ECE 6504: Advanced Topics in Machine Learning

Probabilistic Graphical Models and Large-Scale Learning

Topics

- Markov Random Fields: Inference
- Exact: VE
- Exact+Approximate: BP

Readings: Barber 5
Dhruv Batra
Virginia Tech

Administrativia

- HW3
- Out 2 days ago
- Due: Apr 4, 11:55pm
- Implementation: Loopy Belief Propagation in MRFs

Recap of Last Time

Markov Nets

- Set of random variables
- Undirected graph
- Encodes independence assumptions
- Unnormalized Factor Tables
- Joint distribution:
- Product of Factors

Pairwise MRFs

- Pairwise Factors
- A function of 2 variables
- Often unary terms are also allowed (although strictly speaking unnecessary)
- On board

Pairwise MRF: Example

\[

\]

Normalization for computing probabilities

- To compute actual probabilities, must compute normalization constant (also called partition function)

Assignment			Unnormalized	Normalized	
a^{0}	b^{0}	c^{0}	d^{0}	300000	0.04
a^{0}	b^{0}	c^{0}	d^{1}	300000	0.04
a^{0}	b^{0}	c^{1}	d^{0}	300000	0.04
a^{0}	b^{0}	c^{1}	d^{1}	30	$4.1 \cdot 10^{-6}$
a^{0}	b^{1}	c^{0}	d^{0}	500	$6.9 \cdot 10^{-5}$
a^{0}	b^{1}	c^{0}	d^{1}	500	$6.9 \cdot 10^{-5}$
a^{0}	b^{1}	c^{1}	d^{0}	5000000	0.69
a^{0}	b^{1}	c^{1}	d^{1}	500	$6.9 \cdot 10^{-5}$
a^{1}	b^{0}	c^{0}	d^{0}	100	$1.4 \cdot 10^{-5}$
a^{1}	b^{0}	c^{0}	d^{1}	1000000	0.14
a^{1}	b^{0}	c^{1}	d^{0}	100	$1.4 \cdot 10^{-5}$
a^{1}	b^{0}	c^{1}	d^{1}	100	$1.4 \cdot 10^{-5}$
a^{1}	b^{1}	c^{0}	d^{0}	10	$1.4 \cdot 10^{-6}$
a^{1}	b^{1}	c^{0}	d^{1}	100000	0.014
a^{1}	b^{1}	c^{1}	d^{0}	100000	0.014
a^{1}	b^{1}	c^{1}	d^{1}	100000	0.014

- Computing partition function is hard! Must sum over all possible assignments

Nearest-Neighbor Grids

Low Level Vision

- Image denoising
- Stereo
- Optical flow
- Shape from shading
- Superresolution
- Segmentation
$y_{s} \longrightarrow$ unobserved or hidden variable

Factorization in Markov networks

- Given an undirected graph H over variables $\mathbf{X}=\left\{\mathrm{X}_{1}, \ldots, \mathrm{X}_{\mathrm{n}}\right\}$
- A distribution P factorizes over H if there exist

- subsets of variables $\mathbf{D}_{1} \subseteq \mathbf{X}, \ldots, \mathbf{D}_{\mathbf{m}} \subseteq \mathbf{X}$, such that $\mathbf{D}_{\mathbf{i}}$ are fully connected in H
- non-negative potentials (or factors) $\phi_{1}\left(\mathbf{D}_{1}\right), \ldots, \phi_{\mathrm{m}}\left(\mathbf{D}_{\mathrm{m}}\right)$
- also known as clique potentials
- such that

$$
P\left(X_{1}, \ldots, X_{n}\right)=\frac{1}{Z} \prod_{i=1}^{m} \phi_{i}\left(\mathbf{D}_{i}\right)
$$

- Also called Markov random field H, or Gibbs distribution over H

Structure in cliques

- Possible potentials for this graph:

Factor graphs

- Bipartite graph:
- variable nodes (ovals) for X_{1}, \ldots, X_{n}
- factor nodes (squares) for $\phi_{1}, \ldots, \phi_{m}$
- edge $X_{i}-\phi_{j}$ if $X_{i} \varepsilon \operatorname{Scope}\left[\phi_{j}\right]$

- Very useful for approximate inference
- Make factor dependency explicit

Types of Graphical Models

Factor

Undirected

Plan for today

- MRF Inference
- Exact Inference
- Variable Elimination
- Exact+Approximate Inference
- (General) Belief Propagation
- Cluster Graphs
- Family Preserving Property
- Running Intersection Property
- Message-Passing
- Approximate Inference
- Bethe Cluster Graph
- Loopy BP
- Exact Inference
- Junction Tree
- BP on Junction Trees

Marginal Inference Example

- Evidence: $\mathrm{E}=\mathrm{e}$ (e.g. $\mathrm{N}=\mathrm{t}$)
- Query variables of interest Y

- Conditional Probability: $\mathrm{P}(\mathbf{Y} \mid \mathrm{E}=\mathbf{e})$
- $P(F \mid N=t)$

Variable Elimination algorithm

- Given a $B N$ and a query $P(\mathbf{Y} \mid \mathbf{e}) \approx P(\mathbf{Y}, \mathbf{e})$
- "Instantiate Evidence"
- Choose an ordering on variables, e.g., X_{1}, \ldots, X_{n}
- For $\mathrm{i}=1$ to n , If $\mathrm{X}_{\mathrm{i}} \notin\{\mathrm{Y}, \mathrm{E}\}$
- Collect factors f_{1}, \ldots, f_{k} that include X_{i}
- Generate a new factor by eliminating X_{i} from these factors

$$
g=\sum_{X_{i}} \prod_{j=1} f_{j}
$$

- Variable X_{i} has been eliminated!
- Normalize $\mathrm{P}(\mathrm{Y}, \mathrm{e})$ to obtain $\mathrm{P}(\mathrm{Y} \mid \mathrm{e})$

