ECE 6504: Advanced Topics in Machine Learning

Probabilistic Graphical Models and Large-Scale Learning

Topics

- Markov Random Fields
 - (Finish) MLE
 - Structured SVMs

Readings: KF 20.1-3, Barber 9.6

Dhruv Batra Virginia Tech

Administrativia

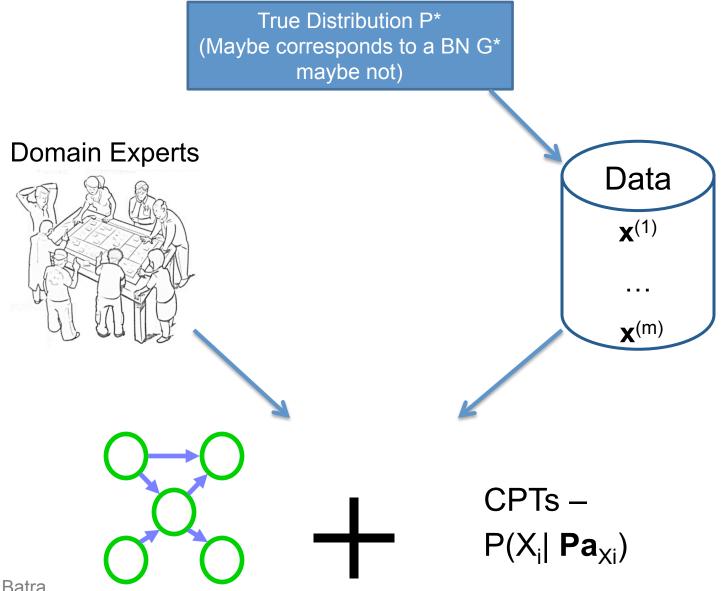
- HW3
 - Extra credit
- Project Presentations
 - When: April 22, 24
 - Where: in class
 - 5 min talk
 - Main results
 - Semester completion 2 weeks out from that point so nearly finished results expected
 - Slides due: April 21 11:55pm

Recap of Last Time

Main Issues in PGMs

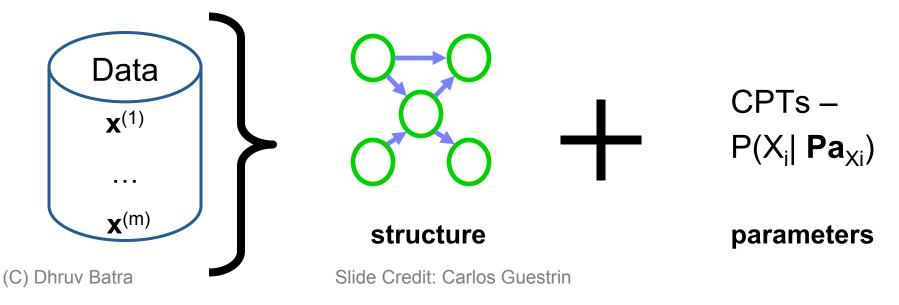
- Representation
 - How do we store $P(X_1, X_2, ..., X_n)$
 - What does my model mean/imply/assume? (Semantics)
- Inference
 - How do I answer questions/queries with my model? such as
 - Marginal Estimation: $P(X_5 | X_1, X_4)$
 - Most Probable Explanation: argmax P(X₁, X₂, ..., X_n)
- Learning
 - How do we learn parameters and structure of P(X₁, X₂, ..., X_n) from data?
 - What model is the right for my data?

