ECE 6504: Advanced Topics in Machine Learning

Probabilistic Graphical Models and Large-Scale Learning

Topics

- Markov Random Fields: Representation
- Conditional Random Fields
- Log-Linear Models

Readings: KF 4.1-3; Barber 4.1-2
Dhruv Batra
Virginia Tech

Administrativia

- No class
- Next week (Tue, Thu)
- Project Proposal
- Due: Mar 12, Mar 5, 11:59pm
- <=2pages, NIPS format
- HW2
- Out later today
- Due: Mar 12, 11:59pm
- Implementation: Variable Elimination in BNs

Recap of Last Time

Markov Nets

- Set of random variables
- Undirected graph
- Encodes independence assumptions
- Unnormalized Factor Tables
- Joint distribution:
- Product of Factors

Pairwise MRFs

- Pairwise Factors
- A function of 2 variables
- Often unary terms are also allowed (although strictly speaking unnecessary)
- On board

Pairwise MRF: Example

\[

\]

Computing probabilities in Markov networks vs BNs

- In a BN, can compute prob. of an instantiation by multiplying CPTs
- In an Markov networks, can only compute ratio of probabilities directly

Normalization for computing probabilities

- To compute actual probabilities, must compute normalization constant (also called partition function)

Assignment			Unnormalized	Normalized	
a^{0}	b^{0}	c^{0}	d^{0}	300000	0.04
a^{0}	b^{0}	c^{0}	d^{1}	300000	0.04
a^{0}	b^{0}	c^{1}	d^{0}	300000	0.04
a^{0}	b^{0}	c^{1}	d^{1}	30	$4.1 \cdot 10^{-6}$
a^{0}	b^{1}	c^{0}	d^{0}	500	$6.9 \cdot 10^{-5}$
a^{0}	b^{1}	c^{0}	d^{1}	500	$6.9 \cdot 10^{-5}$
a^{0}	b^{1}	c^{1}	d^{0}	5000000	0.69
a^{0}	b^{1}	c^{1}	d^{1}	500	$6.9 \cdot 10^{-5}$
a^{1}	b^{0}	c^{0}	d^{0}	100	$1.4 \cdot 10^{-5}$
a^{1}	b^{0}	c^{0}	d^{1}	1000000	0.14
a^{1}	b^{0}	c^{1}	d^{0}	100	$1.4 \cdot 10^{-5}$
a^{1}	b^{0}	c^{1}	d^{1}	100	$1.4 \cdot 10^{-5}$
a^{1}	b^{1}	c^{0}	d^{0}	10	$1.4 \cdot 10^{-6}$
a^{1}	b^{1}	c^{0}	d^{1}	100000	0.014
a^{1}	b^{1}	c^{1}	d^{0}	100000	0.014
a^{1}	b^{1}	c^{1}	d^{1}	100000	0.014

- Computing partition function is hard! Must sum over all possible assignments

Nearest-Neighbor Grids

Low Level Vision

- Image denoising
- Stereo
- Optical flow
- Shape from shading
- Superresolution
- Segmentation
$y_{s} \longrightarrow$ unobserved or hidden variable

General Gibbs Distribution

- Arbitrary Factors
- "Induced" MRF Graph

Factorization in Markov networks

- Given an undirected graph H over variables $\mathbf{X}=\left\{\mathrm{X}_{1}, \ldots, \mathrm{X}_{\mathrm{n}}\right\}$
- A distribution P factorizes over H if there exist

- subsets of variables $\mathbf{D}_{1} \subseteq \mathbf{X}, \ldots, \mathbf{D}_{\mathbf{m}} \subseteq \mathbf{X}$, such that $\mathbf{D}_{\mathbf{i}}$ are fully connected in H
- non-negative potentials (or factors) $\phi_{1}\left(\mathbf{D}_{1}\right), \ldots, \phi_{\mathrm{m}}\left(\mathbf{D}_{\mathrm{m}}\right)$
- also known as clique potentials
- such that

$$
P\left(X_{1}, \ldots, X_{n}\right)=\frac{1}{Z} \prod_{i=1}^{m} \phi_{i}\left(\mathbf{D}_{i}\right)
$$

- Also called Markov random field H, or Gibbs distribution over H

MRFs

- Given a graph H , are factors unique?

Active Trails and Separation

- A path $X_{1}-\ldots-X_{k}$ is active when set of variables Z are observed
- if none of $X_{i} \in\left\{X_{1}, \ldots, X_{k}\right\}$ are observed (are part of Z)
- Variables \mathbf{X} are separated from \mathbf{Y} given \mathbf{Z} in graph
- If no active path between any $X \in \mathbf{X}$ and any $Y \in \mathbf{Y}$ given \mathbf{Z}

Markov networks representation Theorem 1

- If
- you can write distribution as a normalized product of factors
- Then
- Can read independencies from graph

What about the other direction for Markov networks ?

