = Zmzl (X[]\”?, | asy, x|m, S| ad)

Zm:1 ]‘(X[m7 S] — B&d)

Rejection sampling: once the sample and evidence disagree, throw away the sample.

Rare events: If the evidence is unlikely, i.e., P(E = e) small, then the sample size for
P(X|E=e) is low



IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 23, NO. 11, NOVEMBER 2001

Fast Approximate Energy
Minimization via Graph Cuts

Yuri Boykov, Member, IEEE, Olga Veksler, Member, IEEE, and Ramin Zabih, Member, |IEEE

Abstract—Many tasks in computer vision involve assigning a label (such as disparity) to every pixel. A common constraint is that the
labels should vary smoothly almost everywhere while preserving sharp discontinuities that may exist, e.g., at object boundaries. These
tasks are naturally stated in terms of energy minimization. In this paper, we consider a wide class of energies with various smoothness
constraints. Global minimization of these energy functions is NP-hard even in the simplest discontinuity-preserving case. Therefore,
our focus is on efficient approximation algorithms. We present two algorithms based on graph cuts that efficiently find a local minimum
with respect to two types of large moves, namely expansion moves and swap moves. These moves can simultaneously change the
labels of arbitrarily large sets of pixels. In contrast, many standard algorithms (including simulated annealing) use small moves where
only one pixel changes its label at a time. Our expansion algorithm finds a labeling within a known factor of the global minimum, while
our swap algorithm handles more general energy functions. Both of these algorithms allow important cases of discontinuity preserving
energies. We experimentally demonstrate the effectiveness of our approach for image restoration, stereo and motion. On real data with
ground truth, we achieve 98 percent accuracy.

Index Terms—Energy minimization, early vision, graph algorithms, minimum cut, maximum flow, stereo, motion, image restoration,
Markov Random Fields, Potts model, multiway cut.
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Simulated Annealing
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Simulated Annealing
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Effect of Exact MAP
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Sontag NIPS10

More data means less inference: A pseudo-max
approach to structured learning

David Sontag Ofer Meshi Tommi Jaakkola Amir Globerson
Microsoft Research Hebrew University CSAIL, MIT Hebrew University
Abstract

The problem of learning to predict structured labels is of key importance in many
applications. However, for general graph structure both learning and inference are
intractable. Here we show that it is possible to circumvent this difficulty when
the distribution of training examples is rich enough, via a method similar in spirit
to pseudo-likelihood. We show that our new method achieves consistency, and
illustrate empirically that it indeed approaches the performance of exact methods
when sufficiently large training sets are used.
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Soft-Margin Structured SVM

* Minimize 1W2+£25

subject to

w'p(x’,y) = w o(x’,y)+ Ay’ ,¥)- &,

Too many constraints!

(C) Dhruv Batra Slide Credit: Thorsten Joachims 28



Cutting-Plane Method

1 , C
—Ww +— .
" N2

wio(x!,y ) =w p(x’,y)+ Ay, y)-&,

« Key insight of NIPS10 paper

— What if we replace exponentially many constraints with a
smaller set (without using Cutting-Plane)?

* Key contribution

— There exist a rich set of distributions where this
approximation results in optimal parameter in the infinite
data setting
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Meshi ICML10

Learning Efficiently with Approximate Inference via Dual Losses

Ofer Meshi MESHIQCS.HUJI.AC.IL
David Sontag DSONTAG@CSAIL.MIT.EDU
Tommi Jaakkola TOMMIQCSAIL.MIT.EDU
Amir Globerson GAMIR@QCS.HUJI.AC.IL
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Abstract

Many structured prediction tasks involve
complex models where inference is computa-
tionally intractable, but where it can be well
approximated using a linear programming
relaxation. Previous approaches for learn-
ing for structured prediction (e.g., cutting-
plane, subgradient methods, perceptron) re-
peatedly make predictions for some of the
data points. These approaches are computa-
tionally demanding because each prediction
involves solving a linear program to optimal-
ity. We present a scalable algorithm for learn-
ing for structured prediction. The main idea
is to instead solve the dual of the structured
prediction loss. We formulate the learning
task as a convex minimization over both the
weights and the dual variables corresponding
to each data point. As a result, we can be-
gin to optimize the weights even before com-
pletely solving any of the individual predic-
tion problems. We show how the dual vari-
ables can be efficiently optimized using co-
ordinate descent. Our algorithm is compet-
itive with state-of-the-art methods such as
stochastic subgradient and cutting-plane.

would be to explicitly model the interactions between
the labels, which then results in the labels being jointly
predicted. Structured prediction models do this by us-
ing classifiers of the form y = argmaxy,w - f(z,9),
where f(x,y) is a given function and w are weights to
be learned from data.

