ECE 6504: Advanced Topics in Machine Learning

Probabilistic Graphical Models and Large-Scale Learning

Topics

- Markov Random Fields: Representation
- Pairwise MRFs, Gibbs distribution
- Conditional Random Fields

Readings: KF 4.1-3; Barber 4.1-2
Dhruv Batra
Virginia Tech

Administrativia

- Project Proposal
- Due: Mar 12, Mar 5, 11:59pm
- <=2pages, NIPS format

Recap of Last Time

Moralization - "Marry" Parents

Connect nodes that appear together in an initial factor

Induced graph

The induced graph I_{FO} for elimination order O has an edge $X_{i}-X_{j}$ if X_{i} and X_{j} appear together in a factor generated by VE for elimination order O on factors F

Different elimination order can lead to different induced graph

Induced graph and complexity of VE

Read complexity from cliques in induced graph

- Structure of induced graph encodes complexity of VE!!!
- Theorem:
- Every factor generated by VE is a clique in I_{FO}
- Every maximal clique in I_{FO} corresponds to a factor generated by VE
- Induced width
- Size of largest clique in I_{Fo} minus 1
- Treewidth
- induced width of best order O^{*}

Plan for today

- Undirected Graphical Models
- Pairwise MRFs
- General Gibbs distribution
- Active trails, separation
- I-maps, P-maps
- Conditional Random Fields

A general Bayes net

- Set of random variables
- Directed acyclic graph
- Encodes independence assumptions

- CPTs
- Conditional Probability Tables
- Joint distribution:

$$
P\left(X_{1}, \ldots, X_{n}\right)=\prod_{i=1}^{n} P\left(X_{i} \mid \mathbf{P} \mathbf{a}_{X_{i}}\right)
$$

Markov Nets

- Set of random variables
- Undirected graph
- Encodes independence assumptions
- Unnormalized Factor Tables
- Joint distribution:
- Product of Factors

Pairwise MRFs

- Pairwise Factors
- A function of 2 variables
- Often unary terms are also allowed (although strictly speaking unnecessary)
- On board

Pairwise MRF: Example

\[

\]

Computing probabilities in Markov networks vs BNs

- In a BN, can compute prob. of an instantiation by multiplying CPTs
- In an Markov networks, can only compute ratio of probabilities directly

Normalization for computing probabilities

- To compute actual probabilities, must compute normalization constant (also called partition function)

Assignment			Unnormalized	Normalized	
a^{0}	b^{0}	c^{0}	d^{0}	300000	0.04
a^{0}	b^{0}	c^{0}	d^{1}	300000	0.04
a^{0}	b^{0}	c^{1}	d^{0}	300000	0.04
a^{0}	b^{0}	c^{1}	d^{1}	30	$4.1 \cdot 10^{-6}$
a^{0}	b^{1}	c^{0}	d^{0}	500	$6.9 \cdot 10^{-5}$
a^{0}	b^{1}	c^{0}	d^{1}	500	$6.9 \cdot 10^{-5}$
a^{0}	b^{1}	c^{1}	d^{0}	5000000	0.69
a^{0}	b^{1}	c^{1}	d^{1}	500	$6.9 \cdot 10^{-5}$
a^{1}	b^{0}	c^{0}	d^{0}	100	$1.4 \cdot 10^{-5}$
a^{1}	b^{0}	c^{0}	d^{1}	1000000	0.14
a^{1}	b^{0}	c^{1}	d^{0}	100	$1.4 \cdot 10^{-5}$
a^{1}	b^{0}	c^{1}	d^{1}	100	$1.4 \cdot 10^{-5}$
a^{1}	b^{1}	c^{0}	d^{0}	10	$1.4 \cdot 10^{-6}$
a^{1}	b^{1}	c^{0}	d^{1}	100000	0.014
a^{1}	b^{1}	c^{1}	d^{0}	100000	0.014
a^{1}	b^{1}	c^{1}	d^{1}	100000	0.014

- Computing partition function is hard! Must sum over all possible assignments

Nearest-Neighbor Grids

Low Level Vision

- Image denoising
- Stereo
- Optical flow
- Shape from shading
- Superresolution
- Segmentation
$y_{s} \longrightarrow$ unobserved or hidden variable

General Gibbs Distribution

- Arbitrary Factors
- "Induced" MRF Graph

Factorization in Markov networks

- Given an undirected graph H over variables $\mathbf{X}=\left\{\mathrm{X}_{1}, \ldots, \mathrm{X}_{\mathrm{n}}\right\}$
- A distribution P factorizes over H if there exist

- subsets of variables $\mathbf{D}_{1} \subseteq \mathbf{X}, \ldots, \mathbf{D}_{\mathbf{m}} \subseteq \mathbf{X}$, such that $\mathbf{D}_{\mathbf{i}}$ are fully connected in H
- non-negative potentials (or factors) $\phi_{1}\left(\mathbf{D}_{1}\right), \ldots, \phi_{\mathrm{m}}\left(\mathbf{D}_{\mathrm{m}}\right)$
- also known as clique potentials
- such that

$$
P\left(X_{1}, \ldots, X_{n}\right)=\frac{1}{Z} \prod_{i=1}^{m} \phi_{i}\left(\mathbf{D}_{i}\right)
$$

- Also called Markov random field H, or Gibbs distribution over H

MRFs

- Given a graph H , are factors unique?

