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Combinational ATPG Theorems for Identifying
Untestable Faults in Sequential Circuits

Vishwani D. Agrawal and Srimat T. Chakradhar

Abstract— We give two theorems for identifying untestable faults in
sequential circuits. The first, the single-fault theorem, states that if a single
fault in a combinational array is untestable then that fault is untestable
in the sequential circuit. The array replicates the combinational logic and
can have any finite length. We assume that the present state inputs of the
left-most block are completely controllable. The next state outputs of the
right-most block are considered observable. A combinational test pattern
generator determines the detectability of single faults in the right-most
block. The second theorem, called the multifault theorem, uses the array
model with a multifault consisting of a single fault in every block. The
theorem states that an untestable multifault in the array corresponds to an
untestable single fault in the sequential circuit. For the array with a single
block both theorems identify combinational redundancies. Experi
on ISCAS benchmarks show that using a small array size (typically, two
to four blocks) we can identify a large ber of
faults.
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I. INTRODUCTION

If untestable faults are identified, they can be simply ignored
to save on testing effort. Untestable faults are those faults for
which no test can be found by a test generation algorithm. In
combinational circuits, these faults are redundant and can be removed
to reduce hardware. For sequential circuits, the relationship between
the untestable and redundant faults is not simple. However, redundant
faults form a subset of untestable faults.

There are several reasons why a simple method of identifying se-
quentially untestable faults is useful. First, highly complex sequential
circuit test generation programs waste computing resources while
attempting to generate tests for untestable faults. Second, we may
try to test the sequentially untestable faults that are combinationally
testable by scan-like methods. Third, some untestable faults, that can
be further classified as redundant, can be removed from the circuit
to reduce hardware.

The problem of identifying untestable faults in a sequential circuit
is very complex. Known solutions rely on sequential automatic test
pattern generation (ATPG) [8]. In the present work, our objective is to
find methods based on combinational ATPG that is known to be less
complex. We derive two methods where test generation is performed
for combinational circuits of finite size. One method requires test
generation for single faults while the other requires detection of
multiple faults. Considering the state of the art in ATPG, the first
method is more practical. Another advantage of our method is that,
unlike some of the published results (see Theorem 1 of Ma et al.
[17]), we do not enforce a reset state. Since we first presented the
theorems given in this paper at the European Test Conference [3),
corrections and extensions [23], and possible applications [14] have
started appearing in the literature.
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Fig. 1. Combinational array model.

II. BACKGROUND

Consider the combinational array model of a sequential circuit as
shown in Fig. 1. The left input of a block is the present state and the
right output is the next state. The input at the top is primary input
(PI) and the output at the bottom is primary output (PO). An arrow
in the figure represents a group of signals. In sequential circuit test
generation, the fault under consideration is assumed to be present in
every block. The present state input of the left-most block is assumed
to be in an unknown logic state. Although a specific reset state is not
essential, if one is provided, it must be entirely controllable by PI.
The test generator finds input vectors that, when applied to PI, will
produce the fault effect at PO.

The fault effect in Fig. ! is shown as f. The block in which the
fault effect first appears is marked as 1. The blocks on the left are
2, 3, etc. The blocks on the right are marked as a, b, etc. Notice
that the fault (marked as ) is present in each block but affects the
outputs of only blocks 1, ¢ and b. We show a boldface x in these
blocks to indicate that the fault is active at their outputs. The test is
considered complete only when f appears at PO (block & in Fig. 1).
In general, the number of blocks on either side of the block 1 can
be, if not infinite, large.

III. THEOREMS

A fault in a sequential circuit can be untestable for various reasons.
First, the fault may not be activated. In the present discussion, fault
activation refers to the appearance of fault effect at the boundary of
the combinational logic block. Notice that in Fig. 1, only a restricted
set of present state inputs can be applied to block 1. Thus, even
if the fault is combinationally testable in block 1, block 2 may not
produce the state required for fault activation. The second reason for
nondetectability of the fault is that it may not be possible to propagate
the error to a PO once it has been activated.

