M. Hsiao

1

VLSI / SOC Testing

Lecture 12

- 1. Combinational Test Set Compaction
 - Motivations: (1) test application time, (2) test data volume
 - Static compaction: compaction performed after ATPG is finished
 - Dynamic compaction: compaction performed along with ATPG
- 2. Dynamic Compaction:
 - \bullet When PODEM derives a vector v, v may still have many unspecified bits
 - fill the X's more intelligently to maximize detection of remaining faults \longmapsto can use GAs here as well
- 3. Static Compaction: if test set not fully specified
 - can combine 2 or more vectors if they are *compatible*:
- 4. Static Compaction Overview
 - Idea: a fault may be detectable by a number of vectors in the test set, so we want to choose a smallest set of vectors from the original test set such that every originally detected fault is detected
 - \bullet Need: faultsim without fault-dropping \longmapsto so a fault may be detected multiple times by different vectors
 - Construct: a dictionary mapping faults to vectors

2 Testing Lecture 12

5. Compaction Procedure

- Identify essential vectors, which are the vectors by which some faults are detected exclusively
- Since essential vectors must be included in the compacted test set, remove faults that are detected by these essential vectors first
- For the remaining faults and vectors, find the best *cover* (subset) of vectors such that all faults in the detection dictionary are detected
- GreedyCovering Procedure

```
while compaction not finished sort vectors according to \# remaining faults each detects pick v that detects the most of remaining faults
```

6. Dictionary can potentially be very large

- To reduce dictionary size, one thing we could do is quickly identify the essential vectors and remove all faults they detect, then build the dictionary for the rest of the faults
- To quickly identify essential vectors, simply perform faultsim with 2-det (drop fault after it's detected 2 times)
 - \longrightarrow any fault that is detected only once is an *essential fault* and corresponding vector is an essential vector
- If the remaining faults still large, do not build full dictionary, instead, build dictionary for N-detects (a fault can have at most N detection vectors)

 → This will result in a slightly suboptimal compaction

7. Reverse Simulation: A simple and cheap static compaction

- No need to build dictionary
- Original test set $\{v_1, v_2, ..., v_n\}$
- a vector v_k is in the test set because it detects at least one fault missed by $v_1 \dots v_{k-1}$
 - \longmapsto In other words, v_k detects some hard faults
- by simulating the vectors in reverse order, perhaps the faults detected by some vectors in the beginning are detected by later vectors!

M. Hsiao

3

Example 1:

8. Test Vector Order Problem

- Order the compacted sets such that vectors that detect most faults are placed early in the test set
- \bullet If the entire test set will not be used, the first 80% vectors can still detect majority of faults

9. Sequential ATPG

- A test sequence (of vectors) needed: problem much more complex than combinational ATPG
- Vector order within sequence important, they determine the specific order of states visited
- Iterative Logic Array (ILA) model used:

10. Deterministic ATPG

4

- Excitation and propagation may each require several time-frames
- Step 1: time-frame 0 excitation
- Step 2: propagate fault effect till a PO, possibly in a later time-frame \rightarrow more values needed at the FFs of time-frame 0, demanded by propagation
- Step 3: justify the state at time frame 0

11. Problems and Issues in Sequential ATPG

- State at time-frame 0 may be illegal/unreachable
- If state is unjustifiable, need to backtrack and possibly find a new multiframe propagation solution!
- Must justify state from an all unknown state sequence could be long

12. Ways to reduce ATPG costs

- Minimize # state variables needed for state justification
- Minimize # time-frames needed to justify
- Detect illegal/unreachable states early to avoid future backtracks

Example 2:

Example 3:

13. Because defect/modeled fault is present in every time-frame, we now need 9-value algebra instead of just 5 values in combinational ckts

- 14. Approximation using 5-value algebra
 - use 5 values only, but must check after sequence is generated to make sure target fault is indeed detected

- 16. We can make better controllability/observability measures to help making better decisions in sequential ATPG
 - in addition to C0, C1, and O, also add Drivability, D(), of a signal
 - D(g) tells how easy/hard it is to drive a D or \overline{D} from g w.r.t. controllability values

•	it further	differentiates	observing	a D	from	a \overline{D}
•	io iuionei	umeremuates	ODSCI VIIIS	$a \mathcal{D}$	110111	a D

Example 4:

17. S-Graph of a sequential Circuit: a graph where vertices are FFs and directed edges between 2 vertices indicate a combinational path exists between them.

Example 5:

- 18. Properties of S-Graph
 - If s-graph is acyclic (no cycles), then the faulty state is always initializable
 - Define: d_{seq} = sequential depth of the circuit = # FFs on the longest path in s-graph

M. Hsiao

• A test sequence for a detectable, non-FF fault in a cycle-free circuit has at most $d_{seq} + 1$ vectors.

ullet If s-graph contains cycles, the test sequence length is unbounded, since the sequential depth would be ∞

19. Sequential ATPG for acyclic circuits

- If circuit is acyclic, then any fault can be tested within $d_{seq} + 1$ vectors
- Unroll circuit $d_{seq} + 1$ time frames, and use combinational ATPG? \longrightarrow not so fast, fault is present in every time frame
- In acyclic circuits, one can often lay out the FFs in a pipepline fashion, implicitly unrolling the circuit. In this case, perhaps each gate appears only once in the rolled-out circuit?
 - \mapsto what if there exist multiple paths to a FF?

Example 6: