ECE 6504: Advanced Topics in Machine Learning

Probabilistic Graphical Models and Large-Scale Learning

Topics

- Markov Random Fields: MAP Inference
- Max-Product Message Passing
- Integer Programming, LP formulation
- Dual Decomposition

Readings: KF 13.1-5, Barber 5.1,28.9
Dhruv Batra
Virginia Tech

Administrativia

- HW1 Solutions
- Released
- Grades almost done too
- Project Presentations
- When: April 22, 24
- Where: in class
- 5 min talk
- Main results
- Semester completion 2 weeks out from that point so nearly finished results expected
- Slides due: April 21 11:55pm

Recap of Last Time

Message Passing

- Variables/Factors "talk" to each other via messages:

Generalized BP

- Initialization:
- Assign each factor ϕ to a cluster $\alpha(\phi)$, Scope[$[\phi] \subseteq C_{\alpha(\phi)}$
- Initialize cluster: $\psi_{i}^{0}\left(\mathbf{C}_{i}\right) \propto \prod_{\phi: \alpha(\phi)=i} \phi$
- Initialize messages: $\delta_{j \rightarrow i}=1$

- While not converged, send messages:

$$
\delta_{i \rightarrow j}\left(\mathbf{S}_{i j}\right) \propto \sum_{\mathbf{C}_{i}-\mathbf{S}_{i j}} \psi_{i}^{0}\left(\mathbf{C}_{i}\right) \prod_{k \in \mathcal{N}(i)-j} \delta_{k \rightarrow i}\left(\mathbf{S}_{i k}\right)
$$

- Belief:
- On board

What is Variational Inference?

- A class of methods for approximate inference
- And parameter learning
- And approximating integrals basically..
- Key idea
- Reality is complex
- Instead of performing approximate computation in something complex
- Can we perform exact computation in something "simple"?
- Just need to make sure the simple thing is "close" to the complex thing.
- Key Problems
- What is close?
- How do we measure closeness when we can't perform operations on the complex thing?

Variational Approximate Inference

- Choose a family of approximating distributions which is tractable. The simplest [Mean Field] Approximation:

$$
q(x)=\prod_{s \in \mathcal{V}} q_{s}\left(x_{s}\right)
$$

- Measure the quality of approximations. Two possibilities:
$D(p \| q)=\sum_{x} p(x) \log \frac{p(x)}{q(x)} \quad D(q \| p)=\sum_{x} q(x) \log \frac{q(x)}{p(x)}$
- Find the approximation minimizing this distance

$\mathrm{D}(\mathrm{p} \| q)$ for mean field KL the right way

- $D(p \| q)=$
- Trivially minimized by setting

$$
q_{i}\left(x_{i}\right)=p_{i}\left(x_{i}\right)
$$

- Doesn't provide a computational method...

$\mathrm{D}(\mathrm{q} \| \mathrm{p})$ for mean field KL the reverse direction

- $\quad D(q \| p)=$

$$
D(q \| p)=\sum_{x} q(x) \log q(x)-\sum_{x} q(x) \log p(x)
$$

Reverse KL \& The Partition Function

- D(q\|p):
$-p$ is Markov net P_{F}

- Theorem: $\log Z=F[p, q]+D(q \| p)$
- Where "Gibbs Free Energy":

$$
\begin{aligned}
F[p, q] & =H_{q}(\mathcal{X})+\mathbb{E}_{q}\left[\sum_{c} \log \psi_{c}\left(X_{c}\right)\right] \\
& =H_{q}(\mathcal{X})+\mathbb{E}_{q}[\operatorname{Score}(\mathcal{X})] \\
& =H_{q}(\mathcal{X})+\sum_{c} \sum_{x_{c}} q\left(x_{c}\right) \theta\left(x_{c}\right)
\end{aligned}
$$

Understanding Reverse KL, Free Energy \& The Partition Function

$$
\log Z=F[p, q]+D(q \| p) \quad F[p, q]=H_{q}(\mathcal{X})+\mathbb{E}_{q}\left[\sum_{c} \log \psi_{c}\left(X_{c}\right)\right]
$$

- Maximizing Energy Functional \Leftrightarrow Minimizing Reverse KL
- Theorem: Energy Function is lower bound on partition function
- Maximizing energy functional corresponds to search for tight lower bound on partition function

Mean Field Equations

$$
\begin{gathered}
F[p, q]=H_{q}(\mathcal{X})+\mathbb{E}_{q}\left[\sum_{c} \log \psi_{c}\left(X_{c}\right)\right] \\
H(q)=\sum_{s \in \mathcal{V}} H_{s}\left(q_{s}\right)=-\sum_{s \in \mathcal{V}} \sum_{x_{s}} q_{s}\left(x_{s}\right) \log q_{s}\left(x_{s}\right) \\
\sum_{c} \sum_{x_{c}} q_{c}\left(x_{c}\right) \theta\left(x_{c}\right)=\sum_{i} \sum_{x_{i}} q_{i}\left(x_{i}\right) \theta_{i}\left(x_{i}\right)+\sum_{(i, j) \in E} \sum_{x_{i}} \sum_{x_{j}} q_{i}\left(x_{i}\right) q_{j}\left(x_{j}\right) \theta_{i j}\left(x_{i}, x_{j}\right)
\end{gathered}
$$