VE for MRF

- Exactly the same algorithm works!
- Factors are no longer CPTs
- But VE doesn't care

(C) Dhruv Batra

Example

- Chain MRF

Compute:
$P\left(X_{1} \mid X_{5}=x_{5}\right)$

- VE steps on board

Example

- Chain MRF

Compute:

$$
\begin{array}{r}
P\left(X_{i} \mid X_{5}=x_{5}\right) \\
\forall i \in\{1,2,3,4\}
\end{array}
$$

Variable elimination for every i , what's the complexity?
Can we do better by caching intermediate results?
Yes! via Junction-Trees
But let's look at BP first

New Topic: Belief Propagation

What is BP ?

- Technique invented by Judea Pearl in 1982
- Initially to compute marginals in BNs
- Later generalized
- to MRFs, Factor Graphs
- To MAP inference; to Marginal-MAP inference
- Lots of analysis
- Under some cases EXACT
- Tree graphs
- In this setting, BP equivalent to VE on Junction-Trees
- Submodular potentials
- In this setting, BP equivalent to Graph-Cuts! [Tarlow et al. UAI11]
- In general Approximate

Message Passing

- Variables/Factors "talk" to each other via messages:

Overview of BP

- Pick a graph to pass messages on
- Cluster Graph
- Pick an ordering of edges
- Round-robin
- Leaves-Root-Leaves on a tree
- Asynchonous
- Till convergence or exhaustion:
- Pass messages on edges
- At vertices on graph compute psuedo-marginals

Cluster graph

- Cluster Graph: For set of factors F
- Undirected graph
- Each node i associated with a cluster \mathbf{C}_{i}
- Each edge $i-j$ is associated with a separator set of variables $\mathbf{S}_{\mathrm{ij}} \subseteq \mathbf{C}_{\mathrm{i}} \cap \mathbf{C}_{\mathrm{j}}$

Generalized BP

- Initialization:
- Assign each factor ϕ to a cluster $\alpha(\phi)$, Scope[$[\phi] \subseteq C_{\alpha(\phi)}$
- Initialize cluster: $\psi_{i}^{0}\left(\mathbf{C}_{i}\right) \propto \prod_{\phi: \alpha(\phi)=i} \phi$
- Initialize messages: $\delta_{j \rightarrow i}=1$

- While not converged, send messages:

$$
\delta_{i \rightarrow j}\left(\mathbf{S}_{i j}\right) \propto \sum_{\mathbf{C}_{i}-\mathbf{S}_{i j}} \psi_{i}^{0}\left(\mathbf{C}_{i}\right) \prod_{k \in \mathcal{N}(i)-j} \delta_{k \rightarrow i}\left(\mathbf{S}_{i k}\right)
$$

- Belief:
- On Board

Properties of Cluster Graphs

- Family preserving:

For set of factors F

- for each factor $\mathrm{f}_{\mathrm{j}} \in F$, ヨnode i such that scope $\left[\mathrm{f}_{\mathrm{i}}\right] \subseteq \mathrm{C}_{\mathrm{i}}$

Properties of Cluster Graphs

- Running intersection property (RIP)
- If $X \in \mathbf{C}_{i}$ and $X \in \mathbf{C}_{j}$ then
\exists one and only one path from $\mathbf{C}_{\mathbf{i}}$ to \mathbf{C}_{j} where $\mathrm{X} \in \mathbf{S}_{\mathrm{uv}}$ for every edge (u, v) in the path

Two cluster graph satisfying RIP with different edge sets

Overview of BP

- Pick a graph to pass messages on
- Cluster Graph
- Pick an ordering of edges
- Round-robin
- Leaves-Root-Leaves on a tree
- Asynchonous
- Till convergence or exhaustion:
- Pass messages on edges
- At vertices on graph compute psuedo-marginals

Cluster Graph for Loopy BP

- Bethe Cluster Graph
- Set of Clusters = Factors $F \cup\left\{X_{i}\right\}$
- Sometimes also called "Running BP on Factor Graphs"
- Example on board
- Does the Bethe Cluster Graph satisfy properties?

Loopy BP in Factor graphs

- From node i to factor j :
- $F(i)$ factors whose scope includes X_{i}

$$
\delta_{i \rightarrow j}\left(X_{i}\right) \propto \prod_{k \in \mathcal{F}(i)-j} \delta_{k \rightarrow i}\left(X_{i}\right)
$$

- From factor j to node i :
$-\quad$ Scope $\left[\phi_{j}\right]=Y \cup\left\{X_{i}\right\}$

$$
\delta_{j \rightarrow i}\left(X_{i}\right) \propto \sum_{\mathbf{y}} \phi_{j}\left(X_{i}, \mathbf{y}\right) \prod_{X_{k} \in \operatorname{Scope}\left[\phi_{j}\right]-X_{i}} \delta_{k \rightarrow j}\left(x_{k}\right)
$$

- Belief:
- Node:
- Factor:
Loopy BP on

Pairwise Markov Nets

$$
\overrightarrow{\delta_{i \rightarrow j}\left(y_{j}\right)}=\sum_{y_{i}} \phi_{i}\left(y_{i}\right) \phi_{i j}\left(y_{i}, y_{j}\right) \prod_{k \in \mathcal{N}(i)-j} \overrightarrow{\delta_{k \rightarrow i}\left(y_{i}\right)}
$$

(C) Dhruv Batra

