ECE 6504: Advanced Topics in Machine Learning

Probabilistic Graphical Models and Large-Scale Learning

Topics

- Markov Random Fields: MAP Inference
 - Max-Product Message Passing
 - Integer Programming, LP formulation
 - Dual Decomposition

Readings: KF 13.1-5, Barber 5.1,28.9 Dhruv Batra Virginia Tech

Administrativia

- HW1 Solutions
 - Released
 - Grades almost done too
- Project Presentations
 - When: April 22, 24
 - Where: in class
 - 5 min talk
 - Main results
 - Semester completion 2 weeks out from that point so nearly finished results expected
 - Slides due: April 21 11:55pm

Recap of Last Time

Message Passing

• Variables/Factors "talk" to each other via messages:

"I (variable X_3) think that you (variable X_2):

belong to state 1 with confidence 0.4 belong to state 2 with confidence 10 belong to state 3 with confidence 1.5"

Generalized BP

- Initialization:
 - Assign each factor ϕ to a cluster $\alpha(\phi)$, Scope[ϕ] \subseteq $C_{\alpha(\phi)}$
 - Initialize cluster: $\psi_i^0(\mathbf{C}_i) \propto \prod_{\phi:\alpha(\phi)=i} \phi$
 - Initialize messages: $\delta_{j \rightarrow i} = 1$

• While not converged, send messages:

$$\delta_{i \to j}(\mathbf{S}_{ij}) \propto \sum_{\mathbf{C}_i - \mathbf{S}_{ij}} \psi_i^0(\mathbf{C}_i) \prod_{k \in \mathcal{N}(i) - j} \delta_{k \to i}(\mathbf{S}_{ik})$$

- Belief:
 - On board

What is Variational Inference?

- A class of methods for approximate inference
 - And parameter learning
 - And approximating integrals basically..
- Key idea
 - Reality is complex
 - Instead of performing approximate computation in something complex
 - Can we perform exact computation in something "simple"?
 - Just need to make sure the simple thing is "close" to the complex thing.
- Key Problems
 - What is close?
 - How do we measure closeness when we can't perform operations on the complex thing?

Variational Approximate Inference

• Choose a family of approximating distributions which is tractable. The simplest [Mean Field] Approximation:

$$q(x) = \prod_{s \in \mathcal{V}} q_s(x_s)$$

• Measure the quality of approximations. Two possibilities:

$$D(p || q) = \sum_{x} p(x) \log \frac{p(x)}{q(x)} \qquad D(q || p) = \sum_{x} q(x) \log \frac{q(x)}{p(x)}$$

• Find the approximation minimizing this distance

(C) Dhruv Batra

Slide Credit: Erik Sudderth

D(p||q) for mean field – KL the right way

• D(p||q)=

• Trivially minimized by setting

$$q_i(x_i) = p_i(x_i)$$

• Doesn't provide a computational method...

D(q||p) for mean field – KL the reverse direction

• D(q||p)=

$$D(q||p) = \sum_{x} q(x) \log q(x) - \sum_{x} q(x) \log p(x)$$

Reverse KL & The Partition Function

- D(q||p):
 - p is Markov net P_F

- **Theorem**: $\log Z = F[p,q] + D(q||p)$
- Where "Gibbs Free Energy": $F[p,q] = H_q(\mathcal{X}) + \mathbb{E}_q \left[\sum_c \log \psi_c(X_c) \right]$ $= H_q(\mathcal{X}) + \mathbb{E}_q \left[\text{Score}(\mathcal{X}) \right]$ $= H_q(\mathcal{X}) + \sum_c \sum_{x_c} q(x_c) \theta(x_c)$

Understanding Reverse KL,
Free Energy & The Partition Function
$$\log Z = F[p,q] + D(q||p)$$
 $F[p,q] = H_q(\mathcal{X}) + \mathbb{E}_q\left[\sum_c \log \psi_c(X_c)\right]$

