ECE 6504: Advanced Topics in Machine Learning

Probabilistic Graphical Models and Large-Scale Learning

Topics

- Markov Random Fields: Inference
 - Exact: VE
 - Exact+Approximate: BP

Readings: Barber 5

Dhruv Batra Virginia Tech

Administrativia

- HW3
 - Out 2 days ago
 - Due: Apr 4, 11:55pm
 - Implementation: Loopy Belief Propagation in MRFs

Recap of Last Time

Markov Nets

- Set of random variables
- Undirected graph
 - Encodes independence assumptions
- Unnormalized Factor Tables

- Joint distribution:
 - Product of Factors

Pairwise MRFs

- Pairwise Factors
 - A function of 2 variables
 - Often unary terms are also allowed (although strictly speaking unnecessary)
 - On board

Pairwise MRF: Example

$\phi_1[A, B]$	$\phi_2[B,C]$	$\phi_3[C,D]$	$\phi_4[D, A]$
$egin{array}{cccc} a^0 & b^0 & 30 \\ a^0 & b^1 & 5 \\ a^1 & b^0 & 1 \\ a^1 & b^1 & 10 \end{array}$	$egin{array}{cccc} b^0 & c^0 & 100 \ b^0 & c^1 & 1 \ b^1 & c^0 & 1 \ b^1 & c^1 & 100 \end{array}$	$egin{array}{cccc} c^0 & d^0 & 1 \ c^0 & d^1 & 100 \ c^1 & d^0 & 100 \ c^1 & d^1 & 1 \end{array}$	$egin{array}{cccccccc} d^0 & a^0 & 100 \ d^0 & a^1 & 1 \ d^1 & a^0 & 1 \ d^1 & a^1 & 100 \end{array}$

Normalization for computing probabilities

• To compute actual probabilities, must compute normalization constant (also called partition function)

• Computing partition function is hard! Must sum over all possible assignments

Nearest-Neighbor Grids

Low Level Vision

- Image denoising
- Stereo
- Optical flow
- Shape from shading
- Superresolution
- Segmentation

 $y_s \longrightarrow$ unobserved or hidden variable

(C) Dhruv Batra local observation

Factorization in Markov networks

- Given an undirected graph *H* over variables
 X={X₁,...,X_n}
- A distribution *P* factorizes over *H* if there exist
 - subsets of variables $D_1 \subseteq X, ..., D_m \subseteq X$, such that D_i are *fully connected* in H

m

- non-negative potentials (or factors) $\phi_1(\mathbf{D_1}), \dots, \phi_m(\mathbf{D_m})$
 - also known as clique potentials
- such that

$$P(X_1,\ldots,X_n) = \frac{1}{Z} \prod_{i=1}^m \phi_i(\mathbf{D}_i)$$

• Also called Markov random field *H*, or Gibbs distribution over *H*

Structure in cliques

• Possible potentials for this graph:

Factor graphs

- Bipartite graph:
 - variable nodes (ovals) for X_1, \ldots, X_n
 - factor nodes (squares) for ϕ_1, \dots, ϕ_m
 - edge $X_i \phi_j$ if $X_i \epsilon$ Scope[ϕ_j]

- Very useful for approximate inference
 - Make factor dependency explicit

Types of Graphical Models

Plan for today

- MRF Inference
 - Exact Inference
 - Variable Elimination
 - Exact+Approximate Inference
 - (General) Belief Propagation
 - Cluster Graphs
 - Family Preserving Property
 - Running Intersection Property
 - Message-Passing
 - Approximate Inference
 - Bethe Cluster Graph
 - Loopy BP
 - Exact Inference
 - Junction Tree
 - BP on Junction Trees

Marginal Inference Example

- Evidence: **E**=**e** (e.g. N=t)
- Query variables of interest Y

- Conditional Probability: P(Y | E=e)
 - P(F | N=t)

Variable Elimination algorithm

- Given a BN and a query $P(\mathbf{Y}|\mathbf{e}) \approx P(\mathbf{Y},\mathbf{e})$
 - "Instantiate Evidence"
- Choose an ordering on variables, e.g., X₁, ..., X_n
- For i = 1 to n, If $X_i \notin \{Y, E\}$
 - Collect factors f_1, \ldots, f_k that include X_i
 - Generate a new factor by eliminating X_i from these factors

$$g = \sum_{X_i} \prod_{j=1}^n f_j$$

- Variable X_i has been eliminated!
- Normalize P(Y,e) to obtain P(Y|e)

IMPORTANT!!!

