M. Hsiao 1

VLSI / SOC Testing
Lecture 19

1. Design for Testability

e Goal: change circuit structure to achieve

— easy to generate test vectors (manually or automatic)

— small test set - shorter test application time and data volume
— easy to compute fault-free response

— easier for diagnosis and debug

e Important: the modified circuit must retain original circuit functionality
e general aims:

— increase the controllability /observability of some signals - make them
easier to control/observe

— make justification of states easier
e penalties:

— area overhead: extra gates/pins/routing added
— performance degradation: might slow down the circuit speed

Example 1: Ad-hoc circuit partitioning



Testing Lecture 19

2. Where to partition circuit

e around existing muxes
e along sensitized paths (make long paths shorter)

e along buses (separate around buses)
3. Testability Point Insertion

e Increase control/observability of nodes in circuit
e First identify nodes that are hard to control/observe
e Addition of muxes (extra area)

e Avoid placing on critical paths

Example 2:

4. Scan Design for sequential circuits

e Make FFs fully controllable/observable at a cost
e scanned FFs connected in a chain

— becomes a shift-register
— can now force specific values into FF's

— can also shift out values to be observed



M. Hsiao 3

5. Scan Cell Design
e LSSD (Level-Sensitive Scan Design)

e Mux-based scan design
e Cost: area overhead in each scanned FF
e Cost: performance overhead

e Avoid scanning FFs on critical path

Example 3:

6. Full-Scan Design: scan every FF

e Converts sequential circuit into a combinational circuit, only combinational
ATPG needed

e Large test set application time and test data volume

— every vector requires n + 1 cycles, where n = # FF's
— every pattern has n + m bits, where m = # Pls
— expected responses (FFs + POs) for each pattern also need to be stored

7. Multiple Scan Chains Design

e test application time now %, k = # chains
e need more test pins for k£ chains

e test data volume the same
8. Partial Scan Design: scan only a subset of FFs

e scan enough FFs to achieve FC similar to full-scan

e test application reduced



10.

11.

Testing Lecture 19

e test data volume reduced?
e but, circuit still sequential, need sequential ATPG
¢ validation of vectors more complicated

e Key issue: which subset of FF's to scan?

. Connecting Scan FF's

e order of connection critical to area

Example 4:

Partial-Reset

e add a separate partial-reset pin to a subset of FFs

— makes state jump to a different state
— helps to re-orient traversal

Direct Loading of FFs

e instead of reseting or shifting in the value into a FF, directly load the desired
value — test application time reduced

e area overhead

e at-speed testing possible — can capture delay defects

Example 5:



M. Hsiao 5

12. Boundary scan
e scan Pls and POs on a PC board
13. How to select FFs for scan/load/etc.?

¢ testability-based

e cycle-cutting based (structure-based)
o ATPG-based

e hybrid

14. Testability-Based

e compute SCOAP measures for original circuit
e select the FF with highest C0/C1/0

e scan it, its C0=C1=0 =0

e recompute SCOAP for circuit and repeat

e stop when all FFs C0/C1/0O are below a threshold or a maximum number
of FFs have been scanned

e Problems with this approach: (1) SCOAP only a metric, (2) FF selection a
greedy approach, thus not optimal

Example 6:

15. Structure-Based

e Construct the S-graph for circuit (nodes = FFs, directed edge = combina-
tional path in one time-frame between the 2 FFs)

e Cycles within S-graph means that FF values may depend on one another
— hard to control some FF with only Pls
— hard to propagate fault effect from some FF to a PO

e If break the cycle, sequential depth no longer oo
— recall testing of acyclic circuits



Testing Lecture 19

e Goal: break all cycles (excluding self-loops)
e Algorithm:

— identify all cycles in S-graph excluding self-loops
— select min # FF's to scan such that all cycles are broken
e Problems with this approach: self-loops ignored, they can still cause prob-

lems in testing

Example 7:

16. ATPG-Based
e Quick run of ATPG

e for all faults that were aborted
— examine why (which state was hard to justify, etc.)

e From the set of aborted states
—— compute the minimal subset of FF's to scan

e Problems with this approach: quick run of ATPG can still be expensive



M. Hsiao 7

17. Random Access Scan (RAS)

e arrange scan flip-flops in a two-dimensional array
e need additional pins to address the specific scan cell

e do not need to load every scan FF for each pattern
— only need to load those FFs whose value change from the obtained
output of the previous test pattern

18. Optimizations to RAS
e instead of indexing both row and column of RAS, only address the column.
The rows advance progressively. (Progressive RAS)

e one can also re-arrange test vectors to minimize the number of loads neces-
sary, thus reducing test application time, as well as test power

e can also use intelligent ATPG to generate vectors that target RAS or PRAS.



