ECE 6504: Advanced Topics in Machine Learning

Probabilistic Graphical Models and Large-Scale Learning

Topics

- Markov Random Fields: Inference
- Exact+Approximate: BP
- Exact: Junction Trees

Readings: KF 10.1-10.4, Barber 5
Dhruv Batra
Virginia Tech

Administrativia

- HW1
- Solutions \& Graded copies out next week

Recap of Last Time

Variable Elimination algorithm

- Given a $B N$ and a query $P(\mathbf{Y} \mid \mathbf{e}) \approx P(\mathbf{Y}, \mathbf{e})$
- "Instantiate Evidence"
- Choose an ordering on variables, e.g., X_{1}, \ldots, X_{n}
- For $\mathrm{i}=1$ to n , If $\mathrm{X}_{\mathrm{i}} \notin\{\mathrm{Y}, \mathrm{E}\}$
- Collect factors f_{1}, \ldots, f_{k} that include X_{i}
- Generate a new factor by eliminating X_{i} from these factors

$$
g=\sum_{X_{i}} \prod_{j=1} f_{j}
$$

- Variable X_{i} has been eliminated!
- Normalize $\mathrm{P}(\mathrm{Y}, \mathrm{e})$ to obtain $\mathrm{P}(\mathrm{Y} \mid \mathrm{e})$

VE for MRF

- Exactly the same algorithm works!
- Factors are no longer CPTs
- But VE doesn't care

(C) Dhruv Batra

Example

- Chain MRF

Compute:
$P\left(X_{1} \mid X_{5}=x_{5}\right)$

- VE steps on board

Example

- Chain MRF

Compute:

$$
\begin{array}{r}
P\left(X_{i} \mid X_{5}=x_{5}\right) \\
\forall i \in\{1,2,3,4\}
\end{array}
$$

Variable elimination for every i , what's the complexity?
Can we do better by caching intermediate results?
Yes! via Junction-Trees
But let's look at BP first

New Topic: Belief Propagation

Message Passing

- Variables/Factors "talk" to each other via messages:

Overview of BP

- Pick a graph to pass messages on
- Cluster Graph
- Pick an ordering of edges
- Round-robin
- Leaves-Root-Leaves on a tree
- Asynchonous
- Till convergence or exhaustion:
- Pass messages on edges
- At vertices on graph compute psuedo-marginals

Cluster graph

- Cluster Graph: For set of factors F
- Undirected graph
- Each node i associated with a cluster \mathbf{C}_{i}
- Each edge $i-j$ is associated with a separator set of variables $\mathbf{S}_{\mathrm{ij}} \subseteq \mathbf{C}_{\mathrm{i}} \cap \mathbf{C}_{\mathrm{j}}$

Generalized BP

- Initialization:
- Assign each factor ϕ to a cluster $\alpha(\phi)$, Scope[$[\phi] \subseteq C_{\alpha(\phi)}$
- Initialize cluster: $\psi_{i}^{0}\left(\mathbf{C}_{i}\right) \propto \prod_{\phi: \alpha(\phi)=i} \phi$
- Initialize messages: $\delta_{j \rightarrow i}=1$

- While not converged, send messages:

$$
\delta_{i \rightarrow j}\left(\mathbf{S}_{i j}\right) \propto \sum_{\mathbf{C}_{i}-\mathbf{S}_{i j}} \psi_{i}^{0}\left(\mathbf{C}_{i}\right) \prod_{k \in \mathcal{N}(i)-j} \delta_{k \rightarrow i}\left(\mathbf{S}_{i k}\right)
$$

- Belief:
- On board

Properties of Cluster Graphs

- Family preserving:

For set of factors F

- for each factor $\mathrm{f}_{\mathrm{j}} \in F$, ヨnode i such that scope $\left[\mathrm{f}_{\mathrm{i}}\right] \subseteq \mathrm{C}_{\mathrm{i}}$