A fault in a circuit is called untestable if no test can be found with
some given test methodology. In the present discussion, we assume
that the test methodology corresponds to a gate-level ATPG using a
complete branch and bound algorithm. For a testable fault, the test
methodology finds a sequence of vectors for which the good and
faulty machines produce different logic values at a primary output on
the same vector. The discrepancy in the output responses is observed
starting from unknown initial states of the two machines. All other
faults are classified as untestable. For a detailed classification of
untestable faults the reader is referred to a recent paper [22].

A fault in a circuit is called redundant if its presence does not
alter the input-output behavior of the circuit. Redundant faults are a
subset of untestable faults. The input-output behavior of a sequential
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Fig. 2. C(n) with a target single-fault.

circuit can be interpreted in several ways. One may observe the
output response immediately after the circuit is powered-up [19].
Alternatively, as is the case in a majority of practical circuits,
the output response is observed only after the application of a
predetermined sequence of initialization vectors. This sequence takes
the machine to a known initial state starting from any power-up state.
In this case, we will only observe the output response of the machine
corresponding to states that are reachable from the initial state. The
input-output behavior of a combinational circuit, on the other hand,
has one standard interpretation since the output response of the circuit
depends only on primary input values. Any set of values that appear
on primary inputs at power-up can also be applied to the circuit as
an input vector.

For a combinational circuit with only Boolean gates, untestable
and redundant faults are identical [1]. For circuits with non-Boolean
primitives, like buses, bidirectional devices and tristate gates, not all
untestable faults are redundant [7]. In this paper, we only consider
circuits with Boolean gates. In a sequential circuit, some untestable
faults can be detected by multiple observations [21]. These faults
normally interfere with the initialization of the circuit {2]. Many other
untestable faults may not be detectable even by multiple observation.
Some of these are classified as sequentially redundant. Recent work
addresses redundancy in sequential circuits [8], [10], [12], [23]. In
this paper, we develop simple techniques to identify untestable faults.

Definition: We define C(n) to be a combinational circuit consist-
ing of blocks 1, 2, - - - n. Blocks are arrayed in ascending order from
the right to left. Inputs of C(n) are the present state inputs of block
n and the primary inputs of all n blocks. Outputs of C(n) are the
next state outputs of block 1 and the primary outputs of all n blocks.

Definition: Target single-faults are all single stuck faults in block
1. Since block 1 is a copy of the combinational logic of the sequential
circuit, any fault in the sequential circuit, including the input and
output faults of flip-flops but excluding the internal faults of flip-flops,
is included among the target single-faults.

Fig. 2 shows C'(n) with a target single-fault.

Theorem 1 (Single-Fault Theorem): A target single-fault that is
untestable in C(n) is also untestable in the sequential circuit.

The proof of this theorem, which appeared in our original paper [3],
was analyzed and corrected by Pomeranz and Reddy in a subsequent
paper [23]. An interested reader should refer to those papers. Here
we give an intuitive discussion on Theorem 1.

Suppose T(1) is the set of all test vectors that detect a target
single-fault in C(1). Since C(1) consists of a single copy of the
combinational logic of the sequential circuit, each test in 7'(1) is
a single vector. A test vector is specified as a set of values for
primary inputs and present state variables of the sequential circuit.
Considering all present states required by vectors in T'(1) as the
activation states A(1), we have two cases:

Case 1: set T(1) is empty. In this case, no test is possible for
any present state input of block 1. Therefore, the state diagram of
the sequential circuit has no activation states. The good and faulty
circuits have the same state diagrams. This fault is combinationally
redundant.
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Case 2: set T(1) is not empty. In this case, there exist activation
states A(1) for block 1. Blocks 2, 3, ---, n can only restrict the
possible present state inputs to block 1. If the fault is untestable in
C(n), then none of the states in A(1) appear as present state inputs
to block 1. If we consider the state diagram, then no state in A(1)
can be reached from any state in the state diagram using n — 1
state transitions. Clearly, no state in A(1) has a self-loop. Otherwise,
starting from this state, we can stay in the same state after n — 1
(in fact, an arbitrary number of) state transitions. Similarly, no state
in A(1) can be involved in any cycle. If there is a state S in A(1)
that is part of a cycle, then we can always start at a suitable state
(possibly S) in the cycle, traverse n — 1 state transitions in the cycle
(one may have to go around the cycle more than once), and reach
state S. This is possible for any arbitrary value of n.

