M. Hsiao 1

VLSI / SOC Testing
Lecture 18

1. Testing at the Register Transfer Level

e Target: assemble RTL instructions to test for flow or data errors
e Fault Model:
— I;/1;: instruction I; replaced with I;
— R;/R;: register R; replaced with R;
— etc.
e generate test programs that exercise the microarchitecture; both excitation

and propagation are needed

Example 1:

Example 2:



Testing Lecture 18

2. Hierarchical Test Generation

e Motivation: most ckts designed with a hierarchy

e benefit: high-level view can see things that gate-level cannot, such as global
constraints, etc.

e vectors generated for blocks/modules of design first, then they are justified
to derive the test set for the entire chip

e problems: justification of module vectors difficult

Example 3: (overview)

Example 4: (vector justification)

3. Global control constraints extraction

e identify controller, control signals, and control inputs for each module

e traverse the high-level circuit and obtain legal control words for each mod-
ule’s control input signals

e store all the legal control words - may optimize them by finding a minimal
cover



M. Hsiao 3

4. Global data-path constraints extraction
e simulate and obtain relationships between values among buses

Example 5:

5. Hierarchical test generation
e Call gate-level ATPG to get a vector for the module under test, such that
the vector does not conflict with the extracted constraints
e Call high-level value justification and propagation
— equation-solving
— simulation-based
6. Alternatively, for a given module, one can generate a test environment
e a test environment is a solution of symbolic values for signals outside of the
module under test
e many test environments may suffice

e PODEM-like algorithm to compute the test environment

Example 6:



Testing Lecture 18

7. High-level metrics for ATPG

module reachability and channel transparency
— is module reachable from global inputs?
— global path to individual modules

while traversing upstream or downstream modules from MUT, probe their
suitability /capability for providing the required values
—— traversal based on branch and bound

transparent channel is one where an entire path from global PI exists that
can provide the required value to MUT, as well as one that bridges the MUT
output to a global PO

may also identify bottlenecks in search, which is useful for DFT to alter
designs at the high-level

Issues: how to represent the reachability and transparency info; how to
resolve conflicts



M. Hsiao D
8. Another approach, abstract the necessary blocks that are needed to test the
module under test

e similar to program slicing: identify the variables and statements that are
needed to test a specific block in VHDL code

e resynthesize using the program slice — much smaller circuit to test

e map the derived test sequence back to original design

Example 7:

9. Behavioral-level ATPG

e use concepts similar to software testing

metrics:

— statement coverage: every statement in code exercised
— condition coverage: every condition/branch exercised in both directions
— path coverage: specific paths covered

key: test set that exercised 100% statement and condition coverage, covers
a large number of paths can exercise large portions of the circuit

problem: observability not well addressed
— remedy: observability-enhanced statement coverage: make sure that the
effect of exercising statement propagates to a PO

Example 8:



