M. Hsiao

VLSI / SOC Testing

Lecture 21

- 1. Compression Techniques
 - 100,000 vectors in ATE, storing all 100,000 output responses (plus FF state if full-scan) can require huge storage
 - just store a signature
- 2. Simplest signature: parity (even or odd) for each PO bit stream
 - Problem: aliasing

Example 1:

3. One's counting signature: actual number of 1's in each PO stream **Example 2**:

- 4. Transition counting signature: 2 numbers for PO stream
 - count both $0 \to 1$ and $1 \to 0$ transitions
- 5. Linear Feedback Shift Register (LFSR)

- 6. MISR: Multiple-Input Signature Registers
 - instead of having an LFSR per PO, combine them
 - slightly greater aliasing probability, due to masking

Example 3:

- 7. Built-In-Self-Test
 - Positives:
 - No ATEs
 - place TPG directly on chip
 - Avoid ATPG somewhat
 - Technology and fault-model independent
 - Useful for field test and diagnosis
 - At-speed testing
 - Negatives:
 - Fault Coverage sometimes low
 - Hard to determine exact fault coverage (due to aliasing)
 - Hard to diagnose

Example 4:

- 8. On-chip TPG
 - Store vectors in ROM:
 - Exhaustive: use of a counter
 - Pseudo-exhaustive:
 - Pseudo-random:
 - Weighted-pseudo-random:

9. LFSR-based TPG

• want to generate all $2^n - 1$ patterns

- 10. Weighted pseudo-random TPG
 - to allow different weights
 - add additional boolean logic to LFSR to create weighting

Example 5:

- M. Hsiao
- 11. Output Response Analyzer: similar to compression technique with MISR aliasing effects on FC:

12. BIST Architecture: STUMPS (Self-Testing Using MISR and Parallel SRSG

- 13. BIST Architecture: BILBO (Built-In Logic Block Observation)
 - convert registers in circuit to BILBO registers
 - \bullet test the circuit in a pipelined fashion

- 14. How about storing multiple signatures?
 - architecture similar to STUMPS
 - \bullet extreme compaction possible to store a signature for every pattern
 - ATPG constraints: must make sure fault is detected on odd number of FFs in a particular group (shift vector)
 - eases diagnosis (increased diagnostic resolution) and allows for built-in self diagnosis

- 15. Delay-Fault BIST
 - Aim: launch transition at every PI and FF, and sensitize (longest possible) path for each transition to a PO or state
 - launch transitions from TPG: only 1-bit change at a time
 - use same ORA to capture signature

16. Low-Power BIST

- random vectors generally create more activity than functional vectors
- Aim: derive BIST vectors that create fewer transitions and still achieve similar fault coverage
 - lower power during scan shift
 - lower power during circuit evaluation/simulation