ECE 6504: Advanced Topics in Machine Learning

Probabilistic Graphical Models and Large-Scale Learning

Topics

- Markov Random Fields: Representation
 - Pairwise MRFs, Gibbs distribution
 - Conditional Random Fields

Readings: KF 4.1-3; Barber 4.1-2

Dhruv Batra Virginia Tech

Administrativia

- Project Proposal
 - Due: Mar 12, Mar 5, 11:59pm
 - <=2pages, NIPS format</p>

Recap of Last Time

Moralization – "Marry" Parents

Connect nodes that appear together in an initial factor

Induced graph

Different elimination order can lead to different induced graph

Induced graph and complexity of VE

Read complexity from cliques in induced graph

 Structure of induced graph encodes complexity of VE!!!

Theorem:

- Every factor generated by VE is a clique in I_{FO}
- Every maximal clique in I_{FO} corresponds to a factor generated by VE

Induced width

Size of largest clique in I_{FO} minus 1

Treewidth

induced width of best order O*

Plan for today

- Undirected Graphical Models
 - Pairwise MRFs
 - General Gibbs distribution
 - Active trails, separation
 - I-maps, P-maps
 - Conditional Random Fields

A general Bayes net

- Set of random variables
- Directed acyclic graph
 - Encodes independence assumptions
- CPTs
 - Conditional Probability Tables
- Joint distribution:

$$P(X_1,\ldots,X_n) = \prod_{i=1}^n P\left(X_i \mid \mathbf{Pa}_{X_i}\right)$$

Markov Nets

- Set of random variables
- Undirected graph
 - Encodes independence assumptions
- Unnormalized Factor Tables

- Joint distribution:
 - Product of Factors

Pairwise MRFs

- Pairwise Factors
 - A function of 2 variables
 - Often unary terms are also allowed (although strictly speaking unnecessary)
 - On board

Pairwise MRF: Example

$\phi_1[A,B]$	$\phi_2[B,C]$	$\phi_3[C,D]$	$\phi_4[D, A]$		
$egin{array}{cccc} a^0 & b^0 & 30 \ a^0 & b^1 & 5 \ a^1 & b^0 & 1 \ a^1 & b^1 & 10 \end{array}$	$egin{array}{cccc} b^0 & c^0 & 100 \ b^0 & c^1 & 1 \ b^1 & c^0 & 1 \ b^1 & c^1 & 100 \end{array}$	$egin{array}{cccc} c^0 & d^0 & 1 \ c^0 & d^1 & 100 \ c^1 & d^0 & 100 \ c^1 & d^1 & 1 \end{array}$	$egin{array}{cccc} d^0 & a^0 & 100 \ d^0 & a^1 & 1 \ d^1 & a^0 & 1 \ d^1 & a^1 & 100 \end{array}$		

Computing probabilities in Markov networks vs BNs

• In a BN, can compute prob. of an instantiation by multiplying CPTs

 In an Markov networks, can only compute ratio of probabilities directly

$\phi_1[A, B]$		¢	$\phi_2[B, C]$		$\phi_3[C,D]$			$\phi_4[D, A]$			
$egin{aligned} a^0 \ a^0 \ a^1 \ a^1 \ a^1 \end{aligned}$	$b^0 \\ b^1 \\ b^0 \\ b^1 \\ b^1$	30 5 1 10	$b^0 \\ b^0 \\ b^1 \\ b^1 $	$egin{array}{c} c^0 \\ c^1 \\ c^0 \\ c^1 \end{array}$	100 1 1 100	$egin{array}{c} c^0 \\ c^1 \\ c^1 \end{array}$	d^0 d^1 d^0 d^1	1 100 100 1	$egin{array}{c} d^0 \ d^0 \ d^1 \ d^1 \ d^1 \end{array}$	$egin{array}{c} a^0 \\ a^1 \\ a^0 \\ a^1 \end{array}$	100 1 1 100

Normalization for computing probabilities

• To compute actual probabilities, must compute normalization constant (also called partition function)

• Computing partition function is hard! Must sum over all possible assignments

Nearest-Neighbor Grids

Low Level Vision

- Image denoising
- Stereo
- Optical flow
- Shape from shading
- Superresolution
- Segmentation