Properties of Cluster Graphs

- Running intersection property (RIP)
- If $X \in \mathbf{C}_{i}$ and $X \in \mathbf{C}_{j}$ then
\exists one and only one path from $\mathbf{C}_{\mathbf{i}}$ to \mathbf{C}_{j} where $\mathrm{X} \in \mathbf{S}_{\mathrm{uv}}$ for every edge (u, v) in the path

Two cluster graph satisfying RIP with different edge sets

Overview of BP

- Pick a graph to pass messages on
- Cluster Graph
- Pick an ordering of edges
- Round-robin
- Leaves-Root-Leaves on a tree
- Asynchonous
- Till convergence or exhaustion:
- Pass messages on edges
- At vertices on graph compute psuedo-marginals

Cluster Graph for Loopy BP

- Bethe Cluster Graph
- Set of Clusters = Factors $F \cup\left\{X_{i}\right\}$
- Sometimes also called "Running BP on Factor Graphs"
- Example on board
- Does the Bethe Cluster Graph satisfy properties?

Loopy BP in Factor graphs

- From node i to factor j :
- $F(i)$ factors whose scope includes X_{i}

$$
\delta_{i \rightarrow j}\left(X_{i}\right) \propto \prod_{k \in \mathcal{F}(i)-j} \delta_{k \rightarrow i}\left(X_{i}\right)
$$

- From factor j to node i :
$-\quad$ Scope $\left[\phi_{j}\right]=Y \cup\left\{X_{i}\right\}$

$$
\delta_{j \rightarrow i}\left(X_{i}\right) \propto \sum_{\mathbf{y}} \phi_{j}\left(X_{i}, \mathbf{y}\right) \prod_{X_{k} \in \operatorname{Scope}\left[\phi_{j}\right]-X_{i}} \delta_{k \rightarrow j}\left(x_{k}\right)
$$

- Belief:
- Node:
- Factor:

Loopy BP on Pairwise Markov Nets
 $$
\overrightarrow{\delta_{i \rightarrow j}\left(y_{j}\right)}=\sum_{y_{i}} \phi_{i}\left(y_{i}\right) \phi_{i j}\left(y_{i}, y_{j}\right) \prod_{k \in \mathcal{N}(i)-j} \overrightarrow{\delta_{k \rightarrow i}\left(y_{i}\right)}
$$

Plan for today

- MRF Inference
- Approximate Inference
- Bethe Cluster Graph
- Loopy BP
- Exact Inference
- Junction Tree
- BP on Junction Trees
- Message-Passing as Variational Inference

Loopy BP on Pairwise Markov Nets
 $$
\overrightarrow{\delta_{i \rightarrow j}\left(y_{j}\right)}=\sum_{y_{i}} \phi_{i}\left(y_{i}\right) \phi_{i j}\left(y_{i}, y_{j}\right) \prod_{k \in \mathcal{N}(i)-j} \overrightarrow{\delta_{k \rightarrow i}\left(y_{i}\right)}
$$

(C) Dhruv Batra

Calibration

- Cluster Graphs are calibrated
- when adjacent clusters agree in beliefs about sep-sets

Convergence

$$
\delta_{i \rightarrow j}\left(\mathbf{S}_{i j}\right) \propto \sum_{\mathbf{C}_{i}-\mathbf{S}_{i j}} \psi_{i}^{0}\left(\mathbf{C}_{i}\right) \prod_{k \in \mathcal{N}(i)-j} \delta_{k \rightarrow i}\left(\mathbf{S}_{i k}\right)
$$

- If you tried to send all messages, and messages haven't changed (in practice by much) \rightarrow converged
- Convergence of BP => Calibration of Cluster Graph
- Note, this doesn't mean pseudo-marginals are correct!