Recall -- Learning Bayes Nets

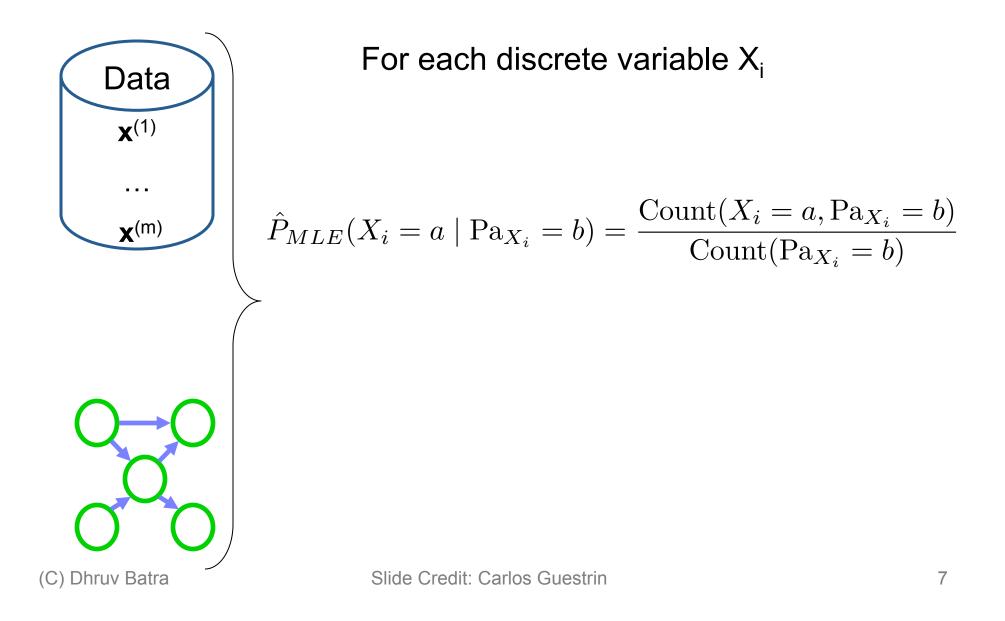


Learning Bayes Nets

	Known structure	Unknown structure
Fully observable data	Very easy	Hard
Missing data	Somewhat easy (EM)	Very very hard

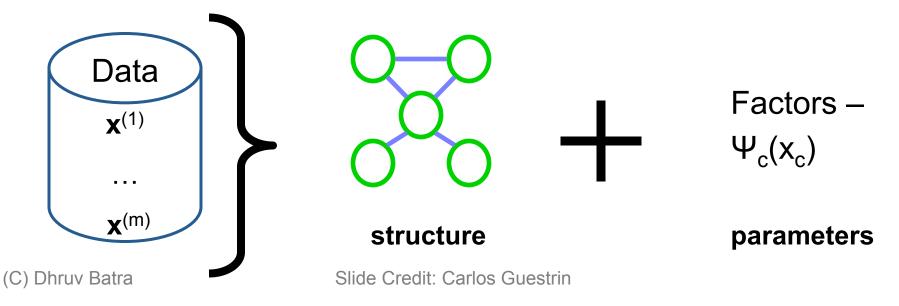


Learning the CPTs



Learning Markov Nets

	Known structure	Unknown structure
Fully observable data	NP-Hard (but doable)	Harder
Missing data	Harder (EM)	Don't try this at home



Learning Parameters of a BN

• Log likelihood decomposes:

$$\log P(\mathcal{D} \mid \theta) = m \sum_{i} \sum_{x_i, \mathbf{Pa}_{x_i}} \hat{P}(x_i, \mathbf{Pa}_{x_i}) \log P(x_i \mid \mathbf{Pa}_{x_i})$$

• Learn each CPT independently

$$\hat{P}(\mathbf{u}) = \frac{\text{Count}(\mathbf{U} = \mathbf{u})}{m}$$

Sinus

Allergy

Nose

Flu

Use counts

Log Likelihood for MN

• Log likelihood decomposes:

$$\log P(\mathcal{D} \mid \theta, \mathcal{G}) = m \sum_{i} \sum_{\mathbf{c}_{i}} \widehat{P}(\mathbf{c}_{i}) \log \psi_{i}(\mathbf{c}_{i}) - m \log Z$$

- Doesn't decompose!
 - logZ couples all parameters together

Allergy

Nose

Sinus

Flu

Log-linear Markov network (most common representation)

- Feature (or Sufficient Statistic) is some function φ
 [D] for some subset of variables D
 - e.g., indicator function
- Log-linear model over a Markov network H:
 - a set of features $\phi_1[\mathbf{D}_1], \dots, \phi_k[\mathbf{D}_k]$
 - each **D**_i is a subset of a clique in *H*
 - two $\boldsymbol{\varphi}$'s can be over the same variables
 - a set of weights w_1, \ldots, w_k
 - usually learned from data

