ECE 6504: Advanced Topics In

Machine Learning
Probabilistic Graphical Models and Large-Scale Learning

Topics
— Markov Random Fields: Representation
— Pairwise MRFs, Gibbs distribution
— Conditional Random Fields

Readings: KF 4.1-3; Barber 4.1-2

Dhruv Batra
Virginia Tech
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* Project Proposal
— Due: Mar42, Mar 5, 11:59pm
— <=2pages, NIPS format
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Recap of Last Time
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Moralization — "Marry” Parents

Moralize graph:

1 Connect parents
into a clique and
remove edge directions

Difficulty

‘ Connect nodes that appear together in an initial factor
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Induced graph

>

Elimination order:
I o={C,D,S,ILHJG}

The induced graph |5 for elimination order O

1/ has an edge X, - X; if X; and X; appear together

in a factor generated by VE for elimination order O
on factors F
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Ifferent elimination order can
lead to different induced graph

Elimination order:

O ={G,C,D,S,|,L,H,J}

Difficulty
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Induced graph and complexitv_‘of VE

‘ Read complexity from cliques in induced graph

« Structure of induced graph

encodes complexity of VE!!!

« Theorem:

— Every factor generated by VE is a
clique in lgq

— Every maximal clique in I
corresponds to a factor generated by
VE

Difficulty

 Induced width

— Size of largest clique in Iz minus 1

* Treewidth

— induced width of best order O*

Elimination order:
o={CD,,S,LHJ,G}
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Plan for today

« Undirected Graphical Models
— Pairwise MRFs
— General Gibbs distribution
— Active trails, separation
— I-maps, P-maps
— Conditional Random Fields
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A general Bayes net

Set of random variables @
Directed acyclic graph /.\I

— Encodes independence assumptions

CPTs
— Conditional Probability Tables

Joint distribution:

n
P(X1,...,Xn) =[] P(XZ- | PaXi)
1=1
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Markov Nets

Set of random variables

Undirected graph

— Encodes independence assumptions

Unnormalized Factor Tables

Joint distribution:
— Product of Factors
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Pairwise MRFs

 Pairwise Factors

— A function of 2 variables

« Often unary terms are also allowed (although strictly speaking
unnecessary)

— On board
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Pairwise MRF: Example
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Computing probabilities in

Markov networks vs BNs

* Ina BN, can compute prob. of an
instantiation by multiplying CPTs

* In an Markov networks, can only .
compute ratio of probabilities directly S P WP 100 ‘ o & /) ‘ # o 100
" B Boe ' ¢ 4 100 ' a ]
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S
Normalization for computing probabilities

L Assignment Unnormalized | Normalized
 To compute actual probabilities, must compute AP d 300000 0.01
. . ‘e . a’ | b0 | | at 300000 0.04
normalization constant (also called partition function) a0 |00 | et | a0 300000 0.04
a’ | 80 | et | & 30 4.1-1076
a’ [ bt | 0| d° 500 6.9-107°
a | ot | O | dt 500 6.9-107°
a’ | bt | et | d° 5000000 0.69
a’ [ bt | et | dt 500 6.9-107°
al |80 0| d° 100 1.4.107°
al [0 0 | at 1000000 0.14
a' | b9 | et | d° 100 1.4-10—°
al |80 | et | & 100 1.4-107°
T R 10 1.4.10~F
at | bt 0| at 100000 0.014
at | bt | a® 100000 0.014
at | bt ]t | at 100000 0.014
« Computing partition function is hard! Must sum over all R
possible assignments /C,&
o ¢
C
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Nearest-Neighbor Grids

\ T\
/\‘ Low Level Vision
* Image denoisin
@S th g g
’K‘ « Stereo
- » Optical flow
() T_( 2
A N\ « Shape from shading
» Superresolution

C% % + Segmentation

Ys —— unobserved or hidden variable
—— |ocal obsservg;;I

ﬁﬁﬁf
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General Gibbs Distribution

* Arbitrary Factors

* “Induced” MRF Graph
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« Given an undirected graph H over variables
X={X,,...X.}