VE for MRF

- Exactly the same algorithm works!
 - Factors are no longer CPTs
 - But VE doesn't care

Example

Chain MRF

Compute: $P(X_1 \mid X_5 = x_5)$

• VE steps on board

Example

Chain MRF

$$\begin{array}{c} (X_{1} - X_{2} - X_{3} - X_{4} - X_{5} \\ \forall i \in \{1, 2, 3, 4\} \end{array}$$
 Compute:
$$\begin{array}{c} (X_{1} - X_{2} - X_{3} - X_{4} - X_{5} \\ \forall i \in \{1, 2, 3, 4\} \end{array}$$

Variable elimination for every i, what's the complexity?

Can we do better by caching intermediate results?

Yes! via Junction-Trees But let's look at BP first

New Topic: Belief Propagation

What is BP?

- Technique invented by Judea Pearl in 1982
 - Initially to compute marginals in BNs
- Later generalized
 - to MRFs, Factor Graphs
 - To MAP inference; to Marginal-MAP inference
- Lots of analysis
 - Under some cases EXACT
 - Tree graphs
 - In this setting, BP equivalent to VE on Junction-Trees
 - Submodular potentials
 - In this setting, BP equivalent to Graph-Cuts! [Tarlow et al. UAI11]
 - In general Approximate

Message Passing

• Variables/Factors "talk" to each other via messages:

"I (variable X_3) think that you (variable X_2):

belong to state 1 with confidence 0.4 belong to state 2 with confidence 10 belong to state 3 with confidence 1.5"

Overview of BP

- Pick a graph to pass messages on
 - Cluster Graph
- Pick an ordering of edges
 - Round-robin
 - Leaves-Root-Leaves on a tree
 - Asynchonous
- Till convergence or exhaustion:
 - Pass messages on edges
- At vertices on graph compute *psuedo-marginals*

Cluster graph

- Cluster Graph:
 For set of factors F
 - Undirected graph
 - Each node i associated with a cluster C_i
 - Each edge i j is associated with a separator set of variables S_{ii} ⊆ C_i ∩ C_i

Generalized BP

- Initialization:
 - Assign each factor ϕ to a cluster $\alpha(\phi)$, Scope[ϕ] \subseteq $C_{\alpha(\phi)}$
 - Initialize cluster: $\psi_i^0(\mathbf{C}_i) \propto \prod_{\phi:\alpha(\phi)=i} \phi$
 - Initialize messages: $\delta_{j \rightarrow i} = 1$

• While not converged, send messages:

$$\delta_{i \to j}(\mathbf{S}_{ij}) \propto \sum_{\mathbf{C}_i - \mathbf{S}_{ij}} \psi_i^0(\mathbf{C}_i) \prod_{k \in \mathcal{N}(i) - j} \delta_{k \to i}(\mathbf{S}_{ik})$$

- Belief:
 - On Board

Properties of Cluster Graphs

- Family preserving: For set of factors *F*
 - for each factor $f_j ∈ F$, ∃node i such that $scope[f_i] \subseteq C_i$

Properties of Cluster Graphs

- Running intersection property (RIP)
 - If $X \in \mathbf{C}_i$ and $X \in \mathbf{C}_j$ then
 - ∃ one and only one path from C_i to C_j where X∈**S**_{uv} for every edge (u,v) in the path

Two cluster graph satisfying RIP with different edge sets

Overview of BP

- Pick a graph to pass messages on
 - Cluster Graph
- Pick an ordering of edges
 - Round-robin
 - Leaves-Root-Leaves on a tree
 - Asynchonous
- Till convergence or exhaustion:
 - Pass messages on edges
- At vertices on graph compute *psuedo-marginals*

Cluster Graph for Loopy BP

- Bethe Cluster Graph
 - Set of Clusters = Factors $F \cup \{X_i\}$
 - Sometimes also called "Running BP on Factor Graphs"
 - Example on board
- Does the Bethe Cluster Graph satisfy properties?

Loopy BP in Factor graphs

- From node *i* to factor *j*: – *F*(i) factors whose scope includes X_i $\delta_{i \rightarrow j}(X_i) \propto \prod_{k \in \mathcal{F}(i) - j} \delta_{k \rightarrow i}(X_i)$ A B C D A B C D ABD BDE
- From factor *j* to node *i*:

- Scope
$$[\phi_j] = \mathbf{Y} \bigcup \{X_i\}$$

$$\delta_{j \to i}(X_i) \propto \sum_{\mathbf{y}} \phi_j(X_i, \mathbf{y}) \prod_{X_k \in \mathsf{Scope}[\phi_j] - X_i} \delta_{k \to j}(x_k)$$

- Belief:
 - Node:
 - Factor:

Е

CDE

Loopy BP on Pairwise Markov Nets