-
$$P(X_1, \dots, X_n) = \frac{1}{Z} \exp \left[\sum_{i=1}^k w_i \phi_i (\mathbf{D}_i)\right]$$

Learning params for log linear models – Gradient Ascent

$$P(X_1, \dots, X_n) = \frac{1}{Z} \exp\left[\sum_{i=1}^k w_i \phi_i (\mathbf{D}_i)\right]$$

• Log-likelihood of data:

$$\log P(\mathcal{D} \mid \mathbf{w}, \mathcal{G}) = \sum_{j=1}^{m} \log \frac{1}{Z} \exp \left[\sum_{i=1}^{k} w_i \phi_i(\mathbf{d}_i^{(j)}) \right]$$

- Compute derivative & optimize
 - usually with gradient ascent or L-BFGS

$$\frac{\partial \ell(\mathcal{D}:\mathbf{w})}{\partial w_i} = m \sum_{\mathbf{d}_i} \hat{P}(\mathbf{d}_i) \phi_i(\mathbf{d}_i) - m \frac{\partial \log Z}{\partial w_i}$$

(C) Dhruv Batra

Slide Credit: Carlos Guestrin

Learning log-linear models with gradient ascent

• Gradient:

$$\frac{\partial \ell(\mathcal{D}:\mathbf{w})}{\partial w_i} = m \sum_{\mathbf{d}_i} \hat{P}(\mathbf{d}_i) \phi_i(\mathbf{d}_i) - m \sum_{\mathbf{d}_i} P(\mathbf{d}_i \mid \mathbf{w}) \phi_i(\mathbf{d}_i)$$

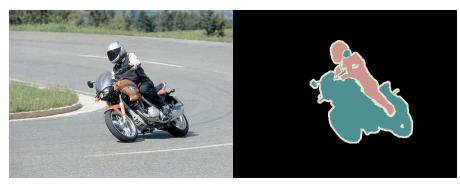
- Requires one inference computation per
- Theorem: w is maximum likelihood solution iff
- Usually, must regularize
 - E.g., L₂ regularization on parameters

Plan for today

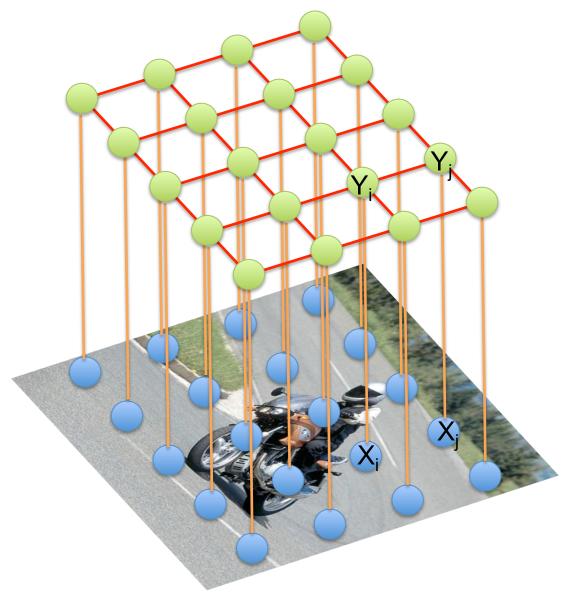
- MRF Parameter Learning
 - MLE
 - Conditional Random Fields
 - Feature example
 - Max-Margin
 - Structured SVMs
 - Cutting-Plane Algorithm
 - (Stochastic) Subgradient Descent

Semantic Segmentation

- Setup
 - 20 categories + background
 - Dataset: Pascal Segmentation Challenge (VOC 2012)
 - 1500 train/val/test images

