Design Verification

Lecture 15 - RTL to Gate-level Issues

1. RTL to gate-level verification
 - step 1: perform a fast-synthesis of the RTL circuit
 - step 2: perform a gate-level equivalence checker
 - issues: fast synthesis from undefined behavior at RTL introduces don’t care conditions
 \[\rightarrow\] need to incorporate don’t care conditions

2. Verify block by block
 - verify a portion of RTL code with a gate-level block
 \[\rightarrow\] need to first establish signal correspondences between RTL and gate-level
 - Easy if the signal names are preserved between RTL and gate-level
can’t count on name preservation
 - If names not preserved, how to identify correspondences? (mapping problem)

3. Other benefits of establishing signal correspondences / mapping relation
 - allow designer to identify a portion of the gate-level implementation to a section of its RTL spec
 - allow to identify portions of design unlikely to change after modifications made in RTL
 \[\rightarrow\] saving re-synthesis work
 \[\rightarrow\] re-verify on the portions that were changed
 - allow incremental verification of blocks

4. Basic idea in the mapping problem
 - Assume for a given RTL signal \(s \), there exists a gate-level net \(g \)
 - Then, the responses for \(s \) should match the responses for \(g \) for each input vector over a given input vector set
• But, checking for matching responses for each (RTL signal, gate-level net) pair expensive

• Alternative: suppose RTL signal \(s \) is stuck-at-\(v \), the resulting response of primary output signals with this fault may differ from the original fault-free RTL response

• Idea: can we take the faulty RTL response with \(s \) stuck-at-\(v \) and try to diagnose in the gate-level circuit to see which net would be the faulty site?

Example 1

5. Treat the mapping problem as a diagnosis problem

• need: the faulty RTL response must differ from the fault-free RTL response when \(s \) is assumed stuck-at-\(v \) (\(v = 0 \) or \(1 \))

• Thus, the input vector set must be rich enough to capture many faults

• We can generate input vector set, \(T \), by gate-level ATPG programs

Example 2: Injection of fault at RTL
Example 3:

6. Diagnosis procedure

- Given gate-level circuit C, vector set T, fault-free response G to T, and faulty response U (obtained on RTL circuit), we’d like to identify in the gate-level circuit presence of which fault corresponds to U
- may need to try two separate stuck-faults at RTL in case T cannot distinguish one fault from the fault-free circuit
- if neither stuck-at-1 nor stuck-at-0 fault at RTL produces different responses at the primary output, we can’t proceed further
- Simple procedure:
 - 1: for each fault f in gate-level circuit C
 - 2: inject f into circuit C
 - 3: simulate C with T and obtain output response U_f
 - 4: if $U_f \equiv U$ for every vector in T, f is the corresponding fault in gate-level netlist to the RTL fault
 - Note: fault f is some net n stuck at 0 or 1, n would be a possible correspondence to signal s in RTL
 - Note 2: there may exist multiple nets at gate-level that produce identical U_f; multiple matches possible
- Speed-up heuristic: for a given fault f, can stop simulation as soon as U_f differs from U in steps 3 and 4
7. Diagnostic issues

- since more than 1 fault may produce same output responses on \(T \)
- diagnostic quality of \(T \) important, in addition to fault coverage of \(T \)
 \(\rightarrow \) Even if \(T \) can distinguish \(f \) from the fault-free circuit, we’d like \(T \) to produce a unique response for \(f \) from all other faults
- two faults \(f_1 \) and \(f_2 \) are indistinguishable if the responses of the circuit with the faults are identical to test set \(T \). They are distinguishable otherwise.
- One solution to enhance diagnostic quality of \(T \): diagnostic test generation, in which a vector set is produced such that no 2 unequivalent faults produce the same faulty output response.

8. Incremental mapping

- Suppose there are a number of RTL signals we wish to find mapping gate-level nets
- Once a mapping is found for one signal, convert the correspondence pair \((s, n)\) into primary outputs (for simulation only)
 \(\rightarrow \) This results in more outputs to compare, thus we may identify other correspondences more quickly

Example 4
9. Simple diagnostic test generation

Diagnostic ATPG {
 perform regular test generation to obtain initial vector set \(T \)
 identify indistinguishable pairs \((f_i, f_j)\) using \(T \)
 for each indistinguishable pair \((f_i, f_j)\) {
 generate an additional test \(t \) for \(f_i \) such that \(f_j \) is not detected
 or \(f_j \) is detected on different primary output
 if previous failed, generate another test \(t \) for \(f_j \) such that \(f_i \) is not detected
 or \(f_i \) is detected on different primary output
 }
 append additional vectors \(t \) to \(T \)
}

• NOTE: the constrained ATPG for \(f_i \) or \(f_j \) different, since the objectives differ. Generating a distinguishing test for one case may be easier than the other