ECE 6504: Advanced Topics in Machine Learning

Probabilistic Graphical Models and Large-Scale Learning

Topics

- BN / MRFs
- Learning from hidden data
- EM

Readings: KF 19.1-3, Barber 11.1-2
Dhruv Batra
Virginia Tech

Administrativia

- (Mini-)HW4
- Out now
- Due: May 7, 11:55pm
- Implementation:
- Parameter Learning with Structured SVMs and Cutting-Plane
- Final Project Webpage
- Due: May 7, 11:55pm
- Can use late days
- 1-3 paragraphs
- Goal
- Illustrative figure
- Approach
- Results (with figures or tables)
- Take Home Final
- Out: May 8
- Due: May 13, 11:55pm
- No late days
- Open book, open notes, open internet. Cite your sources.
- No discussions!

Recap of Last Time

Main Issues in PGMs

- Representation
- How do we store $P\left(X_{1}, X_{2}, \ldots, X_{n}\right)$
- What does my model mean/imply/assume? (Semantics)
- Inference
- How do I answer questions/queries with my model? such as
- Marginal Estimation: $P\left(X_{5} \mid X_{1}, X_{4}\right)$
- Most Probable Explanation: $\operatorname{argmax} P\left(X_{1}, X_{2}, \ldots, X_{n}\right)$
- Learning
- How do we learn parameters and structure of $P\left(X_{1}, X_{2}, \ldots, X_{n}\right)$ from data?
- What model is the right for my data?

Learning Bayes Nets

	Known structure	Unknown structure
Fully observable data	Very easy	Hard
Missing data	Somewhat easy (EM)	Very very hard

Learning the CPTs

For each discrete variable X_{i}

$$
\hat{P}_{M L E}\left(X_{i}=a \mid \operatorname{Pa}_{X_{i}}=b\right)=\frac{\operatorname{Count}\left(X_{i}=a, \mathrm{~Pa}_{X_{i}}=b\right)}{\operatorname{Count}\left(\mathrm{Pa}_{X_{i}}=b\right)}
$$

Learning Markov Nets

	Known structure	Unknown structure
Fully observable data NP-Hard (but doable) Harder Missing data Harder (EM) Don't try this at home $\mathbf{~}$		

Learning Parameters of a BN

- Log likelihood decomposes:

$$
\log P(\mathcal{D} \mid \theta)=m \sum_{i} \sum_{x_{i}, \mathrm{~Pa}_{x_{i}}} \widehat{P}\left(x_{i}, \mathrm{~Pa}_{x_{i}}\right) \log P\left(x_{i} \mid \mathbf{P a}_{x_{i}}\right)
$$

- Learn each CPT independently

$$
\widehat{P}(\mathbf{u})=\frac{\operatorname{Count}(\mathbf{U}=\mathbf{u})}{m}
$$

- Use counts

Log Likelihood for MN

- Log likelihood decomposes:

- Doesn't decompose!
- logZ couples all parameters together

Plan for today

- BN Parameter Learning with Missing Data
- Why model latent variables?
- Expectation Maximization (EM)

Learning Bayes Nets

	Known structure	Unknown structure
Fully observable data	Very easy	Hard
Missing data	Somewhat easy (EM)	Very very hard

(C) Dhruv Batra

CPTs $P\left(X_{i} \mid P a_{x_{i}}\right)$
parameters

When is data missing?

- Fully Observed Data
- Some hidden variables
- Never observed
- General hidden pattern
- Arbitrary entries missing in the data matrix

Why missing data?

- Sometimes no choice
- sensor error, some data dropped
- Data collection error, we forgot to ask this question

Why introduce hidden variables?

- Model Sparsity!
- Modeling hidden/latent variables can simplify interactions
- Reduction in \#parameters to be learnt
- Example
- On board

Why introduce hidden variables?