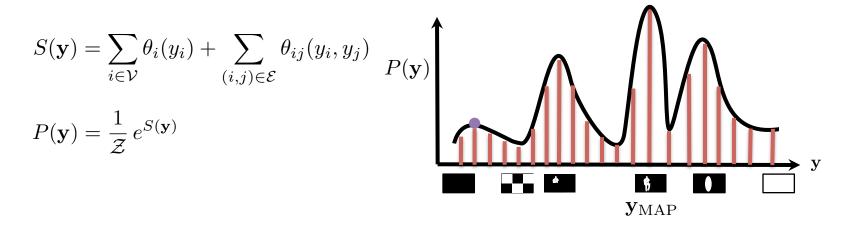


Conditional Random Fields



Conditional Random Fields

Log-Potentials / Scores



- Express as a Log-Linear Model
 - On board

$$\theta_i(y_i) = \mathbf{w}_i \cdot \phi(\mathbf{x}, y_i)$$
 $\theta_{ij}(y_i, y_j) = \mathbf{w}_{ij} \cdot \phi(\mathbf{x}, y_i, y_j)$

MLE for CRFs

• Model

$$P(\mathbf{y}|\mathbf{x}) = \frac{1}{\mathcal{Z}_{\mathbf{x}}} e^{S(\mathbf{y};\mathbf{x})}$$
$$= \frac{1}{\mathcal{Z}_{\mathbf{x}}} e^{\mathbf{w}^{\mathsf{T}}\phi(\mathbf{x},\mathbf{y})}$$

- Log-Likelihood:
 - On board

- Derivative:
 - On board

New Topic: Structured SVMs

Foundations and Trends® In Computer Graphics and Vision 6:3-4

Structured Learning and Prediction in Computer Vision

Sebastian Nowozin and Christoph H. Lampert

Recall: Generative vs. Discriminative

- Generative Approach (Naïve Bayes)
 - Estimate p(X|Y) and p(Y)
 - Use Bayes Rule to predict y
- Discriminative Approach
 - Estimate p(Y|X) directly (Logistic Regression)
 - Learn "discriminant" function h(x) (Support Vector Machine)

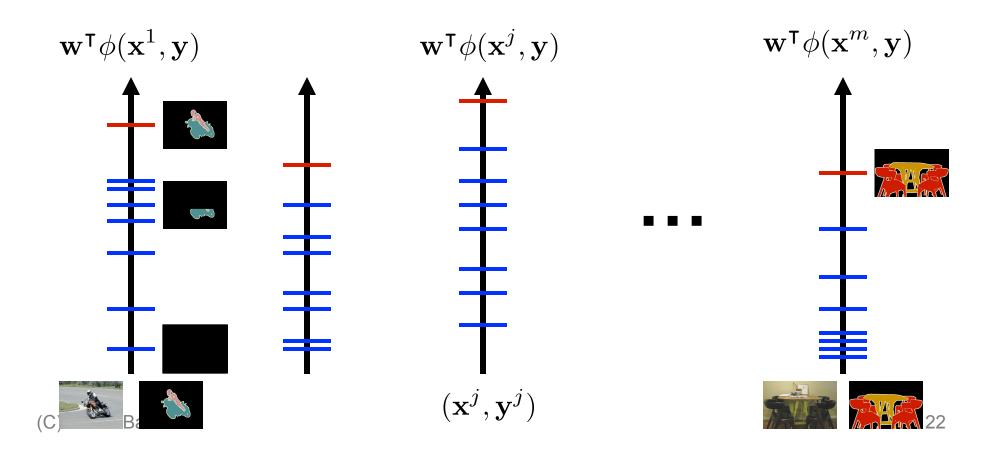
Recall: Generative vs. Discriminative

- Generative Approach (Markov Random Fields)
 - Estimate p(X,Y)
 - At test time, use P(X=x,Y) to predict y
- Discriminative Approach
 - Estimate p(Y|X) directly (Conditional Random Fields)
 - Learn "discriminant" function h(x) (Structured SVMs)

$$h(\mathbf{x}) = \underset{\mathbf{y} \in \mathcal{Y}}{\operatorname{argmax}} \ \mathbf{w}^{\mathsf{T}} \phi(\mathbf{x}, \mathbf{y})$$

