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Dhruv Batra  
Virginia Tech 

Topics 
–  Markov Random Fields 

–  (Finish) MLE 
–  Structured SVMs 

Readings: KF 20.1-3, Barber 9.6 



Administrativia 
•  HW3 

–  Extra credit 

•  Project Presentations 
–  When: April 22, 24 
–  Where: in class 
–  5 min talk 

•  Main results 
•  Semester completion 2 weeks out from that point so nearly finished 

results expected 
•  Slides due: April 21 11:55pm 
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Recap of Last Time 
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Main Issues in PGMs 
•  Representation 

–  How do we store P(X1, X2, …, Xn) 
–  What does my model mean/imply/assume? (Semantics) 

•  Inference 
–  How do I answer questions/queries with my model? such as 
–  Marginal Estimation: P(X5 | X1, X4) 
–  Most Probable Explanation: argmax P(X1, X2, …, Xn) 

•  Learning  
–  How do we learn parameters and structure of  

P(X1, X2, …, Xn) from data? 
–  What model is the right for my data? 
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Recall -- Learning Bayes Nets 
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x(1) 

… 

 x(m) 

Data 

True Distribution P* 
(Maybe corresponds to a BN G* 

maybe not) 

Domain Experts 

CPTs –  
P(Xi| PaXi) 



Learning Bayes Nets 

Known structure Unknown structure 

Fully observable 
data 
Missing data  

 

x(1) 

… 

 x(m) 

Data 

structure parameters 

CPTs –  
P(Xi| PaXi) 
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Very easy 

Somewhat easy  
       (EM) 

Hard 

Very very hard 



Learning the CPTs 

x(1) 

… 

 x(m) 

Data For each discrete variable Xi 

P̂MLE(Xi = a | PaXi = b) =
Count(Xi = a,PaXi = b)

Count(PaXi = b)
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Learning Markov Nets 

Known structure Unknown structure 

Fully observable 
data 
Missing data  

 

x(1) 

… 

 x(m) 

Data 

structure parameters 

Factors –  
Ψc(xc) 
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NP-Hard  
(but doable) 

Harder 
(EM) 

Harder 

Don’t try this 
at home 



Learning Parameters of a BN 
•  Log likelihood decomposes: 

•  Learn each CPT independently 

•  Use counts 

Flu Allergy 

Sinus 

Nose 
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Log Likelihood for MN 
•  Log likelihood decomposes: 

•  Doesn’t decompose! 
–  logZ couples all parameters together 

Flu Allergy 

Sinus 

Nose 
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Log-linear Markov network 
(most common representation) 

•  Feature (or Sufficient Statistic) is some function φ
[D] for some subset of variables D 
–  e.g., indicator function 

•  Log-linear model over a Markov network H: 
–  a set of features φ1[D1],…, φk[Dk] 

•  each Di is a subset of a clique in H 
•  two φ’s can be over the same variables 

–  a set of weights w1,…,wk 
•  usually learned from data 

–     
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•  Log-likelihood of data: 

•  Compute derivative & optimize 
–  usually with gradient ascent or L-BFGS 

Learning params for log linear models –  
Gradient Ascent  
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Learning log-linear models with 
gradient ascent 

•  Gradient: 

•  Requires one inference computation per  

•  Theorem: w is maximum likelihood solution iff 
–    

•  Usually, must regularize 
–  E.g., L2 regularization on parameters 
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Plan for today 
•  MRF Parameter Learning 

–  MLE 
•  Conditional Random Fields 
•  Feature example 

–  Max-Margin 
•  Structured SVMs 
•  Cutting-Plane Algorithm 
•  (Stochastic) Subgradient Descent 

(C) Dhruv Batra  14 



Semantic Segmentation 
•  Setup 

–  20 categories + background 
•  Dataset: Pascal Segmentation Challenge (VOC 2012)  
•  1500 train/val/test images 
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Conditional Random Fields 
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Yi 
Yj 

Xi 
Xj 



Conditional Random Fields 
•  Log-Potentials / Scores 

•  Express as a Log-Linear Model 
–  On board 
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S(y) =
�

i∈V
θi(yi) +

�

(i,j)∈E

θij(yi, yj)