- Add Lagrange multipliers to enforce $\sum_{x_{s}} q_{s}\left(x_{s}\right)=1$
- Taking derivatives and simplifying, we find a set of fixed point equations:

$$
q_{i}\left(x_{i}\right) \propto \psi_{i}\left(x_{i}\right) \prod_{j \in N(i)} \exp \left\{\sum_{x_{j}} \theta_{i j}\left(x_{i}, x_{j}\right) q_{j}\left(x_{j}\right)\right\}
$$

- Updating one marginal at a time gives convergent coordinate descent

Fully connected CRF

$$
E(x)=\sum_{i} \underbrace{\psi_{u}\left(x_{i}\right)}_{\text {unary term }}+\sum_{i} \sum_{j>i} \underbrace{\psi_{p}\left(x_{i}, x_{j}\right)}_{\text {pairwise term }}
$$

- Every node is connected to every other node
- Connections weighted differently

Fully connected CRF

$$
E(\mathbf{x})=\sum_{i} \underbrace{\psi_{u}\left(x_{i}\right)}_{\text {unary term }}+\sum_{i} \sum_{j>i} \underbrace{\psi_{p}\left(x_{i}, x_{j}\right)}_{\text {pairwise term }}
$$

- Long-range interactions
- No more shrinking bias

What you need to know about variational methods

- Structured Variational method:
- select a form for approximate distribution
- minimize reverse KL
- Equivalent to maximizing energy functional
- searching for a tight lower bound on the partition function
- Many possible models for Q :
- independent (mean field)
- structured as a Markov net
- cluster variational
- Several subtleties outlined in the book

Plan for today

- MRF Inference
- (Specialized) MAP Inference
- Integer Programming Formulation
- Linear Programming Relaxation
- Dual Decomposition

Possible Queries

- Evidence: E=e (e.g. $\mathrm{N}=\mathrm{t}$)
- Query variables of interest Y

- Conditional Probability: $\mathrm{P}(\mathrm{Y} \mid \mathrm{E}=\mathbf{e})$
- E.g. $P(F, A \mid N=t)$
- Special case: Marginals P(F)
- Maximum a Posteriori: argmax $P($ All variables $\mid E=e)$
- argmax_\{f,a,s,h\}P(f,a,s,h|N=t)
- Marginal-MAP: argmax_y $P(Y \mid E=\mathbf{e})$

$$
=\operatorname{argmax} _\{y\} \Sigma_{o} P(Y=y, O=\mathbf{O} \mid E=e)
$$

MAP Inference

$$
S(\mathbf{y})=\sum_{i \in \mathcal{V}} \theta_{i}\left(y_{i}\right)+\sum_{(i, j) \in \mathcal{E}} \theta_{i j}\left(y_{i}, y_{j}\right)
$$

Most Likely Assignment

Node Scores / Local Rewards
(C) Dhruv Batra

Example

- Chain MRF

- Max-Product VE steps on board

Loopy BP on Pairwise Markov Nets
 $$
\overrightarrow{\delta_{i \rightarrow j}\left(y_{j}\right)}=\sum_{y_{i}} \phi_{i}\left(y_{i}\right) \phi_{i j}\left(y_{i}, y_{j}\right) \prod_{k \in \mathcal{N}(i)-j} \xrightarrow{\delta_{k \rightarrow i}\left(y_{i}\right)}
$$

MAP in Pairwise MRFs

- Over-Complete Representation

$$
\boldsymbol{\theta}=\left(\theta_{1}(1) \ldots \theta_{1}(k) \quad \theta_{n}(1) \ldots \theta_{n}(k) \quad \theta_{12}(1,1) \ldots \theta_{12}(k, k) \quad \theta_{n-1, n}(1,1) \ldots \theta_{n-1, n}(k, k)\right]
$$

$$
\mu_{1}(1) \ldots \mu_{1}(k) \quad \mu_{n}(1) \ldots \mu_{n}(k)
$$

$$
\left.x_{i} \quad\left[\begin{array}{c}
\bullet \\
\mu_{i}(s) \\
\bullet \\
\bullet
\end{array}\right)_{\mathrm{kx} 1} \quad \begin{array}{c}
1 \\
0 \\
0 \\
0
\end{array}\right) \quad \begin{gathered}
\left(\begin{array}{l}
0 \\
1 \\
0 \\
0
\end{array}\right) \\
x_{i}=1
\end{gathered} x_{i}=2
$$

