ECE 6504: Advanced Topics in Machine Learning

Probabilistic Graphical Models and Large-Scale Learning

Topics

- Markov Random Fields: Representation
 - Conditional Random Fields
 - Log-Linear Models

Readings: KF 4.1-3; Barber 4.1-2

Dhruv Batra Virginia Tech

Administrativia

- No class
 - Next week (Tue, Thu)
- Project Proposal
 - Due: Mar 12, Mar 5, 11:59pm
 - <=2pages, NIPS format</p>
- HW2
 - Out later today
 - Due: Mar 12, 11:59pm
 - Implementation: Variable Elimination in BNs

Recap of Last Time

Markov Nets

- Set of random variables
- Undirected graph
 - Encodes independence assumptions
- Unnormalized Factor Tables

- Joint distribution:
 - Product of Factors

Pairwise MRFs

- Pairwise Factors
 - A function of 2 variables
 - Often unary terms are also allowed (although strictly speaking unnecessary)
 - On board

Pairwise MRF: Example

$\phi_1[A,B]$	$\phi_2[B,C]$	$\phi_3[C,D]$	$\phi_4[D, A]$		
$egin{array}{cccc} a^0 & b^0 & 30 \ a^0 & b^1 & 5 \ a^1 & b^0 & 1 \ a^1 & b^1 & 10 \end{array}$	$egin{array}{cccc} b^0 & c^0 & 100 \ b^0 & c^1 & 1 \ b^1 & c^0 & 1 \ b^1 & c^1 & 100 \end{array}$	$egin{array}{cccc} c^0 & d^0 & 1 \ c^0 & d^1 & 100 \ c^1 & d^0 & 100 \ c^1 & d^1 & 1 \end{array}$	$egin{array}{cccccccccccccccccccccccccccccccccccc$		

Computing probabilities in Markov networks vs BNs

• In a BN, can compute prob. of an instantiation by multiplying CPTs

 In an Markov networks, can only compute ratio of probabilities directly

$\phi_1[A,B]$		¢	$\phi_2[B,C]$		$\phi_3[C,D]$			$\phi_4[D, A]$			
$egin{array}{c} a^0 \\ a^0 \\ a^1 \\ a^1 \end{array}$	$b^0 \\ b^1 \\ b^0 \\ b^1 \\ b^1$	30 5 1 10	b^0 b^0 b^1 b^1	$egin{array}{c} c^0 \\ c^1 \\ c^0 \\ c^1 \end{array}$	100 1 1 100	$\begin{vmatrix} c^0\\ c^0\\ c^1\\ c^1 \end{vmatrix}$	d^0 d^1 d^0 d^1	1 100 100 1	$egin{array}{c} d^0 \ d^0 \ d^1 \ d^1 \ d^1 \end{array}$	$egin{array}{c} a^0 \\ a^1 \\ a^0 \\ a^1 \end{array}$	100 1 1 100

Normalization for computing probabilities

• To compute actual probabilities, must compute normalization constant (also called partition function)

 Computing partition function is hard! Must sum over all possible assignments

Nearest-Neighbor Grids

Low Level Vision

- Image denoising
- Stereo
- Optical flow
- Shape from shading
- Superresolution
- Segmentation

 $y_s \longrightarrow$ unobserved or hidden variable

(C) Dhruv Batra local observation

General Gibbs Distribution

- Arbitrary Factors
- "Induced" MRF Graph

Factorization in Markov networks

- Given an undirected graph *H* over variables
 X={X₁,...,X_n}
- A distribution *P* factorizes over *H* if there exist
 - subsets of variables $D_1 \subseteq X, ..., D_m \subseteq X$, such that D_i are *fully connected* in H

m

- non-negative potentials (or factors) $\phi_1(\mathbf{D_1}), \dots, \phi_m(\mathbf{D_m})$
 - also known as clique potentials
- such that

$$P(X_1,\ldots,X_n) = \frac{1}{Z} \prod_{i=1}^m \phi_i(\mathbf{D}_i)$$

• Also called Markov random field *H*, or Gibbs distribution over *H*

MRFs

• Given a graph H, are factors unique?

