Design Verification

Lecture 24 - Diagnosis II

1. We want to further prune the candidate list, thus improving diagnostic resolution
 - Key concepts: eliminate as many false candidates as possible without much cost

2. Flip-fanout-bits method:
 - idea: want to magnify factors that distinguish the true candidate and false candidate regions
 - if region A is a true candidate, then at least one output of the region must be contaminated
 \rightarrow thus, by flipping one bit while keeping the rest X’s, we want to see if the erroneous outputs still remain
 - note: a region is falsified only if it fails on every flip

 Example 1

3. Distinguishing X’s method:
 - idea: want to prune the propagation of X’s
 - if the distinguishing X’s do not propagate to any erroneous output, it is a false candidate
Example 2

Example 3

4. Combined method:
 - trivial combination (cascading of flip-fanout + distinguishing X’s) won’t help
 - alternative: flip one fanout, and keep the rest as dist. X’s
Example 4

5. Diagnosing sequential circuits

- issue 1: when the implementation circuit fails on a vector \(v_i \), there is a sequence that first took it to a necessary state
- issue 2: the erroneous sequence may potentially be very long
- issue 3: the error may have been *excited* several time frames prior to actual detection

\[\text{\(\rightarrow \)} \text{ need to isolate the time-frame at which the error is excited and propagated to a FF} \]

- approach: instead of simulation the sequence \(T[v_0, ..., v_i] \) to find the first vector that the error was excited, simply simulate a subsequence to see if error can still be detected

\[\text{\(\rightarrow \)} \text{ Note: the vector with which the error is detected may change} \]

Example 5
6. Region based diagnosis approach can be applied to hierarchical diagnosis
 - start with large regions and only go down in hierarchy on those candidate regions

7. Static approaches to diagnosis
 - idea: record signatures of bit-flips as a dictionary
 \[\text{\(\mapsto\) don’t need to store complete responses for each error/fault, but only record the responses of erroneous outputs} \]
 - using the dictionary, perform diagnosis inductively
 - issue 1: dictionary is built by fault simulation without fault dropping, thus the cost may be high
 - issue 2: for large circuits, dictionary may be large
 - issue 3: dictionary only correspond to a given underlying error/fault model
 - to relieve dictionary construction step, we can drop detected faults early, at a sacrifice of lower diagnostic resolution
 \[\text{\(\mapsto\) the errors detected by same vector on the same erroneous output no longer distinguishable by the vector set \(\mapsto\) note: the errors detected by same vector but on different erroneous outputs still distinguishable} \]
 - to relieve dictionary size problem, we can store only relevant faults

Example 6
Example 7

8. Adaptive diagnosis

- after an erroneous vector is applied, pick the best suitable next vector to apply based on results obtained so far

Example 8
9. The response from actual error may not match any responses in dictionary
 • this is because the dictionary is constructed with respect to a specific error/fault type
 • thus, we must match the closest responses and deduce on that

10. Diagnostic test generation
 • to enrich the erroneous test vector set so that more errors/faults can be distinguished
 • constrained ATPG needed to target a pair of errors (a,b): detect a while not detect b, and vice versa