Structured SVM

- Joint features $\phi(\mathbf{x}, \mathbf{y})$ describe match between x and y
- Learn weights w so that $\mathbf{w}^{\mathsf{T}}\phi(\mathbf{x},\mathbf{y})$ is max for correct y

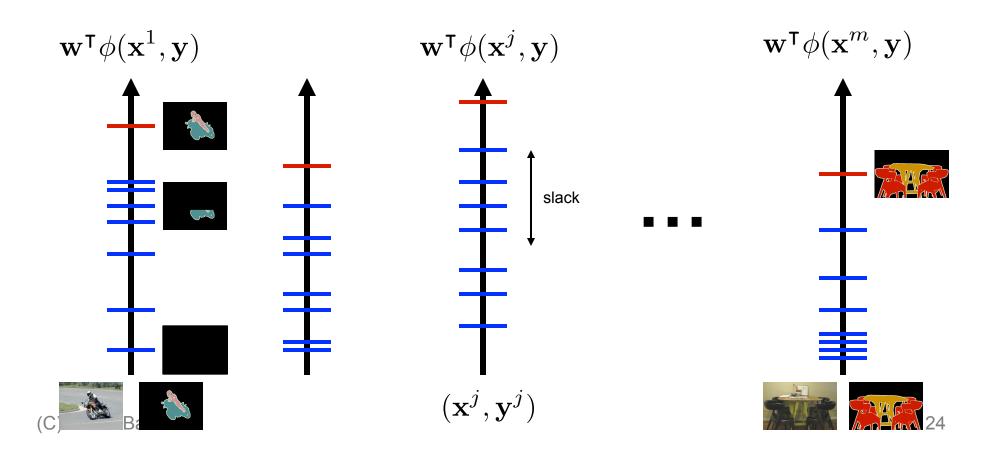


Structured SVM

- Hard Margin
 - On board

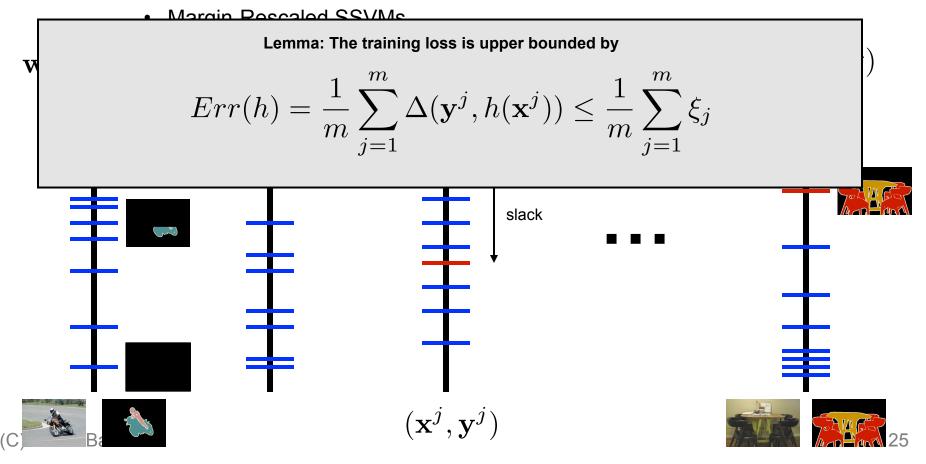
Soft-Margin Structured SVM

- Two ideas
 - Add slack



Soft-Margin Structured SVM

- Two ideas
 - Add slack
 - Re-scale the margin with a loss function



Soft-Margin Structured SVM

• Minimize

$$\frac{1}{2}w^2 + \frac{C}{N}\sum_j \xi_j$$

subject to

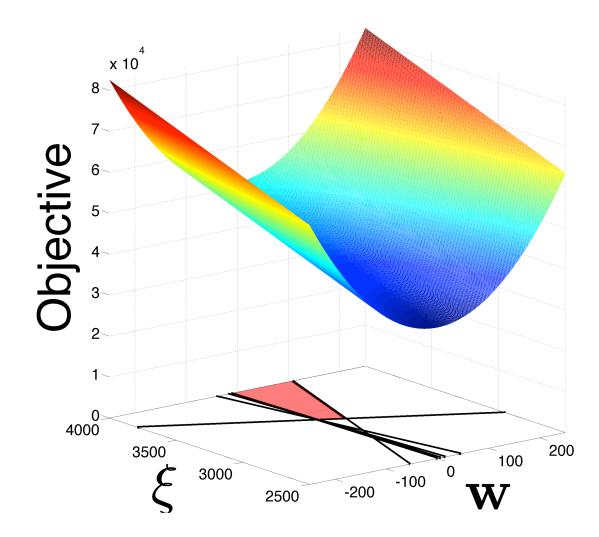
$$w^T \phi(\mathbf{x}^j, \mathbf{y}^j) \ge w^T \phi(\mathbf{x}^j, \mathbf{y}) + \Delta(\mathbf{y}^j, \mathbf{y}) - \xi_j$$

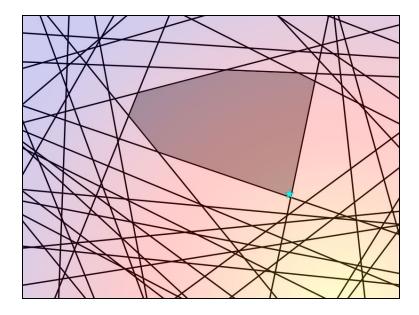
Too many constraints!

$$\frac{1}{2}w^2 + \frac{C}{N}\sum_j \xi_j$$

 $w^T \phi(\mathbf{x}^j, \mathbf{y}^j) \ge w^T \phi(\mathbf{x}^j, \mathbf{y}) + \Delta(\mathbf{y}^j, \mathbf{y}) - \xi_j$