Local Structures in BNs

- Causal Trail
$-X \rightarrow Y \rightarrow Z$
- Evidential Trail
$-X \leftarrow Y \leftarrow Z$
- Common Cause
$-X \leftarrow Y \rightarrow Z$
- Common Effect (v-structure)
$-X \rightarrow Y \leftarrow Z$

Local Structures in MNs

- On board

Active Trails and Separation

- A path $X_{1}-\ldots-X_{k}$ is active when set of variables \mathbf{Z} are observed
- if none of $X_{i} \in\left\{X_{1}, \ldots, X_{k}\right\}$ are observed (are part of \mathbf{Z})
- Variables \mathbf{X} are separated from \mathbf{Y} given \mathbf{Z} in graph
- If no active path between any $X \in \mathbf{X}$ and any $Y \in \mathbf{Y}$ given \mathbf{Z}

Separation

- So what if \mathbf{X} and \mathbf{Y} are separated given \mathbf{Z} ?

Factorization + d-sep \rightarrow Independence

- Theorem:
- If
- P factorizes over G
- d-sep ${ }_{G}(\mathbf{X}, \mathbf{Y} \mid \mathbf{Z})$
- Then
- $P \vdash(\mathbf{X} \perp \mathbf{Y} \mid \mathbf{Z})$
- Corollary:
- $I(G) \subseteq I(P)$
- All independence assertions read from G are correct!

The BN Representation Theorem

If \mathbf{G} is an I-map of P
\mathbf{P} factorizes to \mathbf{G}
$P\left(X_{1}, \ldots, X_{n}\right)=\prod_{i=1}^{n} P\left(X_{i} \mid \mathbf{P a}_{X_{i}}\right)$

Important because:
Every P has at least one BN structure G

G is an I-map of P

Important because:
Read independencies of P from BN structure G

Markov networks representation Theorem 1

If joint probability distribution P_{m} :
 $P\left(X_{1}, \ldots, X_{n}\right)=\frac{1}{Z} \prod_{i=1}^{m} \phi_{i}\left(\mathbf{D}_{i}\right)$
 Then
 H is an I-map for P

- If
- you can write distribution as a normalized product of factors
- Then
- Can read independencies from graph

What about the other direction for Markov networks ?

If H is an I-map for P

- Counter-example: $\mathrm{X}_{1}, \ldots, \mathrm{X}_{4}$ are binary, and only eight assignments have positive probability:

$(0,0,0,0)$	$(1,0,0,0)$	$(1,1,0,0)$	$(1,1,1,0)$
$(0,0,0,1)$	$(0,0,1,1)$	$(0,1,1,1)$	$(1,1,1,1)$

- For example, $\mathrm{X}_{1} \perp \mathrm{X}_{3} \mid \mathrm{X}_{2}, \mathrm{X}_{4}$:
- E.g., $P\left(X_{1}=0 \mid X_{2}=0, X_{4}=0\right)$
- But distribution doesn't factorize!!

Representation Theorem for Markov Networks

$$
\begin{gathered}
\text { If joint probability } \\
\text { distribution } P: \\
P\left(X_{1}, \ldots, X_{n}\right)=\frac{1}{Z} \prod_{i=1}^{m} \phi_{i}\left(\mathbf{D}_{i}\right)
\end{gathered}
$$

H is an I-map for P
If H is an I-map for P and
P is a positive distribution
joint probability distribution P :

$$
P\left(X_{1}, \ldots, X_{n}\right)=\frac{1}{Z} \prod_{i=1}^{m} \phi_{i}\left(\mathbf{D}_{i}\right)
$$

Completeness of separation in MNs

- Theorem: Completeness of separation
- For "almost all" distributions where P factorizes over Markov network H
- we have that $\mathrm{I}(H)=\mathrm{I}(P)$
- "almost all" distributions
- except for a set of measure zero of parameterizations of the Potentials (assuming no finite set of parameterizations has positive measure)
- Means that if \mathbf{X} \& \mathbf{Y} are not separated given \mathbf{Z}, then P$\urcorner(\mathbf{X} \perp \mathbf{Y} \mid \mathbf{Z})$
- Analogous to BNs

Local Markov Assumption

A variable X is independent of its non-descendants given its parents and only its parents $\left(\mathrm{X}_{\mathrm{i}} \perp\right.$ NonDescendants $\left._{\mathrm{x}_{\mathrm{i}}} \mid \mathrm{Pa}_{\mathrm{x}_{\mathrm{i}}}\right)$

Markov Blanket

$=$ Markov Blanket of variable $\mathrm{x}_{8}-$ Parents, children and parents of children

Independence Assumptions in MNs

- Separation defines global independencies
- Pairwise Markov Independence:
- Pairs of non-adjacent variables A, B are independent given all others
- Markov Blanket:
- Variable A independent of rest given its neighbors

P-map

- Perfect map
- G is a P-map for P if
$-\mathrm{I}(P)=\mathrm{I}(G)$
- Question: Does every distribution P have P-map?

Structure in cliques

- Possible potentials for this graph:

Factor graphs

- Bipartite graph:
- variable nodes (ovals) for X_{1}, \ldots, X_{n}
- factor nodes (squares) for $\phi_{1}, \ldots, \phi_{m}$
- edge $X_{i}-\phi_{j}$ if $X_{i} \varepsilon \operatorname{Scope}\left[\phi_{j}\right]$

- Very useful for approximate inference
- Make factor dependency explicit

Types of Graphical Models

Factor

Undirected

Factor Graphs show
 Fine-grained Factorization

$$
p(x)=\frac{1}{Z} \prod_{f \in \mathcal{F}} \psi_{f}\left(x_{f}\right)
$$