If H is an I-map for P

- Counter-example: X_{1}, \ldots, X_{4} are binary, and only eight assignments have positive probability:

$$
\begin{array}{llll}
(0,0,0,0) & (1,0,0,0) & (1,1,0,0) & (1,1,1,0) \\
(0,0,0,1) & (0,0,1,1) & (0,1,1,1) & (1,1,1,1)
\end{array}
$$

- For example, $\mathrm{X}_{1} \perp \mathrm{X}_{3} \mid \mathrm{X}_{2}, \mathrm{X}_{4}$:
- E.g., $P\left(X_{1}=0 \mid X_{2}=0, X_{4}=0\right)$
- But distribution doesn't factorize!!

Representation Theorem for Markov Networks Hammersley-Clifford theorem

$$
\begin{aligned}
& \begin{array}{l}
\text { If joint probability } \\
\text { distribution } P: \\
P\left(X_{1}, \ldots, X_{n}\right)=\frac{1}{Z} \prod_{i=1}^{m} \phi_{i}\left(\mathbf{D}_{i}\right)
\end{array} \quad \text { Then }
\end{aligned} \quad H \text { is an I-map for } P
$$

If H is an I-map for P
and
P is a positive distribution
joint probability distribution P :

$$
P\left(X_{1}, \ldots, X_{n}\right)=\frac{1}{Z} \prod_{i=1}^{m} \phi_{i}\left(\mathbf{D}_{i}\right)
$$

Markov Blanket

$=$ Markov Blanket of variable $\mathrm{x}_{8}-$ Parents, children and parents of children

Independence Assumptions in MNs

- Separation defines global independencies
- Pairwise Markov Independence:
- Pairs of non-adjacent variables A, B are independent given all others
- Markov Blanket:
- Variable A independent of rest given its neighbors

P-map

- Perfect map
- G is a P-map for P if
- $I(P)=I(G)$
- Question: Does every distribution P have P-map?

Structure in cliques

- Possible potentials for this graph:

Factor graphs

- Bipartite graph:
- variable nodes (ovals) for X_{1}, \ldots, X_{n}
- factor nodes (squares) for $\phi_{1}, \ldots, \phi_{m}$
- edge $X_{i}-\phi_{j}$ if $X_{i} \varepsilon \operatorname{Scope}\left[\phi_{j}\right]$

- Very useful for approximate inference
- Make factor dependency explicit

Types of Graphical Models

Factor

Undirected

Factor Graphs show
 Fine-grained Factorization

$$
p(x)=\frac{1}{Z} \prod_{f \in \mathcal{F}} \psi_{f}\left(x_{f}\right)
$$

Plan for today

- Undirected Graphical Models: Representation
- Conditional Random Fields
- Log-Linear Models
- Undirected Graphical Models: Inference
- Variable Elimination

Conditional Random Fields

- What's the difference between Naïve Bayes \& Logistic Regression?

Nearest-Neighbor Grids

Low Level Vision

- Image denoising
- Stereo
- Optical flow
- Shape from shading
- Superresolution
- Segmentation
$y_{s} \longrightarrow$ unobserved or hidden variable
$x_{s} \longrightarrow$ local observation

Lazy Snapping Siggraph 2004

Yin Li
Chil-Keung Tang
Jian Sun
Heung-Yeung Shum

Hong Kong Univercity of Microsoft Research
Science and Technology
Asia

Logarithmic representation

- Standard model:

$$
P\left(X_{1}, \ldots, X_{n}\right)=\frac{1}{Z} \prod_{i=1}^{m} \phi_{i}\left(\mathbf{D}_{i}\right)
$$

- Log representation of potential (assuming positive potential):
- also called the energy function
- Log representation of Markov net:

Log-linear Markov network (most common representation)

- Feature (or Sufficient Statistic) is some function f [D] for some subset of variables D
- e.g., indicator function
- Log-linear model over a Markov network H :
- a set of features $f_{1}\left[D_{1}\right], \ldots, f_{k}\left[D_{k}\right]$
- each \mathbf{D}_{i} is a subset of a clique in H
- two f's can be over the same variables
- a set of weights $\mathrm{w}_{1}, \ldots, \mathrm{w}_{\mathrm{k}}$
- usually learned from data
- $P\left(X_{1}, \ldots, X_{n}\right)=\frac{1}{Z} \exp \left[\sum_{i=1}^{k} w_{i} f_{i}\left(\mathbf{D}_{i}\right)\right]$

CRFs

Felzenszwalb, Huttenlocher, IJCV '04

(C) Dhruv Batra

CRFs

Node Features

(C) Dhruv Batra

Node Feature -- Color

Hoiem, Efros, Hebert, IJCV 2007

Node Feature - Color Clustering

Node Feature -- Color

Feature Extraction
Step 1
Feature Extraction
Step 2

Pr (Cluster | feature)

Hoiem, Efros, Hebert, IJCV 2007

Conditional Random Fields

(C) Dhruv Batra

Summary of types of Markov nets

- Pairwise Markov networks
- very common
- potentials over nodes and edges
- General MRFs
- Factor graphs
- explicit representation of factors
- you know exactly what factors you have
- very useful for approximate inference
- Log-linear models
- log representation of potentials
- linear coefficients learned from data
- most common for learning MNs