θij(yi, yj) = wij · φ(x, yi, yj)θi(yi) = wi · φ(x, yi)

P (y) =
1

Z eS(y)

yMAP

P (y)

y



MLE for CRFs 
•  Model 

•  Log-Likelihood: 
–  On board 

•  Derivative: 
–  On board 
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P (y|x) = 1

Zx
eS(y;x)

=
1

Zx
ew

�φ(x,y)



New Topic: Structured SVMs 
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Recall: Generative vs. Discriminative 
•  Generative Approach (Naïve Bayes) 

–  Estimate p(X|Y) and p(Y) 
–  Use Bayes Rule to predict y 

•  Discriminative Approach  
–  Estimate p(Y|X) directly (Logistic Regression) 
–  Learn “discriminant” function h(x) (Support Vector Machine) 
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Recall: Generative vs. Discriminative 
•  Generative Approach (Markov Random Fields) 

–  Estimate p(X,Y) 
–  At test time, use P(X=x,Y) to predict y 

•  Discriminative Approach  
–  Estimate p(Y|X) directly (Conditional Random Fields) 
–  Learn “discriminant” function h(x) (Structured SVMs) 
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h(x) = argmax
y∈Y

w�φ(x,y)



Structured SVM 

•  Joint features               describe match between x and y 
•  Learn weights w so that                  is max for correct y 

… 

φ(x,y)

w�φ(x,y)

w�φ(x1,y) w�φ(xm,y)w�φ(xj ,y)

(xj ,yj)
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Structured SVM 
•  Hard Margin 

–  On board 
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Soft-Margin Structured SVM 

•  Two ideas 
–  Add slack 

… 

w�φ(x1,y) w�φ(xm,y)w�φ(xj ,y)

(xj ,yj)

slack 
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Soft-Margin Structured SVM 

•  Two ideas 
–  Add slack 
–  Re-scale the margin with a loss function  

•  Margin-Rescaled SSVMs 

… 

w�φ(x1,y) w�φ(xm,y)w�φ(xj ,y)

(xj ,yj)

slack 

Lemma: The training loss is upper bounded by 

Err(h) =
1

m

m�

j=1

∆(yj , h(xj)) ≤ 1

m

m�

j=1

ξj
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Soft-Margin Structured SVM 
•  Minimize 

     subject to 

     Too many constraints! 
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Cutting-Plane Method 

     

•  Cutting Plane 
–  Suppose we only solve the SVM objective over a small 

subset of constraints (working set). 
–  Some constraints from global set might be violated. 
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Cutting-Plane Method 
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Cutting-Plane Method 

Original SVM Problem 
•  Exponential constraints 
•  Most are dominated by a small set 

of “important” constraints 

Structural SVM Approach 
•  Repeatedly finds the next most 

violated constraint… 
•  …until set of constraints is a good 

approximation. 
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Original SVM Problem 
•  Exponential constraints 
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Structural SVM Approach 
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Cutting-Plane Method 

Original SVM Problem 
•  Exponential constraints 
•  Most are dominated by a small set 

of “important” constraints 

Structural SVM Approach 
•  Repeatedly finds the next most 

violated constraint… 
•  …until set of constraints is a good 

approximation. 

*This is known as a “cutting plane” method. 
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Cutting-Plane Method 

     

•  Cutting Plane 
–  Suppose we only solve the SVM objective over a small 

subset of constraints (working set). 
–  Some constraints from global set might be violated. 
–  Degree of violation?  
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Finding Most Violated Constraint 
•  Finding most violated constraint is equivalent 

to maximizing the RHS w/o slack: 

•  Requires solving: 

•  Highly related to inference: 

Violation = wT!(x, y)+!(y j, y)

argmax
y

wT!(x, y)+!(y j, y)

h(x;w) = argmaxy!Y [w
T!(x, y)]
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SVM: Logistic regression: 

Log loss: 
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Side note: What’s the difference between  
SVMs and logistic regression? 

SVM: Hinge Loss 

LR: Logistic Loss 
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