Design Verification

Lecture 16 - Model Checking I

1. Motivation for Model Checking

- equivalence checking may not be feasible for large circuits
- equivalence checking cannot check for correct functionality under certain transactions, or properties such as safety, liveness, fairness
 - safety - denotes that a certain condition crucial for a proper functioning must not be violated to any time instance. *Something bad will never happen.*
 - liveness - comprises properties where a desired or necessary system condition will be reached. *Something good will eventually happen.* i.e., when told to perform task X, it will eventually do it.
 - fairness - used when certain properties must hold again and again. *Something good will happen infinitely often.*

- Model checking components:
 - Modeling: a design view/representation that is acceptable to model checking, such as FSM (or variation of it), netlist, etc. that fits the implementation behavior
 - Specification: properties that the design model must satisfy.
 - → issue 1: how should these properties be expressed? Need a suitable specification language that can model time
 - → issue 2: is the set of properties complete?
 - Verification: verify properties in the design model. Need an efficient proof/verification algorithm - all sequences generated by implementation must satisfy the specification

- Example properties:
 (a) At time step 3, the output of each z_i is 0
 (b) Does there exist a sequence of inputs such that z_1, z_2, z_3 are all 1’s at the same time?
 (c) Does there exist a sequence of inputs such that z_1, z_2, z_3 becomes 0 consecutively?
(d) Does there exist a sequence of inputs such that z_1 becomes 1, and then sometime later, z_2 becomes 0?
(e) Does there exist a sequence of inputs such that z_1 becomes 1 and stays 1 forever?
(f) For every sequence of inputs α, there exists a sequence β such that on applying α followed by β, the output z_1 becomes 0

First 4 properties are SAFETY properties, the 5th is liveness.

2. Model Checking Flow

3. Design Model: Kripke structure, a 4-tuple $(S, S_0, R \subseteq S \times S, L : S \rightarrow 2^{AP})$, where

- S is the set of states
- S_0 is the set of initial states (can be empty)
- R is the transition relations
- L is the labeling for each state $\in S$, and
- AP stands for atomic proposition.
Example 1

4. For combinational circuits, property checking can be done simply by existential quantifiers via ROBDD’s, or by ATPG (verifying that the property is (or cannot be) satisfiable.

→ Example: combinational (first-order) property expressed as atomic propositions: outputs y_1, y_2, y_3 must hold the following: $(y_1 + \overline{y_2})y_3$

5. Temporal structure

→ A temporal structure $M = (S, R, L)$ consists of:

- a finite set of states $S = \{s_0, s_1, \ldots, s_n\}$
- a transition relation $R \subseteq S \times S$ with $\forall s \in S, \exists s' \in R$, such that $(s, s') \in R$
- a labeling function $L : S \rightarrow V$. e.g., $L(s_0) = 110100$

6. Branching Time

→ Given M and a starting state s_0, the temporal structure is traversed according to the successor states, resulting in an infinitely branching tree.
Example 2

7. Propositional Temporal Logic CTL* (Computational Tree Logic)

Syntax of CTL*

(a) Atomic formulas: $(q_i = 0)$ or $(q_i = 1)$ are CTL formulas.
(b) Boolean connectives: if f and g are CTL formulas, so are $(f \land g), \neg f, (f \lor g)$
(c) Temporal formulas:
- $G\phi$: (always) formula ϕ holds for all successor states on this path
- $F\phi$: (sometimes) formula ϕ must be true for at least one successor state on this path
- $X\phi$: (next) formula ϕ must be true for the immediate successor state on this path
- $\phi_1 U \phi_2$: (until) formula ϕ_1 must be true until formula ϕ_2 becomes true on this path
- $\phi_1 w U \phi_2$: (weak until) same as until, except that it is not required that formula ϕ_2 ever holds true on this path
- $\phi_1 B \phi_2$: (before) formula ϕ_1 must be true before formula ϕ_2 becomes true on this path
- A: for all paths
- E: there exists a path
Semantics of CTL*

- state formula: $s \models \phi$: reads ”formula ϕ holds in state s”; if $\phi = (q_2 = 0)$, then $s_5 \models (q_2 = 0)$ holds if $q_2 = 0$ in state s_5. Similarly if ϕ was a temporal formula.
- path formula: $p \models \psi$: ψ holds in path p
- given a path formula f, then $E f$ and $A f$ are state formulas, but $\neg f$, $X f$, $F f$, $G f$, $f_1 \land f_2$, $f_1 \lor f_2$, $f_1 U f_2$ are still path formulas
- $F \psi$: there exists a $k \geq 0$, such that $s_k, ..., \models \psi$
- $G \psi$: for all $k \geq 0$, it holds that $s_k, ..., \models \psi$

Some equivalences of formulas (ϕ is a state property, while ψ is a path property):

- $A \phi \iff \neg E(\neg \phi)$
- $F \psi \iff \text{true} \ U \psi$
- $G \psi \iff \neg F \neg \psi$
- $AX \phi \iff \neg EX(\neg \phi)$
- $AG \phi \iff \neg EF(\neg \phi)$
- $AF \phi \iff \neg EG(\neg \phi)$
- $EF \phi \iff E(\text{true} \ U \psi)$

→ Given a state s and machine M, a formula f is satisfiable if $s \models f$ holds.

8. Subclasses of CTL*

- CTL: (\subset CTL*) temporal operators X, F, G, U, B must immediately be preceded by path quantifiers A or E
 $\iff EG$, AF valid CTL formulas
 $\iff FG$, XF not valid CTL formulas
- Linear Temporal Logic (LTL): (\subset CTL*) all formulas have the form $A \psi$ or $E \psi$ where ψ is a path formula
 $\iff A(EF p)$ not valid LTL formula

9. Example CTL properties

- $EF(Start \land \neg Ready)$: is there a state where $Start$ holds but $Ready$ doesn’t hold?
- $AG(Req \rightarrow AF(Ack))$: If a request occurs, it will always be acknowledged
Example 3: illustration of 8 base operators of CTL

Example 4: CTL formulas example
10. Difference between LTL and CTL

- in LTL, each instance has exactly one next state, while in CTL, there may exist multiple next state possibilities
- Example property: if a is active and b is not active in the next state, then eventually a will become inactive
- In CTL, this property is ambiguous (essentially, do all next states must have b inactive?)

 (a) $AG(a \land AX\neg b) \rightarrow AX AF\neg a$

 (b) $AG(a \land EX\neg b) \rightarrow AX AF\neg a$

 (c) $AG(a \rightarrow AX(\neg b \rightarrow AF\neg a))$

- In LTL, this property is clear:

 $AG(a \rightarrow X(\neg b \rightarrow F\neg a))$