ECE 6504: Advanced Topics in Machine Learning

Probabilistic Graphical Models and Large-Scale Learning

Topics

- Markov Random Fields: Inference
 - Exact+Approximate: BP
 - Exact: Junction Trees

Readings: KF 10.1-10.4, Barber 5

Dhruv Batra Virginia Tech

Administrativia

- HW1
 - Solutions & Graded copies out next week

Recap of Last Time

Variable Elimination algorithm

- Given a BN and a query $P(\mathbf{Y}|\mathbf{e}) \approx P(\mathbf{Y},\mathbf{e})$
 - "Instantiate Evidence"
- Choose an ordering on variables, e.g., X₁, ..., X_n
- For i = 1 to n, If $X_i \notin \{Y, E\}$
 - Collect factors f_1, \ldots, f_k that include X_i
 - Generate a new factor by eliminating X_i from these factors

$$g = \sum_{X_i} \prod_{j=1}^n f_j$$

- Variable X_i has been eliminated!
- Normalize P(Y,e) to obtain P(Y|e)

IMPORTANT!!!

VE for MRF

- Exactly the same algorithm works!
 - Factors are no longer CPTs
 - But VE doesn't care

Example

Chain MRF

Compute: $P(X_1 \mid X_5 = x_5)$

• VE steps on board

Example

Chain MRF

$$\begin{array}{c} (X_{1} - X_{2} - X_{3} - X_{4} - X_{5} \\ \forall i \in \{1, 2, 3, 4\} \end{array}$$
 Compute:
$$\begin{array}{c} (X_{1} - X_{2} - X_{3} - X_{4} - X_{5} \\ \forall i \in \{1, 2, 3, 4\} \end{array}$$

Variable elimination for every i, what's the complexity?

Can we do better by caching intermediate results?

Yes! via Junction-Trees But let's look at BP first

New Topic: Belief Propagation

Message Passing

• Variables/Factors "talk" to each other via messages:

"I (variable X_3) think that you (variable X_2):

belong to state 1 with confidence 0.4 belong to state 2 with confidence 10 belong to state 3 with confidence 1.5"

Overview of BP

- Pick a graph to pass messages on
 - Cluster Graph
- Pick an ordering of edges
 - Round-robin
 - Leaves-Root-Leaves on a tree
 - Asynchonous
- Till convergence or exhaustion:
 - Pass messages on edges
- At vertices on graph compute *psuedo-marginals*

Cluster graph

- Cluster Graph: For set of factors F
 - Undirected graph
 - Each node i associated with a cluster C_i
 - Each edge i j is associated with a separator set of variables S_{ii} ⊆ C_i ∩ C_i

Generalized BP

- Initialization:
 - Assign each factor ϕ to a cluster $\alpha(\phi)$, Scope[ϕ] \subseteq $C_{\alpha(\phi)}$
 - Initialize cluster: $\psi_i^0(\mathbf{C}_i) \propto \prod_{\phi:\alpha(\phi)=i} \phi$
 - Initialize messages: $\delta_{j \rightarrow i} = 1$

• While not converged, send messages:

$$\delta_{i \to j}(\mathbf{S}_{ij}) \propto \sum_{\mathbf{C}_i - \mathbf{S}_{ij}} \psi_i^0(\mathbf{C}_i) \prod_{k \in \mathcal{N}(i) - j} \delta_{k \to i}(\mathbf{S}_{ik})$$

- Belief:
 - On board

Properties of Cluster Graphs

- Family preserving: For set of factors *F*
 - for each factor $f_j ∈ F$, ∃node i such that $scope[f_i] \subseteq C_i$

Properties of Cluster Graphs

- Running intersection property (RIP)
 - If $X \in \mathbf{C}_i$ and $X \in \mathbf{C}_i$ then
 - ∃ one and only one path from C_i to C_j where X∈**S**_{uv} for every edge (u,v) in the path

Two cluster graph satisfying RIP with different edge sets

Overview of BP

- Pick a graph to pass messages on
 - Cluster Graph
- Pick an ordering of edges
 - Round-robin
 - Leaves-Root-Leaves on a tree
 - Asynchonous
- Till convergence or exhaustion:
 - Pass messages on edges
- At vertices on graph compute *psuedo-marginals*

Cluster Graph for Loopy BP

- Bethe Cluster Graph
 - Set of Clusters = Factors $F \cup \{X_i\}$
 - Sometimes also called "Running BP on Factor Graphs"
 - Example on board
- Does the Bethe Cluster Graph satisfy properties?