If A(2) is the set of immediate predecessors of states in set A(1),
then no state in A(2) can be reached from any state in the state
diagram using n — 2 state transitions. If this were possible, then some
state in A(1) can be reached in n — 1 state transitions. Therefore,
no state in A(2) can have a self-loop or be on a cycle. In general, if
A(i + 1) is the set of immediate predecessors of states in set A(7)
(0 < i < n — 1), then no state in A(7 + 1) can be reached from any
state in the state diagram using n — ¢ — 1 state transitions. Therefore,
no state in A(¢ + 1) can have a self-loop or be on any cycle in
the state diagram. This establishes that none of the states in A(i),
0 < ¢ < n — 1, is reachable from a state with self-loop or from a
state on a cycle. Note that states in A4(¢) may have no predecessors.
In this case, states in A(¢) are not reachable from any other state.

If the initial state for both the good and faulty sequential circuits
is a state that is on a cycle in the fault-free state diagram, then the
output responses will be identical for both circuits. This is because
no activation state in A(1) is reachable from a state on a cycle. For
this restricted set of initial states, the good and faulty circuits produce
identical output responses for all input sequences. Therefore, the fault,
not being detectable from arbitrary initial states, is untestable. Note
that the state diagram of a gate-level sequential circuit will always
have a cycle since it is a complete state diagram.

Theorem 1 relies on checking for the impossibility of fault acti-
vation from certain initial states which is a necessary condition for
detection. The finite size, n, of arrays simply means that we consider
a case that is less restrictive than the actual sequential circuit whose
valid states may be a subset of all possible states that can be applied
to block 1 in C(n).

An understanding of the preceding remark requires a precise notion
of the fault-free operation of the sequential circuit. If the circuit
has ¢ flip-flops, then it may power up in any one of the 27 states.
If the circuit has a hardware reset input, then it can be set to a
predetermined initial state. In actual operation, the primary outputs
of the circuit are considered irrelevant prior to application of the
reset signal. After initialization, the circuit assumes valid states on
application of primary input vectors. In general, there are 27 possible
states. However, the valid states are only those reachable from the
reset state.

If the circuit has no hardware reset, again, the present state
immediately after power up is unknown. The circuit is brought to
a known state by applying an initialization input sequence. Also, the
primary outputs of the circuit, prior to initialization may be irrelevant.
In general, there can be any number of initialization sequences and
the corresponding initial states. During fault-free operation, the circuit
only assumes states that are reachable from the initial states. Thus,
the circuit may assume only a subset of the 29 states.

Theorem 1 provides a constructive method for identifying
untestable faults in sequential circuits that may or may not have a
hardware reset state. In circuits with hardware reset, the initialization
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of flip-flops is entirely controlled from primary inputs. We consider
the reset hardware to be a part of the combinational logic.

Lemma I: A target single-fault that is untestable in C(n) will also
be untestable in C(n +m), n > 1, m > 1.

Definition: A target multifault is a multiple fault in C(n) such
that the same single fault is introduced in each block.

Theorem 2 (Multifault Theorem): A target multifault that is
untestable in C(n) corresponds to an untestable single fault in
the sequential circuit.

Proof: The circuit C(n) with multifault can be viewed as a
section of the iterative array model [20] of test generation. In C'(n),
we assume completely controllable state inputs for the left block and
completely observable state outputs for the right block. If a multifault
is not detectable, then it implies that it is impossible to produce the
fault effect either at any of the n primary outputs or at the state
variable outputs of the right block. In other words, it is impossible to
activate the fault by n vectors for any of the 27 initial states, where
¢ is the number of flip-flops in the circuit. Now if we place C(n) in
the iterative array model, we find that its state inputs may be only
a subset of the possible 27 states. Thus the faults that could not be
activated in the isolated C(n), still cannot be activated and, as a
result, no test is possible. L

Because of the similarity of C(n) with multifault to the iterative
array model of sequential circuit, the result of Theorem 2 may seem
obvious to a reader. However, the main idea is that nondetectability
of a multifault in a finite array implies nondetectability in infinite
array. The notion of infinite array (n — oo) is used to represent the
situation where state inputs of the left-most block are uncontrollable
and state outputs of the right-most block are unobservable. Our
earlier paper [3] on this work included a lemma stating that a rarget
multifault, untestable in C(n), will also be untestable in C(n + m),
n > 1, m > 1. As pointed out in a recent paper [23], that was
not correct. Suppose, a multifault is untestable in C'(n). It is still
possible that the next state output produced by C(n) can allow fault
activation in C(n 4 m) resulting in the appearance of fault effect at
some state variable. However, untestability in C(n) does guarantee
that the fault effect will not appear at a PO and will remain untestable
in the sequential circuit according to Theorem 2.

