ECE 6504: Advanced Topics In

Machine Learning
Probabilistic Graphical Models and Large-Scale Learning

Topics
— BN/ MRFs
— Learning from hidden data
— EM

Readings: KF 19.1-3, Barber 11.1-2
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Virginia Tech
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Administrativia

« (Mini-)HW4
— Out now
— Due: May 7, 11:55pm

— Implementation:
Parameter Learning with Structured SVMs and Cutting-Plane

« Final Project Webpage
— Due: May 7, 11:55pm
— Can use late days

— 1-3 paragraphs
+ Goal
lllustrative figure
* Approach
Results (with figures or tables)

« Take Home Final
— Out: May 8
— Due: May 13, 11:55pm
— No late days
— Open book, open notes, open internet. Cite your sources.
— No discussions!
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Recap of Last Time
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Main Issues in PGMs

* Representation
— How do we store P(X,, X, ..., X))
— What does my model mean/imply/assume? (Semantics)

 Inference

— How do | answer questions/queries with my model? such as
— Marginal Estimation: P(Xs | X,, X,)
— Most Probable Explanation: argmax P(X,, X,, ..., X\)

* Learning
— How do we learn parameters and structure of

P(X4, X, ..., X)) from data?
— What model is the right for my data?
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Learning Bayes Nets

Known structure Unknown structure
Fully observable Verv eas
data y y Hard
Missing data Somewhat easy
(EM) Very very hard
-
CPTs —
x(1)
| P(Xi| Pay;)
x(m structure parameters
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Learning the CPTs

\ For each discrete variable X

x(1)
A COU.IIt(Xi = a, P&X. = b)
(m) P Xz = P =) = ¢
X > M a|Pax, =b) Count(Payx, = b)
—
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Learning Markov Nets

Known structure

Unknown structure

Fully observable

NP-Hard
(but doable)
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data Harder
Missing data -Harder Don't try this
(EM) at home
Factors —
x(1)
—I— W (Xc)
x(m) structure parameters




Learning Parameters of a BN

« Log likelihood decomposes: < >

logP(D|0) =m> Y P(x;,Pay,)log P(z; | Pag;)

* Learn each CPT independently P(u) =

« Use counts
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Log Likelihood for MN

» Log likelihood decomposes: <, >
<>
log P(D | 0,G) =m} > P(c;)logi(c;)—mlog Z i

 Doesn’t decompose!
— logZ couples all parameters together
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Plan for today

BN Parameter Learning with Missing Data
— Why model latent variables?
— Expectation Maximization (EM)
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Learning Bayes Nets

Known structure Unknown structure

Fully observable
data

Missing data Somewhat easy

Very easy Hard

(EM) Very very hard
-~
e CPTs —
| P(Xi| Pay;)
x(m structure parameters
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When is data missing?

* Fully Observed Data

« Some hidden variables
— Never observed

« General hidden pattern
— Arbitrary entries missing in the data matrix
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Why missing data?

« Sometimes no choice
— sensor error, some data dropped
— Data collection error, we forgot to ask this question
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Why introduce hidden variables?

* Model Sparsity!
— Modeling hidden/latent variables can simplify interactions
— Reduction in #parameters to be learnt

 Example
— On board
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Why introduce hidden variables?

* Discovering Clusters in datal!
— Modeling different P(y|x,h) for each h

Component #1

Component #2

Component #3

Component #4

Component #5

Component #6
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Treating Missing Data

Thought Experiment:
— Coin Toss: H,T,?,?,H,H,?

Case 1: Missing at Random

Case 2: Missing with bias

BN illustration of the two cases

— On board
— Takeaway message: Need to model missing data
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Likelihood with Complete/Missing Data

 Example on board X->Y
— One variable X; parameter 6
— Two variables X,Y; parameters 6y, 8y

 Takeaway Messages:

— Parameters get coupled (LL = sum-log-sum doesn’t
factorize)

— Computing LL requires marginal inference!

(C) Dhruv Batra 17



Data likelihood for BNs
@D\

» Given structure, log likelihood of fully
observed data:

log P(D | 0g,G)
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Marginal likelihood

« Whatif S is hidden?

log P(D | 0g,G)
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Log likelihood for BNs with hidden data
&2

« Marginal likelihood — O is observed, H is hidden
m .
£(0:D) = > log P(o) | 9)

J=1

> IogZP(h,o(j) 1 6)
j=1 h
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EM Intuition

« Chicken & Egg problem
— If we knew h, then learning 8 would be easy

— If we knew theta, then finding P(h | o, ©) would be “easy”
* Sum-product inference

 EM solution
— Initialize
— Fix 0, find P(h | 0, 0)
— Use these to learn 6
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E-step for BNs GD\/.
S

« E-step computes probability of hidden vars h given o

QU (h|0) — P(h|o0,0)

« Corresponds to inference in BN
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The M-step for BNs @,
« Maximization step:

g(t+1) E+D(h | 69 loe P(h. o'
a3 30 | o) g P, 0 |

« Use expected counts instead of counts:
— If learning requires Count(h,0)
— Use Eq.qy[Count(h,0)]
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M-step for each CPTGD\

* M-step decomposes per CPT
— Standard MLE:

COUﬂt(XZ' = x;, PaXi = Z)
Count(Pay, = z)

P(X;=x; | Pax, =z) =

EXCOUI’]t(XZ’ = x;, PaXZ. = Z)
ExCount(Pay, = z)

P(X; =x; | Pax, =z) =
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]
he general learning problem with missing data

« Marginal likelihood — o is observed, h is missing:

M .
ﬁ%HPWM)
=1

log P(o’ | 6)

tnﬂz

1

.
I

tllﬁz

logZP (0’,h | 0)

1

J
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Applying Jensen’s inequality

« Use: log >, P(h) f(h) = ), P(h) log f(h)

16 :D)= Zlogz Qj(h)P(Z;’(};l)‘ /)
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Convergence of EM

« Define potential function F(0,Q):

P(o’,h | 0)
Qj(h)

(6 :D) > F(0,Q;) = ZZQ] ) log

j=1 h

 EM corresponds to coordinate ascent on F
— Fix 8, maximize Q
— Fix Q, maximize 6
— Thus, maximizes lower bound on marginal log likelihood
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EM is coordinate ascent

P(o’,h | 0)
Qj(h)

(0 :D) > F(6,Q,) _ZZQJ ) log

j=1 h

« E-step: Fix 6, maximize F over Q:
— On board

~ “Realigns” F with likelihood: Q. (h) = P(h | o’,®)
F(H(t), Q(t)) — ll(e(t) : D)
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EM is coordinate ascent

P(o’,h | 0)
Qj(h)

(6 :D) > F(0,Q;) = ZZQ] ) log

j=1 h

« M-step: Fix Q, maximize F over 6

. Corresponds to weighted dataset:
<o',h=1> with weight Q") (h=1|0")
— <o0',h=2> with weight Q") (h=2|o")
- <o1,h=3> with weight Q®*")(h=3|o")
— <02,h=1> with weight Q*")(h=1|0?)
— <02,h=2> with weight Qt*")(h=2|02)
— <02,h=3> with weight Qt*")(h=3|02)
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EM Intuition

S Q(G,Gt)
- Q(9,9t+1)
- |(0) P
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What you need to know about

learning BNs with missing data

 EM for Bayes Nets

« E-step: inference computes expected counts
— Only need expected counts over X, and Pa,,

« M-step: expected counts used to estimate
parameters

« Which variables are hidden can change per datapoint

— Also, use labeled and unlabeled data - some data points
are complete, some include hidden variables