BP as Reparameterization

- On board

An example of running loopy BP

(C) Dhruv Batra

Loopy BP

$$
\delta_{i \rightarrow j}\left(X_{j}\right)=\sum_{x_{i}} \phi_{i}\left(x_{i}\right) \phi_{i j}\left(x_{i}, X_{j}\right) \prod_{k \in \mathcal{N}(i)-j} \delta_{k \rightarrow i}\left(x_{i}\right)
$$

- What happened?
- evidence goes around the loops multiple times
- may not converge
- if it converges, usually overconfident about probability values
- But often gives you reasonable, or at least useful answers
- especially if you just care about the argmax rather than the actual probabilities

(Non-)Convergence of Loopy BP

- Loopy BP can oscillate!!!
- oscillations can small
- oscillations can be really bad!
- Typically,
- if factors are closer to uniform, loopy does well (converges)
- if factors are closer to deterministic, loopy doesn't behave well

graph from Murphy et al. ' 99
- One approach to help: damping messages
- new message is average of old message and new one:
- often better convergence
- but, when damping is required to get convergence, result often bad

Loopy BP

- Numerical problem:
- messages < 1 get multiplied together as we go around the loops

- numbers can go to zero
- Work in log-space
- normalize messages to one:
$\delta_{i \rightarrow j}\left(X_{j}\right)=\frac{1}{Z_{i \rightarrow j}} \sum_{x_{i}} \phi_{i}\left(x_{i}\right) \phi_{i j}\left(x_{i}, X_{j}\right) \prod_{k \in \mathcal{N}(i)-j} \delta_{k \rightarrow i}\left(x_{i}\right)$
$-Z_{i \rightarrow j}$ doesn't depend on X_{j}, so doesn't change the answer
- Computing node pseudo-marginals (estimates of probs.):

$$
\widehat{P}\left(X_{i}\right)=\frac{1}{Z_{i}} \phi_{i}\left(X_{i}\right) \prod_{k \in \mathcal{N}(i)} \delta_{k \rightarrow i}\left(X_{i}\right)
$$

How to pass messages?

- Synchronous
- All messages at once
- Good for parallelization
- Bad for convergence
- Asynchronous
- Sequential according to some priority
- Bad for parallelization
- Good for convergence

How to prioritize messages?

- Residual BP
- e.g. [Elidan et al., 2006], [Sutton \& McCallum, 2007]
- Pass messages where cliques disagree the most about separators

Asynchronous Belief Propagation

- [Gonzalez et al. AISTATS09]

How to prioritize messages?

- Residual BP
- e.g. [Elidan et al., 2006], [Sutton \& McCallum, 2007]
- Pass messages where cliques disagree the most about separators
- Tree-Based Message Passing
- e.g. [Tarlow, Batra, Kohli, Kolmogorov, ICML11]
- Pick a tree
- Pass messages on it's edges
- Pick another tree

How to prioritize messages?

Static Schedule:

630 messages needed

Dynamic Schedule:
276 messages needed

Dynamic Image Segmentation

Previous Opt

New Opt

Heatmap of Messages

375×500 pixels, 21 labels. Potts potentials

Dynamic Image Segmentation

New Opt
Heatmap of Messages

375×500 pixels, 21 labels. Potts potentials

New Topic

- Making BP Exact
- Connecting BP to VE on Junction Trees

Overview of BP

- Pick a graph to pass messages on
- Cluster Graph
- Pick an ordering of edges
- Round-robin
- Leaves-Root-Leaves on a tree
- Asynchonous
- Till convergence or exhaustion:
- Pass messages on edges
- At vertices on graph compute psuedo-marginals

Induced graph

The induced graph I_{FO} for elimination order O has an edge $X_{i}-X_{j}$ if X_{i} and X_{j} appear together in a factor generated by VE for elimination order O on factors F

Factors Generated

(C) Dhruv Batra

Slide Credit: Carlos Guestrin

Cluster graph for VE

- VE generates cluster tree!
- One cluster for each factor used/generated
- Edge $i-j$, if f_{i} used to generate f_{j}
- "Message" from i to j generated when marginalizing a variable from f_{i}
- Tree because factors only used once
- Proposition:
- "Message" δ_{ij} from i to j
- Scope $\left[\delta_{\mathrm{ij}}\right] \subseteq \mathbf{S}_{\mathrm{ij}}$