Much of the early work on structured prediction (Laf-
ferty et al., 2001; Taskar et al., 2004) focused on
the case where prediction (i.e., maximization over y)
could be done using efficient combinatorial algorithms
such as dynamic programming or maximum-weight
matching. However, this restricted the types of in-
teractions that these models were capable of captur-
ing to tractable structures such as tree graphs. Re-
cent work on graphical models has shown that even
when the maximization over y is not known a priori
to be tractable, linear programming (LP) relaxations
often succeed at finding the true maximum, even giv-
ing certificates of optimality (Sontag et al., 2008).
This strongly motivates learning structured prediction
models which use LP relaxations for prediction, and
indeed several recent works show that this yields em-
pirically effective results (Finley and Joachims, 2008;
Martins et al., 2009).

Learning with large scale data necessitates efficient al-
gorithms for finding the optimal weight vector w. Al-

30
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Tarlow UAI10

Graph Cuts is a Max-Product Algorithm

Daniel Tarlow, Inmar E. Givoni, Richard S. Zemel, Brendan J. Frey
University of Toronto

Toronto, ON M5S 3G4

{dtarlow@cs, inmar@psi, zemel@cs, frey@psi}.toronto.edu

Abstract

The maximum a posteriori (MAP) configu-
ration of binary variable models with sub-
modular graph-structured energy functions
can be found efficiently and exactly by graph
cuts. Max-product belief propagation (MP)
has been shown to be suboptimal on this class
of energy functions by a canonical counterex-

ample where MP converges to a suboptimal
fixed point (Kulesza & Pereira, 2008).

In this work, we show that under a partic-
ular scheduling and damping scheme, MP
is equivalent to graph cuts, and thus opti-
mal. We explain the apparent contradiction
by showing that with proper scheduling and
damping, MP always converges to an optimal
fixed point. Thus, the canonical counterex-
ample only shows the suboptimality of MP
with a particular suboptimal choice of sched-
ule and damping. With proper choices, MP
is optimal.

eral, but also occasionally erratic, algorithm is max-
product belief propagation (MP).

Our aim in this work is to establish the precise re-
lationship between MP and graph cuts, namely that
graph cuts is a special case of MP. To do so, we map
analogous aspects of the algorithms to each other: mes-
sage scheduling in MP to selecting augmenting paths
in graph cuts; passing messages on a chain to push-
ing flow through an augmenting path; message damp-
ing to limiting flow to be the bottleneck capacity of
an augmenting path; and letting messages reinforce
themselves on a loopy graph to connected components
decoding scheme of graph cuts.

This equivalence implies strong statements regarding
the optimality of MP on binary submodular energies
defined on graphs with arbitrary topology, which may
appear to contradict much of what is known about
MP-—all empirical results showing MP to be subopti-
mal on binary submodular problems, and the theoret-
ical results of Kulesza and Pereira (2008); Wainwright
and Jordan (2008) which show analytically that MP

converges to the wrong solution. We analyze this is-
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Ladicky IJCV12

Int J Comput Vis (2013) 103:213-225
DOI 10.1007/s11263-012-0583-y

Inference Methods for CRFs with Co-occurrence Statistics

Lubor Ladicky - Chris Russell - Pushmeet Kohli -
Philip H. S. Torr

sky sky sky

tree
aeroplane building
person

flower  building boat

grass

(C) Dhruv Batra 32



Lempitsky ICCVO09

Image Segmentation with A Bounding Box Prior

Victor Lempitsky, Pushmeet Kohli, Carsten Rother, Toby Sharp
Microsoft Research Cambridge

Abstract

User-provided object bounding box is a simple and
popular interaction paradigm considered by many exist-
ing interactive image segmentation frameworks. However,
these frameworks tend to exploit the provided bounding box
merely to exclude its exterior from consideration and some-
times to initialize the energy minimization. In this paper, we
discuss how the bounding box can be further used to impose
a powerful topological prior, which prevents the solution
from excessive shrinking and ensures that the user-provided
box bounds the segmentation in a sufficiently tight way.