Corollary: For n = 1, both theorems identify combinationally
untestable (redundant) faults.

For infinite n, Theorem 2 can identify all untestable faults. Since
the complexity of test generation grows exponentially with the circuit
size, the case of small » is more practical. For small n, however, both
theorems will only cover a partial set of untestable faults. There can
be untestable faults identified by Theorem 1 that will not be identified
by Theorem 2, and vice-versa. There can also be an overlap between
the sets of untestable faults found according to the two theorems.

IV. EXAMPLE

We will illustrate the use of Theorem 1 by an example. Fig. 3
shows a modulo-3 counter whose function is defined with three states
which will call valid states. The valid states (Q; Qo) for this counter
circuit are 00, 01, and 10. The reset input B = 1 sets the counter
in 00 state. The output Z becomes 1 only when the counter is in
10 state. For the input I = 0, R = 0, the counter holds its state.
When I = 1, R = 0, the state changes 00 — 01 — 10 —» 00--- as
flip-flops (FF) are clocked. The state 11, never reached in the normal
operation of the counter, is defined as an invalid state. This state
does exist in the circuit of Fig. 3, but is not reachable from any other
state. The only way we can find the circuit in this state is through
a possible power up.

All single stuck-at faults in the combinational logic (shown within
the dotted-line box) are testable. The sequential circuit has six

[ I

1157

Y| Ye

(
s-a-1*
]
s-a-1

P, @

[ ) -
s-a-1
&
=

(4)

s-a-1 -
P s-a-1 Qo

®) ]

L]

L1

®)

COMBINATIONAL
LOGIC

Iz

[ ]
1

=]
Rl

Fig. 3. Circuit of modulo-3 counter.

3

untestable faults. We used AT&T’'s GENTEST program [5] for
combinational and sequential test generation. Sequentially untestable
faults are marked in Fig. 3 as (1) through (6). Fault (1), shown with
an asterisk, is potentially detectable. It prevents initialization of the
circuit and is classified as potentially detectable by GENTEST. This
is because the detection of the fault by the derived tests depends
on the initial states of flip-flops when the circuit is powered up.
However, the fault can be definitely tested by setting I =1, R =1,
clocking the flip-flops, and observing the output at Z. The fault-free
circuit will produce a steady 0000... at Z, but the faulty circuit
will produce a periodic output ...0100100100... The starting bit
of this sequence will depend upon the state in which the circuit
powers up. Thus, the observation of a 1 in the output sequence
implies the presence of a fault. However, the exact time when a 1
will be observed is nondeterministic. Finding such a test procedure is
beyond the capability of GENTEST, which initializes both fault-free
and faulty circuits, deterministically.

When we constructed C'(2) by duplicating the combinational logic
of the counter circuit and generated tests for single stuck-at faults in
the right block, faults (2), (3), (5), and (6) were found to be untestable
by GENTEST. Increasing the size of the combinational array circuit
(n > 2) did not identify any more untestable faults. Thus, Theorem
1 correctly finds four out of five untestable faults in this example.

V. APPLICATION

An untestability checker based on Theorem 1 is easy to implement
since it requires a single-fault combinational ATPG program. All
results given in this paper only deal with this method. Several ISCAS
benchmarks were analyzed.