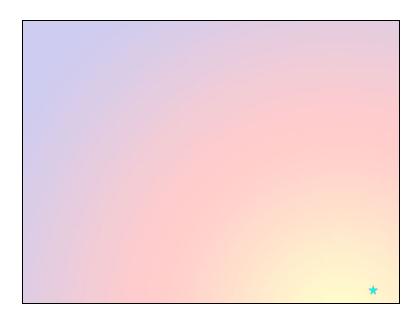
- Cutting Plane
 - Suppose we only solve the SVM objective over a small subset of constraints (working set).
 - Some constraints from global set might be violated.





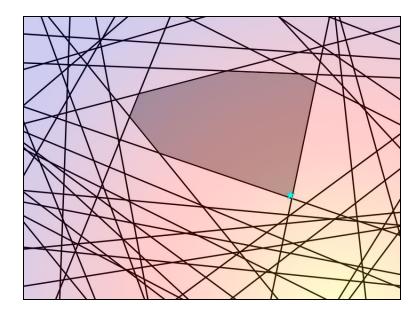
Original SVM Problem

- Exponential constraints
- Most are dominated by a small set of "important" constraints



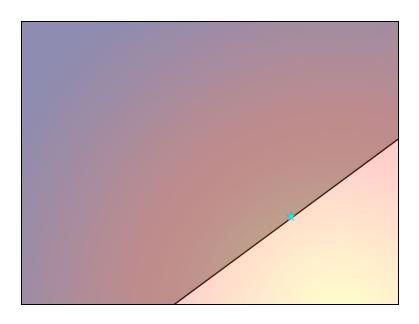
Structural SVM Approach

- Repeatedly finds the next most violated constraint...
- ...until set of constraints is a good approximation.



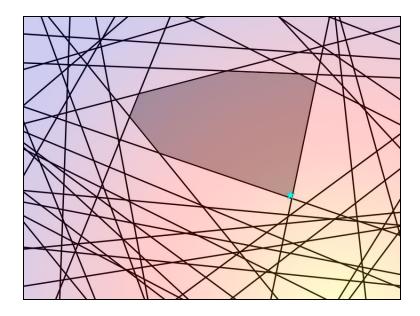
Original SVM Problem

- Exponential constraints
- Most are dominated by a small set of "important" constraints



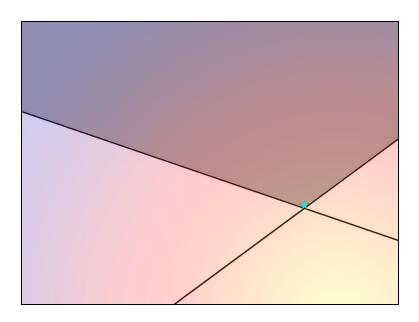
Structural SVM Approach

- Repeatedly finds the next most violated constraint...
- ...until set of constraints is a good approximation.