 $y_s \longrightarrow$ unobserved or hidden variable

General Gibbs Distribution

- Arbitrary Factors
- "Induced" MRF Graph

Factorization in Markov networks

- Given an undirected graph *H* over variables
 X={X₁,...,X_n}
- A distribution *P* factorizes over *H* if there exist
 - subsets of variables $D_1 \subseteq X, ..., D_m \subseteq X$, such that D_i are *fully connected* in H

m

- non-negative potentials (or factors) $\phi_1(\mathbf{D_1}), \dots, \phi_m(\mathbf{D_m})$
 - also known as clique potentials
- such that

$$P(X_1,\ldots,X_n) = \frac{1}{Z} \prod_{i=1}^m \phi_i(\mathbf{D}_i)$$

• Also called Markov random field *H*, or Gibbs distribution over *H*

MRFs

• Given a graph H, are factors unique?

Local Structures in BNs

- Causal Trail - $X \rightarrow Y \rightarrow Z$
- Evidential Trail
 X ← Y ← Z
- Common Cause $- X \leftarrow Y \rightarrow Z$
- Common Effect (v-structure) - $X \rightarrow Y \leftarrow Z$

Local Structures in MNs

On board

Active Trails and Separation

• A path $X_1 - ... - X_k$ is **active** when set of variables **Z** are observed

- if none of $X_i \in \{X_1, \dots, X_k\}$ are observed (are part of **Z**)

• Variables X are **separated** from Y given Z in graph

– If no active path between any $X \in \mathbf{X}$ and any $Y \in \mathbf{Y}$ given \mathbf{Z}

(C) Dhruv Batra

Separation

• So what if **X** and **Y** are separated given **Z**?

Factorization + d-sep → Independence

- Theorem:
 - If
 - P factorizes over G
 - $d\text{-sep}_G(X, Y \mid Z)$
 - Then
 - $P \vdash (\mathbf{X} \perp \mathbf{Y} \mid \mathbf{Z})$
 - Corollary:
 - $I(G) \subseteq I(P)$
 - All independence assertions read from G are correct!

The BN Representation Theorem

Read independencies of *P* from BN structure *G*

(C) Dhruv Batra

Slide Credit: Carlos Guestrin

Markov networks representation Theorem 1

- If
 - you can write distribution as a normalized product of factors
- Then
 - Can read independencies from graph

 Counter-example: X₁,...,X₄ are binary, and only eight assignments have positive probability: (0,0,0,0) (1,0,0,0) (1,1,0,0) (1,1,1,0)

- For example, $X_1 \perp X_3 | X_2, X_4$:
 - E.g., P(X₁=0|X₂=0, X₄=0)
- But distribution doesn't factorize!!

Representation Theorem for Markov Networks

Completeness of separation in MNs

Theorem: Completeness of separation

- For "almost all" distributions where P factorizes over Markov network H
- we have that I(H) = I(P)
- "almost all" distributions
 - except for a set of measure zero of parameterizations of the Potentials (assuming no finite set of parameterizations has positive measure)
 - Means that if **X** & **Y** are not separated given **Z**, then $P^{\neg}(X \perp Y \mid Z)$
- Analogous to BNs

Local Markov Assumption

A variable X is independent of its non-descendants given its parents and only its parents

 $(X_i \perp NonDescendants_{Xi} | Pa_{Xi})$

Markov Blanket

= Markov Blanket of variable x₈ – Parents, children and parents of children

Independence Assumptions in MNs

- Separation defines global independencies
- Pairwise Markov Independence:
 - Pairs of non-adjacent variables A,B are independent given all others

- Markov Blanket:
 - Variable A independent of rest given its neighbors

P-map

- Perfect map
- G is a P-map for P if
 I(P) = I(G)

• Question: Does every distribution *P* have P-map?

Structure in cliques

• Possible potentials for this graph:

Factor graphs

- Bipartite graph:
 - variable nodes (ovals) for X_1, \ldots, X_n
 - factor nodes (squares) for ϕ_1, \dots, ϕ_m
 - edge $X_i \phi_j$ if $X_i \epsilon$ Scope[ϕ_j]

- Very useful for approximate inference
 - Make factor dependency explicit

Types of Graphical Models

Factor Graphs show Fine-grained Factorization $p(x) = \frac{1}{Z} \prod_{f \in \mathcal{F}} \psi_f(x_f)$

