M. Hsiao 1

VLSI / SOC Testing
Lecture 22

1. Memory testing

e defect may be in address decoder or cell array

e since each cell of memory can have a different state, the # of vectors to test
a memory is potentially very huge

2. Address decoder faults

no cell accessed for a given/specific address

a given cell can’t be accessed by any address

a given address accesses multiple cells

a given cell can be accessed by multiple addresses
3. Cell-array faults

e stuck-at: a bit cell stuck at a value
e transition fault: a cell fails to make transition from 0 to 1 or vice versa
e coupling fault: write in one cell affects a neighboring cell

— idempotent coupling: neighboring cell affected the same way

— inversion coupling: neighboring cell affected the opposite way

e pattern-sensitive fault: can’t write a specific value when neighboring cells
have a particular pattern

Example 1:



Testing Lecture 22

4. March Test Terminology
e : stepping through memory array and tests all cells by ensuring that both
the addressing and cells can retrieve/store 0 and 1

e 107! (r0,wl): read, compare if 0, then write 1 to all cells in ascending order.
Complexity of 2n. Can take care of forward coupling faults

o o1 (r0,w1): descending order, takes care of backward coupling faults

5. Basic March Test Algorithm

07! (w0): initialize memory to all Os
p=1 (r0,wl): fori=0ton —1
read(i)
compare with expected value 0
write (i,1)

6. Sample march tests:

e MATS: f} (w0); 1 (r0,wl); 1 (rl): covers forward coupling and stuck-at
faults

e MATS+: o} (w0); 1 (r0,wl); | (rl,w0): covers also backward coupling

7. Testing for inversely-coupling faults

8. ATPG for march tests

e For a given fault, generate the corresponding march test
e Problem: march test can be complex and requires long application time
e In general, three steps are needed:

— initialization



M. Hsiao
— excitation
— effect propagation via verifying/reading necessary cell values

Example 2: testing coupling fault

9. Viewing coupling faults by FSMs

e apply FSM testing approaches to test memories

10. Testing Word-Oriented Memories

e Intra-word coupling faults
e Many possibilities exist
e m-out-of-n codes (Hamming distance between any two code words is m)

—> m = n/2

Example 3:



Testing Lecture 22

11. Testing pattern sensitive faults
e basic idea: initialize the base cell, then change the patterns around the base
cell to see if content of base cell changes

e Issues: how to minimize the number of patterns applied

12. Graph traversal

e let each node in graph denote a specific pattern
e an edge exists between two nodes if the patterns differ in only 1 bit

e Hamiltonian path/sequence traverses the graph such that each node is visited
exactly once
— each pattern applied exactly once

e Eulerian path/sequence traverses the graph such that each edge is traversed
exactly once
—— each pattern may be applied multiple times, but all single bit transitions
in the patterns exercised

Example 4:



M. Hsiao 5

13. Dynamic faults: faults that require multiple, successive operations to sensitize.
(eg. write followed by an immediate read flips the bit value)

14. Testing System-On-A-Chip
e System consists of interconnecting blocks/cores
— benefits: design reuse, test reuse, etc.
e Test access mechanisms:

— global test bus to deliver test patterns to each core
— wrapper around each embedded core for test access purposes

— self-test using embedded programmable cores as TPGs (software-based
testing)

e [ssues

— area overhead
— test application time

— power consumption during test

Example 5:

Example 6:



Testing Lecture 22

15. Area Overhead

e Does TAM need to be available for every core? In other words, can a given
core be testable without TAM?

e Need: testability analysis method to evaluate embedded core’s testability

e Alternative: transparency mode in the predecessor core to allow transport
of test vectors
—— must make sure costs due to transparency is less than conventional TAM

Example 7:

16. Test Resource Partitioning and Test Scheduling

TAM bus width, wrapper, power, BIST, etc. are limited resources

even if power is not exceeded, it may not be possible to test two cores in
parallel due to bus-width limitation

derive a schedule by which cores are to be tested
e test cores in parallel to reduce test application time
e must monitor power consumption

e Need: constrained scheduler/optimizer
17. Test data compression

e test data for all cores on an SOC can potentially be very large

e unlike compaction, compression is to reduce the overall test data volume by
compressing the data



M. Hsiao

e such as gzip, compress, etc.
e problems: gzip and compress generally don’t work well on vectors
e need: other compression methods

e need: low-cost on-chip decompressor
18. Compression by Colomb code
e based on (1) difference vector set and (2) run-lengths

Example 8:



