M. Hsiao 1

VLSI / SOC Testing
Lecture 14

1. Sequential Circuit Test Set Compaction

e Motivation: reduce test application time and test data volume circuit

e Problem: unlike combinational test set compaction, removing a vector in
T = {to, t1, ..., tn }, the sequence is disrupted

2. Terminology: S;/S ,’: = the fault-free/faulty state at time frame k for fault f
3. Compaction by insertion

o IfS;/S ,{ = S,n/SI, where m > k, then what would inserting the subsequence
starting from m at k cause?

4. Compaction by omission

e Associate each vector with a flag omitted

initialize omitted[i] = 0 V i

fori=0ton
set omitted[i] = 1;
faultsim vectors in T" whose omitted flag = 0;
if FC the same or higher, vector i is omitted;
else reset omitted[i] = 0;

e This loop can be repeated, and with a different order (i.e., n downto 0)



Testing Lecture 14

5. Compaction by selection

e for each detected fault f, compute the subsequence that can detect f

e then, compute the compact set using covering algorithm (note, subsequences
can overlap)

6. The 3 previous techniques computationally expensive
7. Compaction by subsequence removal

e Motivation: test sets generally traverse through a small set of states, thus
many states are repeated
—— Can we remove subsequences that start and end on the same state?

8. Inert subsequence removal: an inert subsequence is one where start and end
states are the same, and there are no faults detected within the subsequence

Example 1:



M. Hsiao 3

9. Compaction by state-recurrence subsequence removal
e a state-recurrence subsequence is one that start and end on the same state,
but some faults may be detected within

e Algorithm:

step la: compute state recurrence subsequences for test set T'

step 1b: compute excitation and detection points for each fault

step 1c: identify all faults, Fj, detected within such subsequences

step 2: for all faults in Fj,, perform faultsim without fault-dropping

step 3: analysis phase: if in a state-rec subsequence, all faults detected
within are also detected elsewhere, and no other faults excited within
and propagated beyond the subsequence, then this subsequence
may be removed

10. Combining inert and state-recurrence subseq removal

e First remove inert subsequences

e Next, perform rec. subseq removal
11. Relaxed subseq. removal

e Motivation: not every state variable needed to reach the next state



Testing Lecture 14

12. State relaxation for test set T

Example 2:

13. Reducing cost of compaction (can be applied to any compaction algorithm)

e Fault partitioning: compact w.r.t. only hard-faults, since easy faults may
be detected by vectors and sequences that detect hard faults
—— only 10% faults need to be targeted



M. Hsiao

14. Compaction by vector restoration
e step 1: compute detection time for each fault (with fault dropping)
—— each fault has one unique detection point
e step 2: for each fault (starting with the last detected fault), restore it

e procedure for restoring a fault involves repetitive fault simulation

t = detTime for fault f

Ty = [ti]

repeat
if (faultsim(7y) detects f) — done
else Ty = [ti_1, 1Y)

until f detected

e worst case: no vector is omitted (generally this is not the case)

Example 3:



Testing Lecture 14

15. Using compaction for helping ATPG

e Motivation: compaction eliminates unnecessary vectors, thereby leaving only
good ones
—— inherent information embedded within compacted test set

16. Simple approach: extract weights from compacted test set

17. Observations for the simple approach
e Most weights between 0.4 and 0.6
18. Approach #2: vector copying and holding

e compacted vectors are there for a reason. Copy them exploits spatial locality

¢ holding vectors exploits temporal locality. Observation tells us that holding
useful vectors several clocks helps traverse state space deeper

19. Approach #3: correlation-based

e instead of computing weights, compute spatial and temporal correlation
within the compacted test set

e generate additional vectors using these correlation



M. Hsiao 7

20. Approach #4: Spectrum-based

e Analyze spectrum of compacted test set

e Since compaction removes unwanted/unneeded vectors, it filters the noise
out

e What frequency components does each PI bit-stream have in the compacted
test set?

e Issue: how to analyze spectrum?



