Design Verification

Lecture 03 - Two-Level Logic Verification

1. Logic Verification: Boolean equivalence check of 2 logic circuits; making sure logic errors are not introduced during synthesis/design

2. Miter Circuit

3. Naive approach: exhaustive simulation: 2^N input vectors needed

4. Formal techniques: perform an implicit search; worst case is exponential, but average case is much smaller!

5. A 2-level design may be described as a set of cubes/implicants. Each cube implies that the output is either true (1) or don’t care (X); the cubes together form a cover for the output function

Example 1

6. Unate functions and covers:
 - a function is positive unate in variable x if $f_x \supseteq f_{\overline{x}}$
 - a function is negative unate in variable x if $f_x \subseteq f_{\overline{x}}$
 - a function is unate if $\forall x$, $f_x \supseteq f_{\overline{x}}$ or $f_x \subseteq f_{\overline{x}}$
 - a cover is positive unate in variable x if all its cubes have X or 1 in x’s field
 - A logic function f is monotone increasing (decreasing) in x_i if a change in x_i from $0 \rightarrow 1$ ($1 \rightarrow 0$) causes f to change from $0 \rightarrow 1$ ($1 \rightarrow 0$) or stay constant.
• A function is unate in x_i if it is monotone increasing or decreasing in x_i.

Example 2

7. Checking for unateness in covers: Given a cover C for f, if a variable x_i is either '1' or '0' in each cube, then f is unate in x_i.

Example 3

8. If unate cover \Rightarrow unate function
 If unate function \Leftrightarrow unate cover

9. TAUTOLEG
 • a cover is a tautology if it has a row of don’t cares (tautology cube)
 • a cover is NOT a tautology if it has a column of 0’s or a column of 1’s (function depends on at least one variable)
 • a cover is a tautology when it depends on one variable only and both 0 and 1 appear under the variable
 $1 \Rightarrow f = a + \bar{a} = 1 \rightarrow$ tautology!
 $0 -$
 • a cover is NOT a tautology if it is unate and no row of don’t cares
10. 2-Level Logic Equivalence

Example 4

11. Co-factor: Given a function f, determine what f would be if a given cube c is true, f_c. Similarly, given the cover C for the function, we can compute C_c.

Theorem: a cover C contains a cube/implicant α iff C_α is a tautology.

12. Containment Check: $c \subseteq D$ if the cofactor D_c is a tautology.

Taking co-factor on covers:

- Step 1: eliminate rows that conflict in values with inputs of c_i
- Step 2: eliminate rows whose output is 0
- Step 3: eliminate columns for which c_i is specified

Example 5

Example 6 (Containment Check)
Example 7 (Containment Check)

13. Verification algorithm: Given two covers C and D, for each cube $c_i \in C$ such that $c_i \subseteq D$, also for each cube $d_j \subseteq C$.

14. **Theorem**: A unate cover is a tautology iff the cover can be rewritten as one that contains a row of ’-’s

- If an input column of all 1’s or all 0’s \Rightarrow NOT a tautology
- If f can be partitioned into $f = g + h$, where g and h have disjoint covers (i.e., no common variables), then f is a tautology iff either g or h is a tautology.

Example 8

Example 9
15. Shannon expansion: \(f = x \ f_x + \bar{x} \ f_{\bar{x}} \)

16. If \(f \) is monotonically increasing (positive unate) in \(x_1 \) \(\Rightarrow f = x_1 \ f_{x_1} + f_{\bar{x}_1} \)

- if \(x_1 = 0 \) \(\Rightarrow f(x_1 = 0) = f_{\bar{x}_1} \)
- if \(f_{\bar{x}_1} = 1 \) \(\Rightarrow f \equiv 1 \), since \(f = x_1 \ f_{x_1} + 1 = 1 \)
- Similarly for monotonically decreasing variables
- Thus, if we co-factor the cover with the unate variables, and the result is tautology, then the original cover must be a tautology as well

17. Unate Reduction Theorem:

18. Corollary: Let \(C = [A|B] \), where \(A \) contains all the unate columns of \(f \): if there is NO rows of 's in \(A \), then \(f \not\equiv 1 \). (Because no T can be formed from unate variables)

19. Algorithm:

- Step 1: rearrange columns of \(C \) such that unate rows are placed first
- Step 2: if no rows in \(A(C = [A|B]) \), then NOT tautology, else
- Step 3: rearrange rows to
- Step 4: repeat tautology checks only on \(D \)
Example 10

20. Recap:

- Verify $f_1 \equiv f_2$? (If 30 primary inputs \leftrightarrow 1 billion patterns to explicitly simulate in the worst case. Thus, need implicit enumeration techniques.)
- For every cube in f_1, check if it’s contained in f_2 and vice versa
- Containment using tautology check.
- Alternatively: XNOR f_1 and f_2 and check for tautology.
- Can use multi-level verification (next lectures) on 2-level verification as well