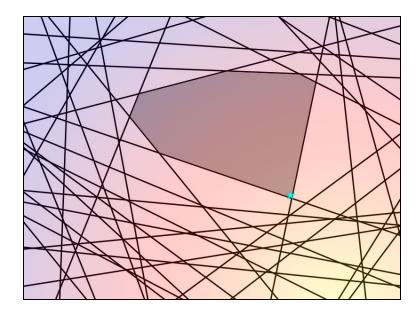
Original SVM Problem

- Exponential constraints
- Most are dominated by a small set of "important" constraints



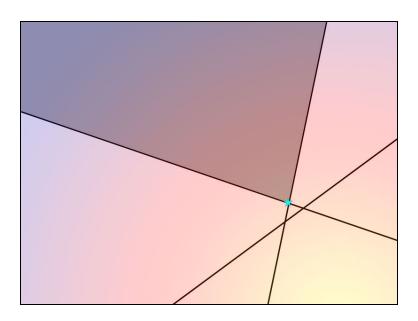
Structural SVM Approach

- Repeatedly finds the next most violated constraint...
- ...until set of constraints is a good approximation.



Original SVM Problem

- Exponential constraints
- Most are dominated by a small set of "important" constraints



Structural SVM Approach

- Repeatedly finds the next most violated constraint...
- ...until set of constraints is a good approximation.

*This is known as a "cutting plane" method.

$$\frac{1}{2}w^2 + \frac{C}{N}\sum_j \xi_j$$

 $w^T \phi(\mathbf{x}^j, \mathbf{y}^j) \ge w^T \phi(\mathbf{x}^j, \mathbf{y}) + \Delta(\mathbf{y}^j, \mathbf{y}) - \xi_j$

- Cutting Plane
 - Suppose we only solve the SVM objective over a small subset of constraints (working set).
 - Some constraints from global set might be violated.
 - Degree of violation?

$$w^T \phi(\mathbf{x}^j, \mathbf{y}) + \Delta(\mathbf{y}^j, \mathbf{y}) - \xi_j - w^T \phi(\mathbf{x}^j, \mathbf{y}^j)$$

Finding Most Violated Constraint

 Finding most violated constraint is equivalent to maximizing the RHS w/o slack:

Violation =
$$w^T \phi(\mathbf{x}, \mathbf{y}) + \Delta(\mathbf{y}^j, \mathbf{y})$$

• Requires solving:

$$\underset{\mathbf{y}}{\arg\max} w^{T} \phi(\mathbf{x}, \mathbf{y}) + \Delta(\mathbf{y}^{j}, \mathbf{y})$$

• Highly related to inference:

$$h(\mathbf{x}; w) = \operatorname{argmax}_{\mathbf{y} \in Y}[w^T \phi(\mathbf{x}, \mathbf{y})]$$

SVMs and logistic regression?

SVM:

 $\begin{array}{ll} \text{minimize}_{\mathbf{w},b} & \mathbf{w}.\mathbf{w} + C\sum_{j}\xi_{j} \\ \left(\mathbf{w}.\mathbf{x}_{j} + b\right)y_{j} \geq \mathbf{1} - \xi_{j}, \ \forall j \\ & \xi_{j} \geq \mathbf{0}, \ \forall j \end{array}$

Logistic regression: $P(Y = 1 | x, \mathbf{w}) = \frac{1}{1 + e^{-(\mathbf{w} \cdot \mathbf{x} + b)}}$

Log loss:

$$-\ln P(Y = 1 | x, \mathbf{w}) = \ln (1 + e^{-(\mathbf{w} \cdot \mathbf{x} + b)})$$

