M. Hsiao

VLSI / SOC Testing

Lecture 17

- 1. Path delay fault simulation
 - Exponential number of paths

 → can't simulate per path, needs non-enumerative method
- 2. Path status graph
 - Vertices: PIs, POs, and internal nodes with fanout > 1

Example 1:

- 3. Simulation Procedure
 - Mark edges in PSG as covered or not
 - will need to split/merge nodes if necessary

Example 2:

Testing Lecture 17

- 4. Problem of false paths
 - Every redundant fault corresponds to one or more untestable path
 - Some false paths do not have a corresponding redundant fault

Example 3:

- 5. Identification of false paths
 - Find conflicting value combinations

M. Hsiao

6. Find unsensitizable segments

- all paths that contain such segments will be false
- Define: prime segment: a functional unsensitizable segment, Q, where no proper sub-segment of Q is a functional unsensitizable segment \longrightarrow prime means smallest segment that is unsensitizable

3

- Algorithm:
 - Step 1: find an unsensitizable sub-path, P, from a given PI this is done by concatenating edges until sub-path becomes unsensitizable
 - Step 2: going backwards in P, find the shortest unsensitizable segment
 - Step 3: Substitute the last leg of P with another edge and repeat steps 1 and 2
 - Step 4: repeat for all PIs and for all subpaths

Example 4:

7. Testing for signal integrity

- crosstalk between interconnects
- transition on aggressor line causing a delay or glitch on another transition on victim line
- needs: extract capacitive coupling between interconnect signals
- ATPG: generate 2-pattern test that launches crosstalk behavior

Example 5:

8. Functional Testing

- Testing the circuit at a level/view other than netlist of basic gates
- eg. FSM level, Register Transfer Level (RTL), Behavioral

9. FSM Testing

- Given the FSM for the circuit, derive a test sequence that tests all states and transitions
- Step 1: verify all n states exist in FSM
- Step 2: test all transitions (verify correct transitional relationship)
- Some terminologies:
 - Transfer sequence: takes the circuit to a desired state
 - Distinguishing sequence: a sequence that produces a unique output sequence for each starting state
 - \longmapsto by looking at the output sequence, we can determine the starting state prior to application of dist seq
- Basic algorithm:

M. Hsiao 5

Apply an initialization sequence to a known state Apply dist sequence to check for correct known state for each state A in FSM compute a sequence from FSM to get to A apply dist seq to verify arriving at A transfer back to A for all transitions going out of A apply transition verify correct ending state with dist seq return to A (and test next transition out of A)

Example 6:

6 Testing Lecture 17

- 10. Effectiveness of FSM test sequence
 - ullet if a s-a fault f is present and it is not untestable, then f must affect at least one transition in the FSM
- 11. Test sequences for FSM testing can be very long, if there are many states and transitions
 - Remedy: merge tests of different states together
- 12. FSM testing can be applied to testing regular structures
 - Key: test each cell in the regular structure exhaustively and simultaneously

Example 7: (regular structure)

7

13. Define: a circuit is **C-testable** if it has an ILA structure and has a constant number of test vectors independent of the number of cells in the ILA

Example 8:

- 14. The test vectors for regular structure can be obtained from the state diagram for the ILA representation!
 - ullet exercise every transition
 - since the final cell is always observable, there is no need for distinguishing sequences!

Example 9:

15. Theorem: if the state machine for the ILA is reduced and each state is repeatable, then the ILA is C-testable.

- a state s_1 in transition $(s_1 \to s_2)$ is repeatable if \exists a sequence T that takes the machine from s_2 back to s_1
- 16. All ILA's can be made C-testable with additional PIs

$\mathbf{Example}\ \mathbf{10}$

17. Universal test set: a test set that can detect all detectable faults regardless of the underlying implementation of the combinational function

→ Want this universal test set to be as small as possible

- 18. A vector v_1 covers another vector v_2 if for every logic $1 \in v_2$, there is a logic $1 \in v_1$.
- 19. Unate and binate: in a function z, if a variable x only appears in one polarity, then the function z is said to be unate in variable x, otherwise z is binate in x.
- 20. In order to compute universal test sets, we view the circuit as a truth table (can be constructed as a PLA), where inverters only appear at the PIs.

- 21. If the circuit has no unate variables (primary inputs), then the universal test set becomes the exhaustive test set!
- 22. true vectors and false vectors: an input vector that makes the function z evaluate to logic 1 is a true vector for z. Conversely for false vectors.
- 23. Monotone property: in a circuit with only AND and OR gates (no inverters), if $v_1 \supseteq v_2$, then $z(v_1) \supseteq z(v_2)$.

- 24. In a fault circuit with fault f, if $v_1 \supseteq v_2$, then $z_f(v_1) \supseteq z_f(v_2)$. Why?
- 25. Given true vectors v_1 and v_2 , if $v_1 \supseteq v_2$, and if v_1 detects fault f, then we know $z(v_1) = 1$ and $z_f(v_1) = 0$. Since $z_f(v_1) \supseteq z_f(v_2)$, $z_f(v_2)$ must be 0 as well. Thus, if $z_f(v_1) = 0$, $z_f(v_2)$ must be 0; converse is not true. \longrightarrow THEREFORE, we prefer true vector v_2 over true vector v_1 because v_2 will detect all faults v_1 detects, and possibly more.
- 26. minimal true vector: a true vector that does not cover any other true vector.
- 27. Given false vectors v_1 and v_2 , if $v_1 \supseteq v_2$, and if v_2 detects fault f, then we know $z(v_2) = 0$ and $z_f(v_2) = 1$. Since $z_f(v_1) \supseteq z_f(v_2)$, $z_f(v_1)$ must be 1 as well. Thus, if $z_f(v_2) = 1$, $z_f(v_1)$ must be 1; converse is not true. \longrightarrow THEREFORE, we prefer false vector v_1 over false vector v_2 because v_1 will detect all faults v_2 detects, and possibly more.
- 28. maximal false vector: a false vector that is not covered by any other false vector.
- 29. Universal test set: the union of min true vectors and max false vectors

 Example 11