- Discovering Clusters in data!
- Modeling different $P(y \mid x, h)$ for each h

Treating Missing Data

- Thought Experiment:
- Coin Toss: H,T,?,?,H,H,?
- Case 1: Missing at Random
- Case 2: Missing with bias
- BN illustration of the two cases
- On board
- Takeaway message: Need to model missing data

Likelihood with Complete/Missing Data

- Example on board X->Y
- One variable X; parameter θ_{X}
- Two variables X, Y; parameters $\theta_{\mathrm{X}}, \theta_{\mathrm{Y} \mid \mathrm{X}}$
- Takeaway Messages:
- Parameters get coupled (LL = sum-log-sum doesn't factorize)
- Computing LL requires marginal inference!

Data likelihood for BNs

- Given structure, log likelihood of fully observed data:

$$
\log P\left(\mathcal{D} \mid \theta_{\mathcal{G}}, \mathcal{G}\right)
$$

Marginal likelihood

- What if S is hidden?

$$
\log P\left(\mathcal{D} \mid \theta_{\mathcal{G}}, \mathcal{G}\right)
$$

Log likelihood for ENs with hidden data

- Marginal likelihood - \mathbf{O} is observed, \mathbf{H} is hidden

$$
\begin{aligned}
\ell(\theta: \mathcal{D}) & =\sum_{j=1}^{m} \log P\left(\mathbf{o}^{(j)} \mid \theta\right) \\
& =\sum_{j=1}^{m} \log \sum_{\mathbf{h}} P\left(\mathbf{h}, \mathbf{o}^{(j)} \mid \theta\right)
\end{aligned}
$$

EM Intuition

- Chicken \& Egg problem
- If we knew h, then learning θ would be easy
- If we knew theta, then finding $\mathrm{P}(\mathrm{h} \mid \mathrm{o}, \theta)$ would be "easy"
- Sum-product inference
- EM solution
- Initialize
- Fix θ, find $P(h \mid o, \theta)$
- Use these to learn θ

E-step for BNs

- E-step computes probability of hidden vars \mathbf{h} given \mathbf{o}

$$
Q^{(t+1)}(\mathbf{h} \mid \mathbf{o}) \leftarrow P\left(\mathbf{h} \mid \mathbf{o}, \theta^{(t)}\right)
$$

- Corresponds to inference in BN

The M-step for BNs

- Maximization step:

$$
\theta^{(t+1)} \leftarrow \arg \max _{\theta} \sum_{j=1}^{m} \sum_{\mathbf{h}} Q^{(t+1)}\left(\mathbf{h} \mid \mathbf{o}^{(j)}\right) \log P\left(\mathbf{h}, \mathbf{o}^{(j)} \mid \theta\right)
$$

- Use expected counts instead of counts:
- If learning requires Count(h,o)
- Use $\mathrm{E}_{\mathrm{Q}(\mathrm{t}+1)}[\operatorname{Count}(\mathbf{h}, \mathbf{o})]$

M-step for each CPT ${ }^{(2)}$

- Standard MLE:

$$
\begin{gathered}
P\left(X_{i}=x_{i} \mid \mathbf{P a}_{X_{i}}=\mathrm{z}\right)=\frac{\operatorname{Count}\left(X_{i}=x_{i}, \mathbf{P a}_{X_{i}}=\mathbf{z}\right)}{\operatorname{Count}\left(\mathbf{P a}_{X_{i}}=\mathbf{z}\right)} \\
P\left(X_{i}=x_{i} \mid \mathbf{P a}_{X_{i}}=\mathbf{z}\right)=\frac{\operatorname{ExCount}\left(X_{i}=x_{i}, \mathbf{P a}_{X_{i}}=\mathbf{z}\right)}{\operatorname{ExCount}\left(\mathbf{P a}_{X_{i}}=\mathbf{z}\right)}
\end{gathered}
$$

The general learning problem with missing data

- Marginal likelihood - $\mathbf{0}$ is observed, \mathbf{h} is missing:

$$
\begin{aligned}
l l(\theta: \mathcal{D}) & =\log \prod_{j=1}^{M} P\left(\mathbf{o}^{j} \mid \theta\right) \\
& =\sum_{j=1}^{M} \log P\left(\mathbf{o}^{j} \mid \theta\right) \\
& =\sum_{j=1}^{M} \log \sum_{\mathbf{h}} P\left(\mathbf{o}^{j}, \mathbf{h} \mid \theta\right)
\end{aligned}
$$