The prior is expressed using hard constraints incorpo-
rated into the global energy minimization framework lead-
ing to an NP-hard integer program. We then investigate
the possible optimization strategies including linear relax-
ation as well as a new graph cut algorithm called pinpoint-
ing. The latter can be used either as a rounding method
for the fractional LP solution, which is provably better
than thresholding-based rounding, or as a fast standalone
heuristic. We evaluate the proposed algorithms on a pub-
licly available dataset, and demonstrate the practical bene-
fits of the new prior both qualitatively and quantitatively.

(C) Dhruv Batra

without the prior with the prior

Figure 1. Our tightness prior. The segmentation on the left com-
puted with graph cut is consistent with the low level image cues,
yet inconsistent with the user input (in yellow) being too loose for
this bounding box. By minimizing the same graph cut energy un-
der a set of constraints, our method computes the segmentation
that fits the bounding box in a sufficiently tight way, obtaining a
better result (right).

to the interior of the bounding box. This property is easy to
incorporate into any algorithm, as one can simply assign
all exterior pixels to the ‘background’ class. The second
property is much harder to incorporate or even to formalize.
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Kohli & Rother

Chapter 1

Higher-order models in Computer Vision

PUSHMEET KOHLI

Machine Learning and Perception
Microsoft Research

Cambridge, UK

Email: pkohli@microsoft.com

CARSTEN ROTHER

Machine Learning and Perception
Microsoft Research

Cambridge, UK

Email: carrot@microsoft.com
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Perturb and MAP

S(y)=> 0w+ D 0i(viuj)

=3V (i,j)€E

* Approach
— Perturb: 9 =0+¢, €~ ple)

- MAP: argmax S;(y)
y
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Perturb and MAP

 Perturb: 6=0+¢, c~nple

 Theorem: If IID Gumbel, then EXACT samples.

» [Papandreou & Yuille, ICCV11]
+ [Hazan & Jaakkola, ICML12]

Gumbel PDF
g(z) = exp(z —
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Perturb and MAP

 Full Order Gumbel is hard!

Lle Lle|e]|e Lle|eo]e
o) ® L ] L ] L ] L ] ] L
1 L L
One variable Two variables Three variables
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Perturb and MAP

« Reduced Order Gumbel
Sty) =) 0i(y)+ > i (i, vy)

i€V (4,5)€€&
* Approach
— Perturb: 6 =26 +><p(€) 0; =0;+e €~ ple)
— MAP: argmax S;(y)

y
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My Research: Multiple Predictions

Sampling

Porway & Zhu, 2011
TU & Zhu, 2002
Rich History
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My Research: Multiple Predictions

Sampling

Porway & Zhu, 2011
TU & Zhu, 2002
Rich History
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B . I

YMmAP

M-Best MAP
|deally:

Flerova et al., 2011
Fromer et al., 2009 M-Best Modes

Yanover et al., 2003
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My Research: Multiple Predictions

II|I||‘ ‘Ill || 1 |,

N DI I

YMmAP

Our work: Diverse M-Best in MRFs [ECCV “12] J

- Don’t hope for diversity. Explicitly encode it.

- Not guaranteed to be modes. S
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What next?

« Seminars:
— CV-ML Reading Group

» https://filebox.ece.vt.edu/~cvmlreadinggroup/

« Conferences:
— Neural Information Processing Systems (NIPS)
— International Conference in Machine Learning (ICML)
— Uncertainty in Artificial Intelligence (UAI)
— Artificial Intelligence & Statistics (AISTATS)

« Classes (at some point in the near future)
— ECE6504: Fundamental Ideas in Machine Learning

» Paper reading class showing lineage of ideas
« Story from 89 first backprop papers to CNNs today

— ECE6504: Machine Learning for Big Data

» Large-Scale Distributed Machine Learning
» Use frameworks such as Graphlab
* Implement things in CloudCV
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Feedback

« Student Perception of Teaching (SPOT)
— https://eval.scholar.vt.edu/portal
— Tell us how we're doing
— What would you like to see more

— What would you like to see less
— ENDS MAY 8
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