Loopy BP in Factor graphs

- From node *i* to factor *j*: – *F*(i) factors whose scope includes X_i $\delta_{i \rightarrow j}(X_i) \propto \prod_{k \in \mathcal{F}(i) - j} \delta_{k \rightarrow i}(X_i)$ A B C D A B C D ABD BDE
- From factor *j* to node *i*:

- Scope
$$[\phi_j] = \mathbf{Y} \bigcup \{X_i\}$$

$$\delta_{j \to i}(X_i) \propto \sum_{\mathbf{y}} \phi_j(X_i, \mathbf{y}) \prod_{X_k \in \mathsf{Scope}[\phi_j] - X_i} \delta_{k \to j}(x_k)$$

- Belief:
 - Node:
 - Factor:

Е

CDE

Loopy BP on Pairwise Markov Nets

Plan for today

- MRF Inference
 - Approximate Inference
 - Bethe Cluster Graph
 - Loopy BP
 - Exact Inference
 - Junction Tree
 - BP on Junction Trees
 - Message-Passing as Variational Inference

Loopy BP on Pairwise Markov Nets

Calibration

- Cluster Graphs are *calibrated*
 - when adjacent clusters agree in beliefs about sep-sets

Convergence

$$\delta_{i \to j}(\mathbf{S}_{ij}) \propto \sum_{\mathbf{C}_i - \mathbf{S}_{ij}} \psi_i^0(\mathbf{C}_i) \prod_{k \in \mathcal{N}(i) - j} \delta_{k \to i}(\mathbf{S}_{ik})$$

- If you tried to send all messages, and messages haven't changed (in practice by much) → converged
- Convergence of BP => Calibration of Cluster Graph
- Note, this doesn't mean pseudo-marginals are correct!

BP as Reparameterization

On board

An example of running loopy BP

Loopy BP

$$\delta_{i \to j}(X_j) = \sum_{x_i} \phi_i(x_i) \phi_{ij}(x_i, X_j) \prod_{k \in \mathcal{N}(i) - j} \delta_{k \to i}(x_i)$$

- What happened?
 - evidence goes around the loops multiple times
 - may not converge
 - if it converges, usually overconfident about probability values
- But often gives you reasonable, or at least useful answers
 - especially if you just care about the argmax rather than the actual probabilities

(Non-)Convergence of Loopy BP

• Loopy BP can oscillate!!!

- oscillations can small
- oscillations can be really bad!
- Typically,
 - if factors are closer to uniform, loopy does well (converges)
 - if factors are closer to deterministic, loopy doesn't behave well
- One approach to help: damping messages
 - new message is average of old message and new one:
 - often better convergence
 - but, when damping is required to get convergence, result often bad

(C) Dhruv Batra

graph from Murphy et al. '99

Loopy BP

- Numerical problem:
 - messages < 1 get multiplied together as we go around the loops
 - numbers can go to zero
 - Work in log-space
 - normalize messages to one:

$$\delta_{i \to j}(X_j) = \frac{1}{Z_{i \to j}} \sum_{x_i} \phi_i(x_i) \phi_{ij}(x_i, X_j) \prod_{k \in \mathcal{N}(i) - j} \delta_{k \to i}(x_i)$$

- $Z_{i \rightarrow j}$ doesn't depend on X_{j} , so doesn't change the answer

• Computing node pseudo-marginals (estimates of probs.):

$$\widehat{P}(X_i) = \frac{1}{Z_i} \phi_i(X_i) \prod_{k \in \mathcal{N}(i)} \delta_{k \to i}(X_i)$$

How to pass messages?

- Synchronous
 - All messages at once
 - Good for parallelization
 - Bad for convergence
- Asynchronous
 - Sequential according to some priority
 - Bad for parallelization
 - Good for convergence

How to prioritize messages?

- Residual BP
 - e.g. [Elidan et al., 2006], [Sutton & McCallum, 2007]
 - Pass messages where cliques disagree the most about separators

Asynchronous Belief Propagation

• [Gonzalez et al. AISTATS09]

Asynchronous Belief Propagation Challenge = Boundaries

Synthetic Noisy Image

Graphical Model (C) Dhruv Batra

Cumulative Vertex Updates

Algorithm identifies and focuses on hidden sequential structure

Slide Credit: Carlos Guestrin

How to prioritize messages?

- Residual BP
 - e.g. [Elidan et al., 2006], [Sutton & McCallum, 2007]
 - Pass messages where cliques disagree the most about separators
- Tree-Based Message Passing
 - e.g. [Tarlow, Batra, Kohli, Kolmogorov, ICML11]
 - Pick a tree
 - Pass messages on it's edges
 - Pick another tree

How to prioritize messages?

Static Schedule:

Dynamic Schedule:

276 messages needed

Dynamic Image Segmentation

Previous Opt

Sheep

New Opt

Modify White Unaries

Heatmap of Messages

375x500 pixels, 21 labels. Potts potentials

375x500 pixels, 21 labels. Potts potentials

New Topic

- Making BP Exact
 - Connecting BP to VE on Junction Trees

Overview of BP

- Pick a graph to pass messages on
 - Cluster Graph
- Pick an ordering of edges
 - Round-robin
 - Leaves-Root-Leaves on a tree
 - Asynchonous
- Till convergence or exhaustion:
 - Pass messages on edges
- At vertices on graph compute *psuedo-marginals*

Induced graph

Factors Generated

Cluster graph for VE

VE generates cluster tree!

- One cluster for each factor used/generated
- Edge i j, if f_i used to generate f_i
- "Message" from i to j generated when marginalizing a variable from f_i
- Tree because factors only used once

Proposition:

- $\begin{array}{l} \text{ ``Message'' } \boldsymbol{\delta}_{_{ij}} \text{ from i to j} \\ \text{ Scope}[\boldsymbol{\delta}_{_{ij}}] \subseteq \boldsymbol{S}_{_{ij}} \end{array}$