Applying Jensen's inequality

- Use: $\log \sum_{h} P(h) f(h) \geq \sum_{h} P(h) \log f(h)$

$$
l l(\theta: \mathcal{D})=\sum_{j=1}^{M} \log \sum_{\mathbf{h}} Q_{j}(\mathbf{h}) \frac{P\left(\mathbf{o}^{j}, \mathbf{h} \mid \theta\right)}{Q_{j}(\mathbf{h})}
$$

Convergence of EM

- Define potential function $F(\theta, Q)$:

$$
l l(\theta: \mathcal{D}) \geq F\left(\theta, Q_{j}\right)=\sum_{j=1}^{M} \sum_{\mathbf{h}} Q_{j}(\mathbf{h}) \log \frac{P\left(\mathbf{o}^{j}, \mathbf{h} \mid \theta\right)}{Q_{j}(\mathbf{h})}
$$

- EM corresponds to coordinate ascent on F
- Fix θ, maximize Q
- Fix Q, maximize θ
- Thus, maximizes lower bound on marginal log likelihood

EM is coordinate ascent

$$
l l(\theta: \mathcal{D}) \geq F\left(\theta, Q_{j}\right)=\sum_{j=1}^{M} \sum_{\mathbf{h}} Q_{j}(\mathbf{h}) \log \frac{P\left(\mathbf{o}^{j}, \mathbf{h} \mid \theta\right)}{Q_{j}(\mathbf{h})}
$$

- E-step: Fix $\theta^{(t)}$, maximize F over Q:
- On board
- "Realigns" F with likelihood: $\quad Q_{j}(\mathbf{h})=P\left(\mathbf{h} \mid \mathbf{o}^{j}, \theta^{(t)}\right)$

$$
F\left(\theta^{(t)}, Q^{(t)}\right)=l l\left(\theta^{(t)}: \mathcal{D}\right)
$$

EM is coordinate ascent

$$
l l(\theta: \mathcal{D}) \geq F\left(\theta, Q_{j}\right)=\sum_{j=1}^{M} \sum_{\mathbf{h}} Q_{j}(\mathbf{h}) \log \frac{P\left(\mathbf{o}^{j}, \mathbf{h} \mid \theta\right)}{Q_{j}(\mathbf{h})}
$$

- M-step: Fix $Q^{(t)}$, maximize F over θ
- Corresponds to weighted dataset:
$-<\mathbf{o}^{1}, \mathbf{h}=1>$ with weight $Q^{(t+1)}\left(\mathbf{h}=1 \mid \mathbf{0}^{1}\right)$
$-<\mathbf{o}^{1}, \mathbf{h}=2>$ with weight $Q^{(t+1)}\left(\mathbf{h}=2 \mid \mathbf{o}^{1}\right)$
$-<\mathbf{o}^{1}, \mathbf{h}=3>$ with weight $Q^{(t+1)}\left(\mathbf{h}=3 \mid \mathbf{o}^{1}\right)$
$-<\mathbf{o}^{2}, \mathbf{h}=1>$ with weight $Q^{(t+1)}\left(\mathbf{h}=1 \mid \mathbf{o}^{2}\right)$
$-<\mathbf{o}^{2}, \mathbf{h}=2>$ with weight $Q^{(t+1)}\left(\mathbf{h}=2 \mid \mathbf{o}^{2}\right)$
$-<\mathbf{o}^{2}, \mathbf{h}=3>$ with weight $Q^{(t+1)}\left(\mathbf{h}=3 \mid \mathbf{o}^{2}\right)$

EM Intuition

What you need to know about learning BNs with missing data

- EM for Bayes Nets
- E-step: inference computes expected counts
- Only need expected counts over X_{i} and $\mathrm{Pa}_{\mathrm{xi}}$
- M-step: expected counts used to estimate parameters
- Which variables are hidden can change per datapoint
- Also, use labeled and unlabeled data \rightarrow some data points are complete, some include hidden variables