(C) Dhruv Batra

MAP in Pairwise MRFs

$$
G=(\mathcal{V}, \mathcal{E})
$$

- Over-Complete Representation

$$
\begin{aligned}
& \begin{array}{|l|l|l|l|}
\hline x_{1} & \cdots & x_{n} & \left(x_{1}, x_{2}\right) \\
\left(x_{n-1}, x_{n}\right)
\end{array} \\
& \boldsymbol{\theta}=\left(\begin{array}{llll}
\theta_{1}(1) \ldots \theta_{1}(k) & \theta_{n}(1) \ldots \theta_{n}(k) & \theta_{12}(1,1) \ldots \theta_{12}(k, k) & \theta_{n-1, n}(1,1) \ldots \theta_{n-1, n}(k, k)
\end{array}\right) \\
& \boldsymbol{\mu}_{\mathbf{x}}=\left[\begin{array}{lll}
\mu_{1}(1) \ldots \mu_{1}(k) & \mu_{n}(1) \ldots \mu_{n}(k) & \mu_{12}(1,1) \ldots \mu_{12}(k, k)
\end{array} \quad \mu_{n-1, n}(1,1) \ldots \mu_{n-1, n}(k, k)\right) \\
& 0_{x_{j}}^{x_{i}} \quad \longrightarrow \\
& \text { (C) Dhruv Batra } \\
& {\left[\begin{array}{c}
\vdots \\
\vdots \\
\vdots \\
\mu_{i j}(s, S \\
\vdots
\end{array}\right]_{\mathrm{K}^{2} \times 1}(\mathbf{x})=\boldsymbol{\theta}\left(\begin{array}{c}
1 \\
0 \\
0 \\
0 \\
0 \\
{ }_{0} l_{\mathbf{x}} \\
0 \\
0 \\
0 \\
0 \\
0
\end{array}\right) \begin{array}{l}
x_{i}=1 \\
x_{j}=1 \\
\end{array}} \\
& \left(\begin{array}{ll}
0 \\
1 \\
0 \\
0
\end{array}\right) \begin{array}{l}
x_{i}=1 \\
x_{j}=2
\end{array}
\end{aligned}
$$

MAP in Pairwise MRFs

- Integer Program

$$
\left.\begin{array}{c}
\max _{\boldsymbol{\mu}} \quad \boldsymbol{\theta}^{T} \boldsymbol{\mu} \\
\mu_{i}(s) \in\{0,1\} \\
\mu_{i j}(s, t) \in\{0,1\}
\end{array}\right] \longleftarrow \text { Indicator Variables }
$$

MAP in Pairwise MRFs

- MAP Integer Program

$$
\max _{\boldsymbol{\mu}} \boldsymbol{\theta}^{T} \boldsymbol{\mu}
$$

$$
\text { s.t. } \quad A \boldsymbol{\mu}=b
$$

$$
\boldsymbol{\mu}(\cdot) \in\{0,1\}
$$

$$
\begin{array}{ll}
\boldsymbol{\mu}_{\mathbf{x}^{5}} & \\
& \\
\boldsymbol{\mu}_{\mathbf{x}^{1}} & \boldsymbol{\mu}_{\mathbf{x}^{4}} \\
\boldsymbol{\mu}_{\mathbf{x}^{2}}
\end{array}
$$

MAP in Pairwise MRFs

- MAP Linear Program

$$
\begin{array}{cl}
\max _{\boldsymbol{\mu}} & \boldsymbol{\theta}^{T} \boldsymbol{\mu} \\
\text { s.t. } & A \boldsymbol{\mu}=b \\
& \boldsymbol{\mu}(\cdot) \in[0,1]
\end{array}
$$

- Properties
- If LP-opt is integral, MAP is found
- LP always integral for trees
- Efficient message-passing schemes for solving LP

MAP in Pairwise MRFs

- Compare MAP LP to Variational Inference
- On board
- Difference in entropy term (objective)
- Family of Q distributions

MAP in Pairwise MRFs

- MAP Linear Program

$$
\begin{array}{cl}
\max _{\boldsymbol{\mu}} & \boldsymbol{\theta}^{T} \boldsymbol{\mu} \\
\text { s.t. } & A \boldsymbol{\mu}=b \\
& \boldsymbol{\mu}(\cdot) \in[0,1]
\end{array}
$$

Off-the-shelf solvers CPLEX Mosek
etc

LP Relaxation

- Block Co-ordinate / Sub-gradient Descent on Dual

LP Relaxation

- Block Co-ordinate / Sub-gradient Descent on Dual

LP Relaxation

- Block Co-ordinate / Sub-gradient Descent on Dual

Distributed Message-Passing

Still inefficient!