Active Trails and Separation

• A path $X_1 - ... - X_k$ is **active** when set of variables **Z** are observed

- if none of $X_i \in \{X_1, \dots, X_k\}$ are observed (are part of **Z**)

• Variables X are **separated** from Y given Z in graph

– If no active path between any $X \in \mathbf{X}$ and any $Y \in \mathbf{Y}$ given \mathbf{Z}

(C) Dhruv Batra

Markov networks representation Theorem 1

- If
 - you can write distribution as a normalized product of factors
- Then
 - Can read independencies from graph

 Counter-example: X₁,...,X₄ are binary, and only eight assignments have positive probability: (0,0,0,0) (1,0,0) (1,1,0,0) (1,1,1,0)

- For example, $X_1 \perp X_3 | X_2, X_4$:
 - E.g., P(X₁=0|X₂=0, X₄=0)
- But distribution doesn't factorize!!

Representation Theorem for Markov Networks Hammersley–Clifford theorem

Markov Blanket

= Markov Blanket of variable x₈ – Parents, children and parents of children

Independence Assumptions in MNs

- Separation defines global independencies
- Pairwise Markov Independence:
 - Pairs of non-adjacent variables A,B are independent given all others

- Markov Blanket:
 - Variable A independent of rest given its neighbors

P-map

- Perfect map
- G is a P-map for P if
 I(P) = I(G)

• Question: Does every distribution *P* have P-map?

Structure in cliques

• Possible potentials for this graph:

Factor graphs

- Bipartite graph:
 - variable nodes (ovals) for X_1, \ldots, X_n
 - factor nodes (squares) for ϕ_1, \dots, ϕ_m
 - edge $X_i \phi_j$ if $X_i \epsilon$ Scope[ϕ_j]

- Very useful for approximate inference
 - Make factor dependency explicit

Types of Graphical Models

Factor Graphs show Fine-grained Factorization $p(x) = \frac{1}{Z} \prod_{f \in \mathcal{F}} \psi_f(x_f)$

Plan for today

- Undirected Graphical Models: Representation
 - Conditional Random Fields
 - Log-Linear Models
- Undirected Graphical Models: Inference
 - Variable Elimination

Conditional Random Fields

• What's the difference between Naïve Bayes & Logistic Regression?

Nearest-Neighbor Grids

Low Level Vision

- Image denoising
- Stereo
- Optical flow
- Shape from shading
- Superresolution
- Segmentation
- $y_s \longrightarrow$ unobserved or hidden variable
- $x_s \longrightarrow$ local observation

Lazy Snapping Siggraph 2004

Yin Li Jian Sun Chi-Keung Tang Heung-Yeung Shum

Hong Kong Univercity of Microsoft Research Science and Technology Asia

Logarithmic representation

• Standard model:

$$P(X_1,\ldots,X_n) = \frac{1}{Z} \prod_{i=1}^m \phi_i(\mathbf{D}_i)$$

- Log representation of potential (assuming positive potential):
 - also called the energy function

• Log representation of Markov net:

Log-linear Markov network (most common representation)

- Feature (or Sufficient Statistic) is some function f
 [D] for some subset of variables D
 - e.g., indicator function
- Log-linear model over a Markov network H:
 - a set of features $f_1[D_1], \dots, f_k[D_k]$
 - each **D**_i is a subset of a clique in *H*
 - two f's can be over the same variables
 - a set of weights w_1, \ldots, w_k
 - usually learned from data

$$- P(X_1, \dots, X_n) = \frac{1}{Z} \exp\left[\sum_{i=1}^k w_i f_i(\mathbf{D}_i)\right]$$

CRFs

Felzenszwalb, Huttenlocher, IJCV '04

Node Feature -- Color

Hoiem, Efros, Hebert, IJCV 2007

Node Feature – Color Clustering

 $\left\{ (\mu_1, \Sigma_1), (\mu_2, \Sigma_2), \dots, (\mu_N, \Sigma_N) \right\}$

K-means/X-means, Pelleg, Moore Auton Lab implementation

Dictionary

Feature Space

Node Feature -- Color

Hoiem, Efros, Hebert, IJCV 2007

Conditional Random Fields

Summary of types of Markov nets

- Pairwise Markov networks
 - very common
 - potentials over nodes and edges
- General MRFs
- Factor graphs
 - explicit representation of factors
 - you know exactly what factors you have
 - very useful for approximate inference
- Log-linear models
 - log representation of potentials
 - linear coefficients learned from data
 - most common for learning MNs