Maximizing Energy Functional ⇔ Minimizing Reverse KL

- **Theorem**: Energy Function is lower bound on partition function
 - Maximizing energy functional corresponds to search for tight lower bound on partition function

Mean Field Equations $F[p,q] = H_q(\mathcal{X}) + \mathbb{E}_q\left[\sum_{c} \log \psi_c(X_c)\right]$

$$H(q) = \sum_{s \in \mathcal{V}} H_s(q_s) = -\sum_{s \in \mathcal{V}} \sum_{x_s} q_s(x_s) \log q_s(x_s)$$

 $\sum_{c} \sum_{x_c} q_c(x_c) \theta(x_c) = \sum_{i} \sum_{x_i} q_i(x_i) \theta_i(x_i) + \sum_{(i,j) \in E} \sum_{x_i} \sum_{x_j} q_i(x_i) q_j(x_j) \theta_{ij}(x_i, x_j)$

 $I_{q_t}(x_t)$

 x_s

 $q_v(x_v)$

- Add Lagrange multipliers to enforce $\sum_{x_s} q_s(x_s) = 1$
- Taking derivatives and simplifying, we find a set of fixed point equations:

$$q_i(x_i) \propto \psi_i(x_i) \prod_{j \in N(i)} \exp\left\{\sum_{x_j} \theta_{ij}(x_i, x_j) q_j(x_j)\right\}$$

• Updating one marginal at a time gives convergent coordinate descent

Fully connected CRF

$$E(\mathbf{x}) = \sum_{i} \underbrace{\psi_{u}(x_{i})}_{\text{unary term}} + \sum_{i} \sum_{j>i} \underbrace{\psi_{p}(x_{i}, x_{j})}_{\text{pairwise term}}$$

• Every node is connected to every other node

イロト イヨト イヨト イヨト

590

Connections weighted differently

What you need to know about variational methods

- Structured Variational method:
 - select a form for approximate distribution
 - minimize reverse KL
- Equivalent to maximizing energy functional
 - searching for a tight lower bound on the partition function
- Many possible models for Q:
 - independent (mean field)
 - structured as a Markov net
 - cluster variational
- Several subtleties outlined in the book

Plan for today

- MRF Inference
 - (Specialized) MAP Inference
 - Integer Programming Formulation
 - Linear Programming Relaxation
 - Dual Decomposition

Possible Queries

- Evidence: **E**=**e** (e.g. N=t)
- Query variables of interest Y

- Conditional Probability: P(Y | E=e)
 - E.g. P(F,A | N=t)
 - Special case: Marginals P(F)
- Maximum a Posteriori: argmax P(All variables | E=e)

 argmax_{f,a,s,h} P(f,a,s,h | N = t)
- Marginal-MAP: argmax_y P(Y | E=e)

 = argmax_{y} Σ_o P(Y=y, O=o | E=e)

MAP Inference

Example

• Chain MRF

• Max-Product VE steps on board

Loopy BP on Pairwise Markov Nets

(C) Dhruv Batra

 $G = (\mathcal{V}, \mathcal{E})$

Over-Complete Representation

Integer Program

- MAP Linear Program $\max_{\mu} \quad \theta^{T} \mu$ s.t. $A\mu = b$ $\mu(\cdot) \in [0, 1]$ $\mu_{\mathbf{x}^{3}}$ $\mu_{\mathbf{x}^{3}}$ $\mu_{\mathbf{x}^{4}}$
- Properties
 - If LP-opt is integral, MAP is found
 - LP always integral for trees
 - Efficient message-passing schemes for solving LP

- Compare MAP LP to Variational Inference
 - On board
 - Difference in entropy term (objective)
 - Family of Q distributions

LP Relaxation

Block Co-ordinate / Sub-gradient Descent on Dual

LP Relaxation

Block Co-ordinate / Sub-gradient Descent on Dual

LP Relaxation

• Block Co-ordinate / Sub-gradient Descent on Dual

Distributed Message-Passing

Still inefficient!

