ECE 6504: Advanced Topics In

Machine Learning
Probabilistic Graphical Models and Large-Scale Learning

Topics
— Markov Random Fields: Inference
— Exact: VE
— Exact+Approximate: BP

Readings: Barber 5

Dhruv Batra
Virginia Tech
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Administrativia

« HW3

— Out 2 days ago
— Due: Apr 4, 11:55pm
— Implementation: Loopy Belief Propagation in MRFs
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Recap of Last Time
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Markov Nets

Set of random variables

Undirected graph

— Encodes independence assumptions

Unnormalized Factor Tables

Joint distribution:
— Product of Factors
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Pairwise MRFs

 Pairwise Factors

— A function of 2 variables

« Often unary terms are also allowed (although strictly speaking
unnecessary)

— On board
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Pairwise MRF: Example
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Normalization for computing probabilities

L Assignment Unnormalized | Normalized
 To compute actual probabilities, must compute AP d 300000 0.01
. . ‘e . a’ | b0 | | at 300000 0.04
normalization constant (also called partition function) a0 |00 | et | a0 300000 0.04
a’ | 80 | et | & 30 4.1-1076
a’ [ bt | 0| d° 500 6.9-107°
a | ot | O | dt 500 6.9-107°
a’ | bt | et | d° 5000000 0.69
a’ [ bt | et | dt 500 6.9-107°
al |80 0| d° 100 1.4.107°
al [0 0 | at 1000000 0.14
a' | b9 | et | d° 100 1.4-10—°
al |80 | et | & 100 1.4-107°
T R 10 1.4.10~F
at | bt 0| at 100000 0.014
at | bt | a® 100000 0.014
at | bt ]t | at 100000 0.014
« Computing partition function is hard! Must sum over all R
possible assignments /C,&
o ¢
C

(C) Dhruv Batra Slide Credit: Carlos Guestrin 7



Nearest-Neighbor Grids
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C% % + Segmentation

Ys —— unobserved or hidden variable
—— |ocal obsservg;;I
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« Given an undirected graph H over variables
X={X,,...X.}

« A distribution P factorizes over H if there exist
— subsets of variables D,CEX,..., D,,&X, such that D, are fully connected in H

— non-negative potentials (or factors) ¢,(D,),..., ¢.,(Dp,)
« also known as clique potentials

— such that

Pt X = LT m)
1=1

 Also called Markov random field H, or Gibbs distribution over H
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« Possible potentials for this graph:

Structure in cliques

ON0
L



Factor graphs

* Bipartite graph:
— variable nodes (ovals) for X,,...,X
— factor nodes (squares) for ¢y,...,9,,
— edge X, — ¢, if X; € Scope[p]]

* Very useful for approximate inference
— Make factor dependency explicit



Types of Graphical Models

Directed Factor Undirected
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Plan for today

« MRF Inference

— Exact Inference
* Variable Elimination

— Exact+Approximate Inference
» (General) Belief Propagation

» Cluster Graphs
— Family Preserving Property
— Running Intersection Property

« Message-Passing

— Approximate Inference
» Bethe Cluster Graph
* Loopy BP

— Exact Inference
« Junction Tree
« BP on Junction Trees
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Marginal Inference Example
« Evidence: E=e (e.g. N=t) @ ’
* Query variables of interest Y I

« Conditional Probability: P(Y | E=e)
— P(F | N=t)
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Variable Elimination algorithm

« Given a BN and a query P(Y|e) = P(Y,e)

— “Instantiate Evidence”
! IMPORTANT!!! ‘

« Choose an ordering on variables, e.g., X, ..., X,

« Fori=1ton,If X &Y,E}
— Collect factors f,,....f, that include X
— Generate a new factor by eliminating X, from these factors

Q_ZHfJ

X; 1=1

— Variable X; has been eliminated!

* Normalize P(Y,e) to obtain P(Y|e)
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VE for MRF

« Exactly the same algorithm works!
— Factors are no longer CPTs
— But VE doesn’t care
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Example

« Chain MRF

 VE steps on board
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Compute:

X1 |X5 —LU5)
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Example

 Chain MRF
Compute:
Q) )—D i x5 = )
Vi e {1,2,3,4}

Variable elimination for every i, what's the complexity?
Can we do better by caching intermediate results?

Yes! via Junction-Trees
But let’s look at BP first
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What is BP?

« Technique invented by Judea Pearl in 1982

— Initially to compute marginals in BNs

« Later generalized
— to MRFs, Factor Graphs
— To MAP inference; to Marginal-MAP inference

* Lots of analysis

— Under some cases EXACT

* Tree graphs
— In this setting, BP equivalent to VE on Junction-Trees
« Submodular potentials
— In this setting, BP equivalent to Graph-Cuts! [Tarlow et al. UAI11]

— In general Approximate
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Message Passing

« Variables/Factors “talk” to each other via messages:

“| (variable X;) think that you (variable X,):

belong to state 1 with confidence 0.4
belong to state 2 with confidence 10
belong to state 3 with confidence 1.5”
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Overview of BP

Pick a graph to pass messages on
— Cluster Graph

Pick an ordering of edges

— Round-robin

— Leaves-Root-Leaves on a tree
— Asynchonous

Till convergence or exhaustion:
— Pass messages on edges

At vertices on graph compute psuedo-marginals
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Cluster graph

e Cluster Graph:

For set of factors F

— Undirected graph

— Each node i associated with a cluster C,

3:BDF
— Each edge i — | is associated with a
separator set of variables §; € C;, N C,
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Generalized BP

* Initialization:
— Assign each factor ¢ to a cluster a(¢), Scope[$p]CC,,,

— Initialize cluster: ¢(C;) o« ] ¢
¢a(¢) i 1iA,BC—— 4BEK_,
— Initialize messages: §,_.; = 1 I :
2:8,¢,D——5:D,E( D

* While not converged send messages:

di— (S Z ;) (C H Ok—i(Sik)

C.,—S;; keN(z')—j

* Belief:
— On Board
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Properties of Cluster Graphs

 Family preserving:
For set of factors F

1: A, B, C 4: B E — for each factor f; €F, dnode i such that

scopelf] CC.
c & E 3. BDF petfil <€,
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Properties of Cluster Graphs
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 Running intersection property
(RIP)

— If X€C; and X=C, then
1 one and only one path from C; to C,
where X<§ , for every edge
(u,v) in the path

3:BDF

Slide Credit: Carlos Guestrin
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Two cluster graph satisfying RIP
with different edge sets

C E 3:BDF
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Overview of BP

Pick a graph to pass messages on
— Cluster Graph

Pick an ordering of edges

— Round-robin

— Leaves-Root-Leaves on a tree
— Asynchonous

Till convergence or exhaustion:
— Pass messages on edges

At vertices on graph compute psuedo-marginals
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Cluster Graph for Loopy BP

« Bethe Cluster Graph
— Set of Clusters = Factors F U {X}
— Sometimes also called “Running BP on Factor Graphs”
— Example on board

* Does the Bethe Cluster Graph satisfy properties?

(C) Dhruv Batra
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Loopy BP in Factor graphs

. From node i to factor J:
— (i) factors whose scope @ ‘ @ @ @

includes X; /
6ii(Xi) o | Or—i(Xy)
ABD

keF(i)—j

"~ CDE

. From factor j to node .
—  Scope[p] =Y U{X}

y

XeScopelp;]-X

. Belief:
— Node:

— Factor:
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Loopy BP on
Pairwise Markov Nets

—>
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