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Topics 
–  Markov Random Fields 

–  (Finish) Inference 
–  (Start) Parameter Learning 

Readings: KF 20.1-3, Barber 9.6 



Administrativia 
•  HW2  

–  Solutions released 

•  Project Presentations 
–  When: April 22, 24 
–  Where: in class 
–  5 min talk 

•  Main results 
•  Semester completion 2 weeks out from that point so nearly finished 

results expected 
•  Slides due: April 21 11:55pm 

(C) Dhruv Batra  2 



Recap of Last Time 
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MAP in Pairwise MRFs 
•  Integer Program 
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MAP in Pairwise MRFs 
•  MAP Integer Program 
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MAP in Pairwise MRFs 
•  MAP Linear Program 
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MAP in Pairwise MRFs 
•  MAP Linear Program 

•  Properties 
–  If LP-opt is integral, MAP is found 
–  LP always integral for trees 
–  Efficient message-passing schemes for solving LP 
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Linear Programming Duality 
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LP Relaxation 
•  Block Co-ordinate / Sub-gradient Descent on Dual 
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MAP LP 
•  Lagrangian Relaxation 
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Dual 

Convex (Non-smooth) 
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Plan for today 
•  MRF Inference 

–  (Specialized) MAP Inference 
•  Dual Decomposition 

–  As a general algorithm 

•  MRF Parameter Learning 
–  MLE 
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Dual Decomposition 
•  Primal problem 

•  Re-formulate 

•  Langragian Relaxation 
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Dual Decomposition 
•  Dual (Master) Problem 

•  Dual (Slave) Problems 

•  Solve master with (projected) Subgradient Descent 
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Dual Decomposition 
•  Projected Subgradient Ascent 

•  What is subgradient? 
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Main Issues in PGMs 
•  Representation 

–  How do we store P(X1, X2, …, Xn) 
–  What does my model mean/imply/assume? (Semantics) 

•  Inference 
–  How do I answer questions/queries with my model? such as 
–  Marginal Estimation: P(X5 | X1, X4) 
–  Most Probable Explanation: argmax P(X1, X2, …, Xn) 

•  Learning  
–  How do we learn parameters and structure of  

P(X1, X2, …, Xn) from data? 
–  What model is the right for my data? 
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Recall -- Learning Bayes Nets 
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x(1) 

… 

 x(m) 

Data 

True Distribution P* 
(Maybe corresponds to a BN G* 

maybe not) 

Domain Experts 

CPTs –  
P(Xi| PaXi) 



Learning Bayes Nets 

Known structure Unknown structure 

Fully observable 
data 
Missing data  

 

x(1) 

… 

 x(m) 

Data 

structure parameters 

CPTs –  
P(Xi| PaXi) 
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Very easy 

Somewhat easy  
       (EM) 

Hard 

Very very hard 



Learning the CPTs 

x(1) 

… 

 x(m) 

Data For each discrete variable Xi 

P̂MLE(Xi = a | PaXi = b) =
Count(Xi = a,PaXi = b)

Count(PaXi = b)
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Learning Markov Nets 

Known structure Unknown structure 

Fully observable 
data 
Missing data  

 

x(1) 

… 

 x(m) 

Data 

structure parameters 

Factors –  
Ψc(xc) 
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NP-Hard  
(but doable) 

Harder 
(EM) 

Harder 

Don’t try this 
at home 



Learning Parameters of a BN 
•  Log likelihood decomposes: 

•  Learn each CPT independently 

•  Use counts 

Flu Allergy 

Sinus 

Nose 
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Log Likelihood for MN 
•  Log likelihood decomposes: 

•  Doesn’t decompose! 
–  logZ couples all parameters together 

Flu Allergy 

Sinus 

Nose 
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Log-linear Markov network 
(most common representation) 

•  Feature (or Sufficient Statistic) is some function φ
[D] for some subset of variables D 
–  e.g., indicator function 

•  Log-linear model over a Markov network H: 
–  a set of features φ1[D1],…, φk[Dk] 

•  each Di is a subset of a clique in H 
•  two φ’s can be over the same variables 

–  a set of weights w1,…,wk 
•  usually learned from data 

–     
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•  Log-likelihood of data: 

•  Compute derivative & optimize 
–  usually with gradient ascent or L-BFGS 

Learning params for log linear models –  
Gradient Ascent  
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Learning log-linear models with 
gradient ascent 

•  Gradient: 

•  Requires one inference computation per  

•  Theorem: w is maximum likelihood solution iff 
–    

•  Usually, must regularize 
–  E.g., L2 regularization on parameters 

(C) Dhruv Batra  24 Slide Credit: Carlos Guestrin 



•  BN parameter learning easy 
•  MN parameter learning doesn’t decompose! 

•  Learning requires inference! 

•  Objective Concave 
•  Apply gradient ascent iterations to obtain optimal 

parameters 

What you need to know about 
learning MN parameters 
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