« A distribution P factorizes over H if there exist
— subsets of variables D,CEX,..., D,,&X, such that D, are fully connected in H

— non-negative potentials (or factors) ¢,(D,),..., ¢.,(Dp,)
« also known as clique potentials

— such that

Pt X = LT m)
1=1

 Also called Markov random field H, or Gibbs distribution over H
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MRFs

« Given a graph H, are factors unique?
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Local Structures in BNs

Causal Trall
— X=2>Y~>/~Z

Evidential Tralil
— X€Y €&

Common Cause
- X€<€Y>~Z

Common Effect (v-structure)
- X2Y<&Z
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Local Structures in MNs

e On board
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Active Trails and Separation

* Apath X; —... — X, is active when set of variables Z
are observed

— if none of X, € {X,,...,X,} are observed (are part of Z)

« Variables X are separated from Y given Z in graph
— If no active path between any X & Xandany Y €Y given Z
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Separation

« Sowhatif Xand Y are separated given Z?
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Factorization + d-sep = Independence

e Theorem:
— |If

» P factorizes over G
* d-seps(X,Y | 2)

— Then
« PFXL1Y|2)

— Corollary:
- I(G)CI(P)

» All independence assertions read from G are correct!
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The BN Representation Theorem

P factorizes to G
If G is an I-map of P n
P(X]_,...,Xn) = H P<Xz ‘ PaXZ.)
i=1

Important because:
Every P has at least one BN structure G

P factorizes to G
n G is anl-map of P
Xn) =[] P(X;|Pay,)

=1

Important because:

Read independencies of P from BN structure G
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Markov networks representation Theorem 1

If joint probability

distribution P:
m His an I-map for P

Pt X = LT D)
1=1

- If

— you can write distribution as a normalized product of factors

e Then

— Can read independencies from graph
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What about the other direction for
Markov networks ?

joint probability
distribution P

P(X4,...,X,) = % quz-(Di)

If His an I-map for P

* Counter-example: X,,...,X, are binary, and only eight assignments

have positive probability: |
(0,0,0,0) (1,0,0,0) (1,1,0,0) (1,1,1,0)

(0,0,0,1) (0,0,1,1) (0,1,1,1) (1,1,1,1)

» For example, X, LX;[X,,X,:
— E.g., P(X;=0[X,=0, X,=0)

 But distribution doesn’t factorize!!
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Representation Theorem for Markov Networks

If joint probability
distribution P:

P(Xy,...,Xn) = %H%‘(Di)
1=1

H is an I-map for P

, joint probability
It His an I-map for P distribution P;

and 1
P is a positive distribution
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Completeness of separation in MNs

« Theorem: Completeness of separation

— For “almost all” distributions where P factorizes over Markov
network H

— we have that I(H) = I(P)

— “almost all” distributions

« except for a set of measure zero of parameterizations of the Potentials
(assuming no finite set of parameterizations has positive measure)

« Means that if X & Y are not separated given Z, then P7(X1Y|Z)

 Analogous to BNs
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Local Markov Assumption

A variable X is independent of
its non-descendants given its
parents and only its parents

(X; L NonDescendantsy; | Pay;)
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Markov Blanket

= Markov Blanket of variable x;,— Parents,
children and parents of children

Slide Credit: Simon J.D. Prince
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Independence Assumptions in MNs

« Separation defines global independencies

« Pairwise Markov Independence: 6 G
— Pairs of non-adjacent variables A,B are 6
independent given all others 6

« Markov Blanket; a @ @

— Variable A independent of rest given its neighbors
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P-map
* Perfect map
« GisaP-map for P if

- 1(P)=1(G)

* Question: Does every distribution P have P-map?
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« Possible potentials for this graph:

Structure in cliques

ON0
L



Factor graphs

* Bipartite graph:
— variable nodes (ovals) for X,,...,X
— factor nodes (squares) for ¢y,...,9,,
— edge X, — ¢, if X; € Scope[p]]

* Very useful for approximate inference
— Make factor dependency explicit



Types of Graphical Models

Directed Factor Undirected
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Factor Graphs show

Fine-grained Factorization
p(x) = [] vyl

JEF