We. wrote an awk program [4] to generate the networks C(n).
Table I shows the test generation results for some of the ISCAS
’89 benchmarks. The array size, n, was progressively increased. The
faults identified as untestable were dropped from consideration before
going to the next higher value of n. The process was stopped if 2 or 3
consecutive increases in n did not produce any new untestable fault.
For each n, Table I gives the CPU time of GENTEST on SUN Sparc
2. The untestable faults shown are the cumulative numbers. Notice
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TABLE 1
IDENTIFICATION OF UNTESTABLE FAULTS BY THEOREM 1 USING GENTEST {5]
Cireuit | n =1 n=2 n=3 n=4 n=>5 n==6 n=7 n=2_§8
Name | CPU Unt. | CPU Unt. | CPU Unt. | CPU Unt. | CPU Unt. | CPU Unt | CPU Unt. CPU Unt.
s Fits s Flts s Flts s Flts s Flts N Fits s Flts s Flts
5208 0.8 0 13 19 21 50 27 50 33 50 - - - - 53 50
$298 0.9 0 13 0 3.1 11 52 11 136 20 744 21 | 4504 26 | 14734 26
5344 12 0 21 1 34 5 40 5 - - - - - - - -
5382 14 0 42 4 35 4 4.6 4 74 4 - - - - - -
s386 20 0 102 70 393 70 - - - - - - - - - -
s820 8.6 0 211 27 - - 3333 27 - - - - - - - -
55378 98.8 40 1741 335 | 589.1 470 | 3858 564 | 680.8 671 | 8519 774 | 6493 781 - -
TABLE 11
INFLUENCE OF UNTESTABLE FAULT IDENTIFICATION ON TEST (GENERATION
Circuit Total Without untestability identification With untestability identification
Name No. of No. of Coverage CPU No. of Coverage CPU
Faults Vectors Efficiency (%) s Vectors Efficiency (%) s

5208 257 158 98.1 573 160 99.2 472
5298 312 218 91.0 792.8 248 97.1 528.6
5344 360 159 972 276.7 138 9738 105.2
5382 413 706 872 12470 706 88.1 1175.0
s386 386 211 100.0 20220 201 100.0 363.3
s820 850 413 84.0 27005.4 391 88.8 242359
s5378 4603 436 762 89247.0 384 85.5 5751.5

that many of the smaller circuits have no combinational (n
redundancy. That is generally not true for large circuits.

Since Theorem 1 is based only on a necessary condition for testing,
it does not identify all untestable faults. Except for circuits s298 and
$5378, we found that the number of identified faults did not increase
for n > 3. For $386, all 70 untestable faults were found for n > 2.
Since the test generator was used in the combinational mode, the
CPU time is reasonably small. This can be further reduced by using
improved combinational circuit test generators [6].

Table II shows the results of sequential test generation by GEN-
TEST [5]. The first set of results was obtained by attempting test
generation for all faults. In the second set, the largest number of
untestable faults (shown in Table I) were removed from the fault list
prior to test generation. The test generator identified a few additional
untestable faults. The coverage efficiency is computed by including
the identified untestable faults among detected faults. In every case,
there is an improvement in the coverage efficiency. The reported CPU
time is for a SUN Sparc 2. Improvement in sequential test generation
efficiency by identification of untestable faults has also been reported
by other authors [15].

Examine the case of s5378. In Table I, 781 untestable faults were
found after seven runs of the combinational ATPG. The total CPU
time is 98.8 + 174.1 + 589.1 + ... = 3439.8 s. When these faults
were removed from the fault list, test generation for the sequential
circuit required 5757.5 s to generate 384 vectors. Additional 11
untestable faults were identified by the sequential ATPG bringing
the number of known untestable faults to 792. Counting these among
the detected faults, the coverage was 85.5%. In comparison, when

1Y)

the 781 untestable faults were not removed, the sequential ATPG
used 89247 s of CPU time to cover 76.2% faults. In this process, it
identified only 359 untestable faults.

Similar improvements in the efficiency of sequential circuit ATPG
have been reported by other workers. Their methods of identifying
untestable faults differ in many respects. Liang et al., use symbolic
simulation to determine uninitializable states [15]. Gouders and
Kaibel [11] use symbolic state justification to find untestable faults in
circuits with feedbacks. They also use a learning mechanism where
unjustifiable states are stored and reused. Chen and Bushnell [9]
devise a more elaborate learning procedure in which an unjustifiable
state can be decomposed into several new unjustifiable states. The
reader is advised to compare these techniques since such details are
beyond the scope of this paper. A common feature of the techniques
we just cited is that they identify untestable faults in the framework
of sequential ATPG. The main idea that makes the technique of this
paper different is that we transform the sequentially untestable faults
to a combinational model.

