
ECE 6504: Advanced Topics in 
Machine Learning 

Probabilistic Graphical Models and Large-Scale Learning 

 
Dhruv Batra  
Virginia Tech 

Topics 
–  Markov Random Fields: Representation 

–  Conditional Random Fields 
–  Log-Linear Models 

Readings: KF 4.1-3; Barber 4.1-2 



Administrativia 
•  No class 

–  Next week (Tue, Thu) 

•  Project Proposal 
–  Due: Mar 12, Mar 5, 11:59pm  
–  <=2pages, NIPS format 

•  HW2 
–  Out later today 
–  Due: Mar 12, 11:59pm  
–  Implementation: Variable Elimination in BNs 
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Recap of Last Time 
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Markov Nets 
•  Set of random variables 

•  Undirected graph  
–  Encodes independence assumptions 

•  Unnormalized Factor Tables 

•  Joint distribution: 
–  Product of Factors 
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Pairwise MRFs 
•  Pairwise Factors 

–  A function of 2 variables 
•  Often unary terms are also allowed (although strictly speaking 

unnecessary) 

–  On board 
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Pairwise MRF: Example 
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•  In a BN, can compute prob. of an 
instantiation by multiplying CPTs 

•  In an Markov networks, can only 
compute ratio of probabilities directly 

Computing probabilities in 
Markov networks vs BNs 
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•  To compute actual probabilities, must compute 
normalization constant (also called partition function) 

•  Computing partition function is hard! Must sum over all 
possible assignments 

Normalization for computing probabilities 
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Nearest-Neighbor Grids 

unobserved or hidden variable 

local observation 

Low Level Vision 

•  Image denoising 

•  Stereo 

•  Optical flow 

•  Shape from shading 

•  Superresolution 

•  Segmentation 
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General Gibbs Distribution 
•  Arbitrary Factors 

•  “Induced” MRF Graph 
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•  Given an undirected graph H over variables  
X={X1,...,Xn} 

•  A distribution P factorizes over H if there exist  
–  subsets of variables D1⊆X,…, Dm⊆X, such that Di are fully connected in H 
–  non-negative potentials (or factors) φ1(D1),…, φm(Dm) 

•  also known as clique potentials 
–  such that 

•  Also called Markov random field H, or Gibbs distribution over H 

Factorization in Markov networks 
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MRFs 
•  Given a graph H, are factors unique? 
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Active Trails and Separation 
•  A path X1 – … – Xk is active when set of variables Z 

are observed  
–  if none of Xi ∈ {X1,…,Xk} are observed (are part of Z)  

•  Variables X are separated from Y given Z in graph 
–  If no active path between any X ∈ X and any Y ∈ Y given Z 
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•  If  
–  you can write distribution as a normalized product of factors 

•  Then 
–  Can read independencies from graph 

H is an I-map for P 

If joint probability 
distribution P: 

Then 

Markov networks representation Theorem 1 
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•  Counter-example: X1,…,X4 are binary, and only eight assignments 
have positive probability: 

•  For example, X1⊥X3|X2,X4: 
–  E.g., P(X1=0|X2=0, X4=0) 

•  But distribution doesn’t factorize!! 

If H is an I-map for P 

joint probability 
distribution P: 

Then 

What about the other direction for 
Markov networks ? 
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If H is an I-map for P 
and  

P is a positive distribution 

H is an I-map for P 

If joint probability 
distribution P: 

joint probability 
distribution P: 

Then 

Then 

Representation Theorem for Markov Networks 
Hammersley–Clifford theorem 
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 = Markov Blanket of variable x8	  – Parents, 
children and parents of children  	  

Markov Blanket 
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T1 

T3 
T4 

T5 T6 

T2 

T7 T8 T9 

Independence Assumptions in MNs 
•  Separation defines global independencies 

•  Pairwise Markov Independence: 
–  Pairs of non-adjacent variables A,B are  
   independent given all others 

•  Markov Blanket:  
–  Variable A independent of rest given its neighbors 
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P-map 
•  Perfect map 

•  G is a P-map for P if 
–  I(P) = I(G)   

•  Question: Does every distribution P have P-map? 

(C) Dhruv Batra  19 



Structure in cliques 

•  Possible potentials for this graph: A 
B 

C 



Factor graphs 

A 
B 

C 

•  Bipartite graph: 
–  variable nodes (ovals) for X1,…,Xn 
–  factor nodes (squares) for φ1,…,φm 
–  edge Xi – φj if Xi ε Scope[φj] 

•  Very useful for approximate inference 
–  Make factor dependency explicit 



Types of Graphical Models 

Directed Undirected Factor 
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Factor Graphs show 
Fine-grained Factorization 

p(x) =
1

Z

�

f∈F
ψf (xf )
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Plan for today 
•  Undirected Graphical Models: Representation 

–  Conditional Random Fields 
–  Log-Linear Models 

•  Undirected Graphical Models: Inference 
–  Variable Elimination 
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Conditional Random Fields 
•  What’s the difference between Naïve Bayes & 

Logistic Regression? 
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Nearest-Neighbor Grids 

unobserved or hidden variable 

local observation 

Low Level Vision 

•  Image denoising 

•  Stereo 

•  Optical flow 

•  Shape from shading 

•  Superresolution 

•  Segmentation 
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Logarithmic representation 
•  Standard model: 

•  Log representation of potential (assuming positive potential): 
–  also called the energy function 

•  Log representation of Markov net: 



Log-linear Markov network 
(most common representation) 

•  Feature (or Sufficient Statistic) is some function f 
[D] for some subset of variables D 
–  e.g., indicator function 

•  Log-linear model over a Markov network H: 
–  a set of features f1[D1],…, fk[Dk] 

•  each Di is a subset of a clique in H 
•  two f’s can be over the same variables 

–  a set of weights w1,…,wk 
•  usually learned from data 

–     



CRFs 
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Felzenszwalb, Huttenlocher, 
 IJCV ‘04 



CRFs 
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Node Features Edge Features 

fi(Yi) 

fj(Yj) 

fij(Yi,Yj) 



Node Feature -- Color 

Superpixel 

Rmean 
Gmean 
Bmean 
Hmean 
Smean 
Vmean 

5-dim 

hist on H 

3-dim 

hist on S 

Feature Extraction 
Step 1 

Hoiem, Efros, Hebert, IJCV 2007 



Node Feature – Color Clustering 

Feature Space 

Dictionary 

K-means/X-means, Pelleg, Moore 
Auton Lab implementation 

  

! 

(µ1,"1),(µ2,"2),…,(µN ,"N )



Node Feature -- Color 

Superpixel 

Rmean 
Gmean 
Bmean 
Hmean 
Smean 
Vmean 
5-dim 

hist on H 
3-dim 

hist on S 

Feature Extraction 
Step 1 

Hoiem, Efros, Hebert, IJCV 2007 

! 

Pr(Cluster 1 |"i)

  

! 

!

  

! 

!! 

Pr(Cluster i |"i)

! 

Pr(Cluster N |"i)

Feature Extraction 
Step 2 

Pr (Cluster | feature) 



Conditional Random Fields 
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Summary of types of Markov nets 
•  Pairwise Markov networks 

–  very common 
–  potentials over nodes and edges 

•  General MRFs 

•  Factor graphs 
–  explicit representation of factors 

•  you know exactly what factors you have 
–  very useful for approximate inference 

•  Log-linear models 
–  log representation of potentials 
–  linear coefficients learned from data 
–  most common for learning MNs 


