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Topics 
–  Markov Random Fields: MAP Inference 

–  Max-Product Message Passing 
–  Integer Programming, LP formulation  
–  Dual Decomposition 

Readings: KF 13.1-5, Barber 5.1,28.9 



Administrativia 
•  HW1 Solutions 

–  Released 
–  Grades almost done too 

•  Project Presentations 
–  When: April 22, 24 
–  Where: in class 
–  5 min talk 

•  Main results 
•  Semester completion 2 weeks out from that point so nearly finished 

results expected 
•  Slides due: April 21 11:55pm 
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Recap of Last Time 
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Message Passing 
•  Variables/Factors “talk” to each other via messages: 
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“I (variable X3) think that you (variable X2):  

belong to state 1 with confidence 0.4 
belong to state 2 with confidence 10 

belong to state 3 with confidence 1.5” 



•  Initialization: 
–  Assign each factor φ to a cluster α(φ), Scope[φ]⊆Cα(φ)  
–  Initialize cluster:  

–  Initialize messages: 

•  While not converged, send messages: 

•  Belief: 
–  On board 

Generalized BP 
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What is Variational Inference? 
•  A class of methods for approximate inference 

–  And parameter learning 
–  And approximating integrals basically..  

•  Key idea 
–  Reality is complex 
–  Instead of performing approximate computation in something 

complex 
–  Can we perform exact computation in something “simple”? 
–  Just need to make sure the simple thing is “close” to the 

complex thing.  

•  Key Problems 
–  What is close? 
–  How do we measure closeness when we can’t perform 

operations on the complex thing? 
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•  Choose a family of approximating distributions which is 
tractable.  The simplest [Mean Field] Approximation: 

•  Measure the quality of approximations.  Two possibilities: 

•  Find the approximation minimizing this distance 

The image cannot be displayed. Your computer may not have enough memory to open the image, or the image may have been corrupted. Restart your computer, and then open the file again. If the red x 
still appears, you may have to delete the image and then insert it again.
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•  D(p||q)= 

D(p||q) for mean field –  
KL the right way 

•  Trivially minimized  by setting 

•  Doesn’t provide a computational method… 

qi(xi) = pi(xi)



•  D(q||p)= 

D(q||p) for mean field –  
KL the reverse direction 



•  D(q||p): 
–  p is Markov net PF 

•  Theorem:  

•  Where “Gibbs Free Energy”: 

Reverse KL & The Partition Function 
Difficulty 
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Happy 
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Intelligence 
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•  Maximizing Energy Functional ⇔ Minimizing Reverse KL 

•  Theorem: Energy Function is lower bound on partition function 

–  Maximizing energy functional corresponds to search for tight lower bound on 
partition function 

Understanding Reverse KL,  
Free Energy & The Partition Function 
logZ = F [p, q] +D(q||p) F [p, q] = Hq(X ) + Eq
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•  Add Lagrange multipliers to enforce 
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Mean Field Equations 
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•  Taking derivatives and simplifying, we find a set 
of fixed point equations: 

•  Updating one marginal at a time gives 
convergent coordinate descent 
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•  Structured Variational method: 
–  select a form for approximate distribution 
–  minimize reverse KL  

•  Equivalent to maximizing energy functional 
–  searching for a tight lower bound on the partition function 

•  Many possible models for Q: 
–  independent (mean field) 
–  structured as a Markov net 
–  cluster variational 

•  Several subtleties outlined in the book 

What you need to know  
about variational methods 



Plan for today 
•  MRF Inference 

–  (Specialized) MAP Inference 
•  Integer Programming Formulation 
•  Linear Programming Relaxation 
•  Dual Decomposition 
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Possible Queries 
•  Evidence: E=e (e.g. N=t) 
•  Query variables of interest Y 

•  Conditional Probability: P(Y | E=e) 
–  E.g. P(F,A | N=t) 
–  Special case: Marginals P(F) 

•  Maximum a Posteriori: argmax P(All variables | E=e) 
–  argmax_{f,a,s,h} P(f,a,s,h | N = t) 

•  Marginal-MAP: argmax_y P(Y | E=e) 
–                      = argmax_{y}  Σo P(Y=y, O=o | E=e) 
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MAP Inference 
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MAP 

Inference 
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Example 
•  Chain MRF 

•  Max-Product VE steps on board 
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Loopy BP on  
Pairwise Markov Nets 

δi→j(yj) =
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(C) Dhruv Batra  20 

yi yj

xjxi



MAP in Pairwise MRFs 

•  Over-Complete Representation 
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MAP in Pairwise MRFs 

•  Over-Complete Representation 
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MAP in Pairwise MRFs 
•  Integer Program 
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MAP in Pairwise MRFs 
•  MAP Integer Program 

(C) Dhruv Batra  24 

µx5

µx4µx3

µx2

µx1

max
µ

θTµ

s.t. Aµ = b

µ(·) ∈ {0, 1}



MAP in Pairwise MRFs 
•  MAP Linear Program 

•  Properties 
–  If LP-opt is integral, MAP is found 
–  LP always integral for trees 
–  Efficient message-passing schemes for solving LP 
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MAP in Pairwise MRFs 
•  Compare MAP LP to Variational Inference 

–  On board 
–  Difference in entropy term (objective) 
–  Family of Q distributions 
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MAP in Pairwise MRFs 
•  MAP Linear Program 
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LP Relaxation 
•  Block Co-ordinate / Sub-gradient Descent on Dual 
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LP Relaxation 
•  Block Co-ordinate / Sub-gradient Descent on Dual 
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LP Relaxation 
•  Block Co-ordinate / Sub-gradient Descent on Dual 
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A = O(|E|)

O(|E|)

λ(t+1)
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λ(t+1)
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Distributed Message-Passing 

Still inefficient! 