In several cases, we noticed that the sequential ATPG found
untestable faults that were not discovered by the single-fault combina-
tional ATPG Theorem. Obviously, the theorem does not guarantee to
find all untestable faults. GENTEST uses backward time processing
(5]. It, therefore, establishes fault propagation before attempting
state justification. Notice that fault propagation is addressed by the
multifault ATPG method (Theorem 2), whose examples may be found
in a recent paper [23]. Even so, because of finite » in practice, there
may always be some untestable faults that are not identified by any
of the theorems, but are found by a sequential ATPG.
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TABLE 1II
IDENTIFICATION OF UNTESTABLE FAULTS BY THEOREM 1 USING TRAN [6]

Circuit | Total | n = 1 n=2 n=3 n=4 | n=95 n==6 n=717 n=8 |
Name | No.of | CPU Unt: { CPU Unt. | CPU Unt. | CPU Unt.| CPU Unt.| CPU Unt.| CPU Unt.| CPU Unt
Faults s Flts s Flts s Flts s Fits s Fits s Flts s Flts s Flts
s349 350 02 2 0.4 3 1.0 7 14 7 1.5 7 23 7 49 9 2.7 9
5400 424 02 6 05 10 1.0 10 29 10 8.1 10 14.1 10 220 10 278 10
s420 430 05 0 11 61 26 184 25 221 16 221 21 221 24 221 25 221
s444 474 0.2 14 0.6 18 12 18 31 18 105 18 116 18 268 18 386 18
s510 564 0.1 0 04 0 0.1 0 02 0 6.3 0 04 0 2.8 0 0.5 0
$526 555 04 1 15 7 47 16| 246 16 790 25| 1515 26 2231 27 2848 27
$526n 553 03 0 15 6 47 15{ 246 15| 860 24| 933 25| 1678 26| 2310 26
s641 467 08 0 2.5 0 47 0 84 0 132 0 199 0 304 0 433 0
s713 581 1.5 38 27 38 47 38 97 38 150 38 217 38 296 38 433 38
$832 8701 09 14| 197 51] 499 S1} 992 51 1923 51| 3498 51 5634 51 6350 51
5838 857 34 0 6.0 141 160 432 | 391 549 43 549 52 549 62 549 72 549
5953 1079 09 0 11.0 10 4.9 10 94 10 157 10 308 10 384 10 986 10
s1196 1242 20 0 3.6 0 52 0 6.6 0 8.7 0 88 0 12.1 ] 103 0
s1238 | 1355 46 69 43 69 59 69| 79 69 98 69 96 69 117 69 126 69
51423 1515 22 14 58 14 174 14| 500 14 986 14| 1859 14| 2639 14 3760 14
51488 1486 1.1 0 30.3 40 98.8 40| 390.7 40| 14939 40 |3496.1 40 [ 61826 40 | 10088.4 40
s1494 | 1506 12 12| 284 51| 1020 513186 51 1281.8 51 38827 51 (59945 51| 93021 S1
59234 6927 [ 169.5 452 8457 52017784 524 - - - - - - - - - -
s13207 | 98152056 151 | 8859 924 (32372 961 - - - - - - . - - -
s15850 ( 11725 [ 456.6 389 | 900.8 440 [2840.1 448 - - - - - - - - - -
$35932 | 39094 | 267.7 3984 80.8 3984 | 1379 3984 - - - - - - - - - -
$38417 { 31180 | 7549 165 | 1554.9 203 | 4685.7 391 - - - - - - - - - -
38584 | 36303 | 452.1 1506 | 3573.4 213150508 2142 - - - - - - - - - -

Table III gives additional results for ISCAS’89 benchmarks ob-
tained by using the combinational ATPG program, TRAN [6]. All
CPU times are for SUN Sparc 2. Seventeen smaller circuits were
expanded up to n = 8. These are separated by a line next to s1494
in the table. For three circuits (s510, s641, and s1196) no untestable
fault was found by this method. In three other circuits (s713, s1238,
and s1423), only combinationally untestable faults were found. In
six, no untestable faults were located beyond n = 2. Remaining five
circuits had untestable faults identified for n < 7. Due to long run
times, the six largest circuits were only run with n < 3.

