1

VLSI / SOC Testing

Lecture 24

1. Diagnostic test generation

- Given a fault pair, generate a test that can detect one but not the other
- Define: two faults α and β are distinguishable if \exists a test t such that the output of fault $\alpha \neq$ the output of fault β by test t
- Indistinguishability can be defined conversely. If two faults are indistinguishable, they are also functionally equivalent
- To improve diagnostic test generation, it would be nice to determine if 2 faults are distinguishable quickly in advance

2. Functional equivalence of two faults

- Recall that a dominator gate of gate g is a gate through which all paths from g to any PO must pass
- A common dominator gate for gates g_1 and g_2 is one that both pass
- Common dominator cone: starting from the common dominator gate and backtrace in the circuit, including g_1 and g_2 , together with all gates that are sufficient to completely determine the functions of the common dominator gate

Example 1:

3. Properties of dominator cones

• If logic functions at the common dominator gate for faults α and β are identical when expressed in terms of the inputs of the common dominator cone, then faults α and β are functionally equivalent

- Even if the logic functions expressed at the inputs of cone are not identical, α may still be functionally equivalent to β if the inputs at the cone that distinguishes the faults cannot be justified \longmapsto if α and β are different for tests $t_1, t_2, ..., t_m$ at the cone inputs, and none of $t_1, t_2, ..., t_m$ is justifiable from the PIs, then α and β are functionally equivalent
- Note that the PIs responsible for propagating the fault-effect from common dominator gate to a PO are not included in the dominator cone, since they are not needed to define the common dominator gate

4. Use of redundancy information

• if faults α and β produce same fault-effect at the common dominator gate output for a given test t, and fault β is known to be redundant, then test t must not be justifiable at the PIs of the circuit

Example 2:

- 5. Distinguishability of faults in sequential circuits
 - a fault α in sequential circuit is present in every time-frame in the ILA model of the circuit
 - \longrightarrow denote this fault α_k
 - two faults α and β are indistinguishable if α_k and β_k are indistinguishable for any starting state of the ILA \longmapsto if two faults are indistinguishable for k=1, then they are combinationally equivalent

Example 3:

- 6. What if the starting state for the ILA is illegal/unreachable?
 - Only need to consider valid states for circuits C_{α} and C_{β}
 - \mapsto valid states = set of all reachable states
 - \longrightarrow valid states for C_{α} may not be the same for C_{β}
 - If either circuit is unsynchronizable, we can consider a subset of states

 → this subset may contain some unreachable states
 - Define: $RS(\alpha, m) = \text{set of states reachable when fault } \alpha$ is present within m cycles. $RS(\alpha, 0) = \text{all possible states}$ $\longrightarrow RS(\alpha, i + 1) \subset RS(\alpha, i)$

Example 4:

7. Compaction of Fault Dictionaries

- Given a circuit with f faults, o POs, and v vectors, a naive construction of the matrix-like fault dictionary would involve $f \times v \times o$ entries
- Conventional compaction by avoiding storage of all faults or all PO values can result in loss of information
- Is there a way to compact the dictionary without loss of info?
- 8. Compaction without loss of info is possible since:
 - the number of distinct fault effects generally less than 2^o
 - \longrightarrow don't need to store all PO values in each entry, rather, store a pointer to which of the n distinct fault-effect it is
 - \mapsto if n < o, then the savings simply by this method would be $\frac{2^o}{2^n}$
 - Further, since a distinct fault effect may be shared by many faults at various test vector positions, they can all point to the same distinct fault effect

 → more savings here

Example 5:

- 9. Diagnosing Transistor Stuck-open Faults
 - Do we want to build another dictionary (or other methods) for stuck-open faults, or can we use SSF techniques?

5

- Want: diagnose stuck-open faults with known stuck-at diagnosis techniques
- Review: stuck-open fault detected by a 2-vector pair.

Example 6:

10. Diagnosis approach

- After identifying the failing chips, first diagnose assuming the failure due to a stuck-at defect
- Then, based on the diagnostic info on SSF, deduce which stuck-open faults could cause this
- Need: simply build a table to match behavior

Example 7:

11. A defect may not match any fault model exactly

- Can we come up with a technique that captures the possible locations of of the defect without any given fault model?
- Motivation: if a defect is active for test vector t, it must affect at least one signal in its vicinity. And the affected signal must have a propagation path to a PO.

Example 8:

12. Region-based diagnosis

- Any defect within the region must propagate a FE to at least one output of region for the detecting vector
- Number of regions in the order of number of gates: each gate can be the center node for a region
- Don't enumerate all possible fault-effects at the region outputs, since there can be many
 - \longrightarrow Simply inject don't-cares (X) at the region outputs to rule out false candidate regions
- Can perform diagnosis hierarchically, starting from large regions down to small regions

Example 9:

7

13. For candidate regions where the defect may reside, focus on gates within these regions

• May enumerate all fault-effects if number of region outputs few

Example 10: