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Machine Learning 

Probabilistic Graphical Models and Large-Scale Learning 

 
Dhruv Batra  
Virginia Tech 

Topics 
–  BN / MRFs 

–  Learning from hidden data 
–  EM 

Readings: KF 19.1-3, Barber 11.1-2 



Administrativia 
•  (Mini-)HW4 

–  Out now 
–  Due: May 7, 11:55pm 
–  Implementation:  

•  Parameter Learning with Structured SVMs and Cutting-Plane 

•  Final Project Webpage 
–  Due: May 7, 11:55pm 
–  Can use late days 
–  1-3 paragraphs 

•  Goal 
•  Illustrative figure 
•  Approach 
•  Results (with figures or tables) 

•  Take Home Final 
–  Out: May 8 
–  Due: May 13, 11:55pm 
–  No late days 
–  Open book, open notes, open internet. Cite your sources.  
–  No discussions! 
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Recap of Last Time 
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Main Issues in PGMs 
•  Representation 

–  How do we store P(X1, X2, …, Xn) 
–  What does my model mean/imply/assume? (Semantics) 

•  Inference 
–  How do I answer questions/queries with my model? such as 
–  Marginal Estimation: P(X5 | X1, X4) 
–  Most Probable Explanation: argmax P(X1, X2, …, Xn) 

•  Learning  
–  How do we learn parameters and structure of  

P(X1, X2, …, Xn) from data? 
–  What model is the right for my data? 
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Learning Bayes Nets 

Known structure Unknown structure 

Fully observable 
data 
Missing data  

 

x(1) 

… 

 x(m) 

Data 

structure parameters 

CPTs –  
P(Xi| PaXi) 
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Very easy 

Somewhat easy  
       (EM) 

Hard 

Very very hard 



Learning the CPTs 

x(1) 

… 

 x(m) 

Data For each discrete variable Xi 

P̂MLE(Xi = a | PaXi = b) =
Count(Xi = a,PaXi = b)

Count(PaXi = b)
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Learning Markov Nets 

Known structure Unknown structure 

Fully observable 
data 
Missing data  

 

x(1) 

… 

 x(m) 

Data 

structure parameters 

Factors –  
Ψc(xc) 
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NP-Hard  
(but doable) 

Harder 
(EM) 

Harder 

Don’t try this 
at home 



Learning Parameters of a BN 
•  Log likelihood decomposes: 

•  Learn each CPT independently 

•  Use counts 

Flu Allergy 

Sinus 

Nose 
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Log Likelihood for MN 
•  Log likelihood decomposes: 

•  Doesn’t decompose! 
–  logZ couples all parameters together 

Flu Allergy 

Sinus 

Nose 
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Plan for today 
•  BN Parameter Learning with Missing Data 

–  Why model latent variables? 
–  Expectation Maximization (EM) 
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Learning Bayes Nets 

Known structure Unknown structure 

Fully observable 
data 
Missing data  

 

x(1) 

… 

 x(m) 

Data 

structure parameters 

CPTs –  
P(Xi| PaXi) 
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Very easy 

Somewhat easy  
       (EM) 

Hard 

Very very hard 



When is data missing? 
•  Fully Observed Data 

•  Some hidden variables  
–  Never observed 

•  General hidden pattern 
–  Arbitrary entries missing in the data matrix 
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Why missing data? 
•  Sometimes no choice 

–  sensor error, some data dropped 
–  Data collection error, we forgot to ask this question 
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Why introduce hidden variables? 
•  Model Sparsity! 

–  Modeling hidden/latent variables can simplify interactions 
–  Reduction in #parameters to be learnt 

•  Example 
–  On board 
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Why introduce hidden variables? 
•  Discovering Clusters in data! 

–  Modeling different P(y|x,h) for each h 
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Component #1 

Average Example DPM 

Component #2 

Component #3 

Component #4 

Component #5 

Component #6 



Treating Missing Data 
•  Thought Experiment:  

–  Coin Toss: H,T,?,?,H,H,? 