VI. CONCLUSION

We believe that there is need for simple algorithms for identifying
untestable faults in sequential circuits. Since the problem is complex,
approximate methods are desirable. The theorems presented in this
paper allow the use of combinational test generator for identifying
untestable faults in sequential circuits. In general, many of the
untestable faults may be sequentially redundant. Further analysis
is required to identify them. The usefulness of the theorems stems
from the fact that a combinational ATPG program is much simpler
than a sequential ATPG program. Our experience shows that using a
reasonably small arrays of eight or fewer blocks we can find many
untestable faults with Theorem 1. The sequential ATPG program
simply abandons on many of the same faults in spite of fairly large
time (or backtrack) limit.

To use the proposed theorems, the availability of an ATPG program
is not necessary. Any procedure that finds redundancies in combina-
tional circuits can be extended to find untestable faults in sequential
circuits [13], [14], [18]. Application of the theorems is also possible
in conjunction with state-enumeration procedures [10], [16], where
only the legal states may be allowed to appear at the state inputs of
the left-most block. However, the reser state, if present, should be
explicitly included in the state transition graph. A recent paper [15]
presents quite a different method for identifying untestable faults in
sequential circuits. The authors use symbolic simulation to determine
some of the impossible states. Their method does not use ATPG.
However, it cannot identify combinationally untestable faults. It will
be interesting to compare the set of untestable faults found by the
symbolic simulation method with that found by techniques presented
in this paper.
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Pseudo-Exhaustive Built-In TPG for Sequential Circuits

Dimitrios Kagaris, Spyros Tragoudas, and Dinesh Bhatia

Abstract— We address the issue of pseudo-exhaustive test pattern
generation (TPG) for the built-in self-test (BIST) of sequential circuits.
Let d be the sequential depth, and w be the input dependency limit.
We use an LFSR/SR Test Pattern Generator and a small additional
hardware overhead to automatically generate d-2% test patterns to test the
circuit pseudo-exhaustively or, alternatively, pseudo-randomly with less
hardware overhead and extremely high fault coverage. Our scheme uses
novel retiming algorithms and transforms the circuit to an equivalent (for
test purposes) one by scanning a subset of flip-flops for breaking its cyclic
structure, bounding the sequential depth, forcing the input dependency
limit, balancing the circuit, and maintaining the clock period. We present
the first polynomial time algorithm to bound the sequential depth of a
circuit by retiming with minimum number of flip-flops and subject to
a clock period bound. We also give a retiming-based polynomial time
algorithm to balance a circuit by inserting a minimum number of bypass
delay cells. Experimental results on the ISCAS’89 benchmarks indicate
that our method outperforms a previously proposed approach, which not
only does not provide for on-chip test pattern generation but also requires
O(q - f - 2¥) test patterns, where ¢ is the total number of primary
or pseudo-primary outputs in the circuit and f is the total number of
flip-flops.

1. INTRODUCTION

Testing sequential circuits presents many difficulties. A standard
first step to alleviate the testability problem in sequential circuits is
to incorporate some of their flip-flops into a scan chain [1]. Due to
the hardware cost of the conversion of a flip-flop into a scan element,
the number of selected flip-flops must be small. For this reason, the
scan chain is specified as partial, in contrast to a full scan chain that
includes every flip-flop in the circuit.

We refer to the set of the selected flip-flops as PS (Partial Scan)
set. The efficacy of a particular PS set is judged by how much it
facilitates test pattern generation (TPG) and how high a fault coverage
it yields. The topology of the flip-flops of the circuit is given by its
S-graph [3], [14]-[16], [20]. The nodes of the S-graph are the flip-
flops of the circuit, and two nodes u. v are joined by a directed edge
(u, v), iff there is a path in the circuit graph from flip-flop « to flip-
flop v containing no other flip-flop (see Fig. 1). A good criterion for
obtaining an effective PS set is to select a minimum set FV of flip-
flops that make the S-graph acyclic [3], [16]. Since the corresponding
graph-theoretic problem (Minimum Feedback Vertex Set [7]) is NP-
complete, a number of heuristic solutions have been proposed [3], [5],
[14]-[16]. In addition, the efficacy of a PS set is enhanced, if the PS
set also contains appropriate flip-flops, so that the sequential depth,
defined as the longest path in the acyclic S-graph, is small 3], [16].

Even if the S-graph is acyclic, test pattern generation for the
resulting circuit is still more complicated than the testing of a purely
combinational circuit. The problem is that each time a new test pattern
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