•  Case 1: Missing at Random 

•  Case 2: Missing with bias 

•  BN illustration of the two cases 
–  On board 
–  Takeaway message: Need to model missing data 
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Likelihood with Complete/Missing Data 
•  Example on board X->Y 

–  One variable X; parameter θX 
–  Two variables X,Y; parameters θX, θY|X 

•  Takeaway Messages: 
–  Parameters get coupled (LL = sum-log-sum doesn’t 

factorize) 
–  Computing LL requires marginal inference! 
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Data likelihood for BNs 

•  Given structure, log likelihood of fully 
observed data: 

Flu Allergy 

Sinus 

Headache Nose 
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Marginal likelihood 

•  What if S is hidden? 

Flu Allergy 

Sinus 

Headache Nose 
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•  Marginal likelihood – O is observed, H is hidden 

Log likelihood for BNs with hidden data 
Flu Allergy 

Sinus 

Headache Nose 
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EM Intuition 
•  Chicken & Egg problem 

–  If we knew h, then learning θ would be easy 
–  If we knew theta, then finding P(h | o, θ) would be “easy”  

•  Sum-product inference 

•  EM solution 
–  Initialize 
–  Fix θ, find P(h | o, θ) 
–  Use these to learn θ 
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E-step for BNs 

•  E-step computes probability of hidden vars h given o 

•  Corresponds to inference in BN 

Flu Allergy 

Sinus 

Headache Nose 
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The M-step for BNs 

•  Maximization step: 

•  Use expected counts instead of counts: 
–  If learning requires Count(h,o) 
–  Use EQ(t+1)[Count(h,o)] 

Flu Allergy 

Sinus 

Headache Nose 
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M-step for each CPT 
•  M-step decomposes per CPT 

–  Standard MLE: 

 
–  M-step uses expected counts: 

Flu Allergy 

Sinus 

Headache Nose 
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•  Marginal likelihood – o is observed, h is missing: 

The general learning problem with missing data 
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Applying Jensen’s inequality 

•  Use:  log ∑h P(h) f(h) ≥ ∑h P(h) log f(h)  
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Convergence of EM 
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•  Define potential function F(θ,Q): 

•  EM corresponds to coordinate ascent on F 
–  Fix θ, maximize Q 
–  Fix Q, maximize θ 
–  Thus, maximizes lower bound on marginal log likelihood 

ll(θ : D) ≥ F (θ, Qj) =
M�

j=1

�

h

Qj(h) log
P (oj ,h | θ)

Qj(h)



EM is coordinate ascent 

•  E-step: Fix θ(t), maximize F over Q: 
–  On board 

–  “Realigns” F with likelihood:  
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F (θ(t), Q(t)) = ll(θ(t) : D)

Qj(h) = P (h | oj , θ(t))

ll(θ : D) ≥ F (θ, Qj) =
M�

j=1

�

h

Qj(h) log
P (oj ,h | θ)

Qj(h)



EM is coordinate ascent 

•  M-step: Fix Q(t), maximize F over θ	


•  Corresponds to weighted dataset: 
–  <o1,h=1> with weight Q(t+1)(h=1|o1) 
–  <o1,h=2> with weight Q(t+1)(h=2|o1) 
–  <o1,h=3> with weight Q(t+1)(h=3|o1) 
–  <o2,h=1> with weight Q(t+1)(h=1|o2) 
–  <o2,h=2> with weight Q(t+1)(h=2|o2) 
–  <o2,h=3> with weight Q(t+1)(h=3|o2) 
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EM Intuition 
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•  EM for Bayes Nets 

•  E-step: inference computes expected counts 
–  Only need expected counts over Xi and Paxi 

•  M-step: expected counts used to estimate 
parameters 

•  Which variables are hidden can change per datapoint 
–  Also, use labeled and unlabeled data à some data points 

are complete, some include hidden variables 

What you need to know about 
learning BNs with missing data 


