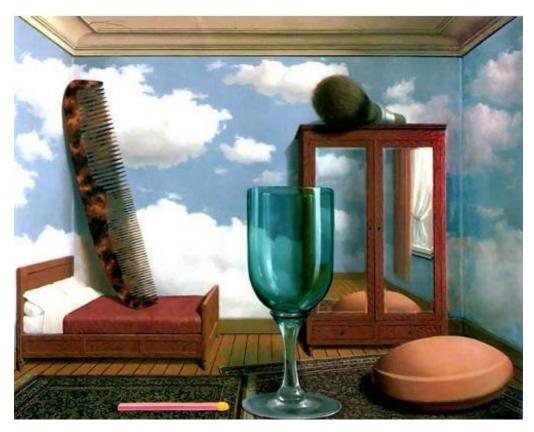
Contexts and 3D Scenes



Computer Vision Jia-Bin Huang, Virginia Tech

Administrative stuffs

- Final project presentation
 - Dec 1st 3:30 PM 4:45 PM
 - Goodwin Hall Atrium
- Grading
 - Three instructors; your summary (poster x2)
- Please set up your poster before 3:25 PM
 - Poster boards and easels will be available
- Session 1: 3:35 PM 4:10 PM
 - Group A present; group B attend the posters
- Session 2: 4:10 PM 4:45 PM
 - Group B present; group A attend the posters
- Invite your friends!
 - Voting for the Audience Favorite Poster

Context in Recognition

 Objects usually are surrounded by a scene that can provide context in the form of nearby objects, surfaces, scene category, geometry, etc.

Context provides clues for function

• What is this?

These examples from Antonio Torralba

Context provides clues for function

• What is this?

• Now can you tell?

Sometimes context is *the* major component of recognition

• What is this?

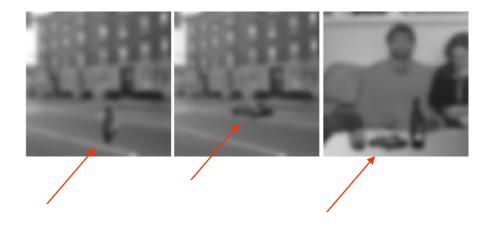
Sometimes context is *the* major component of recognition

• What is this?

• Now can you tell?

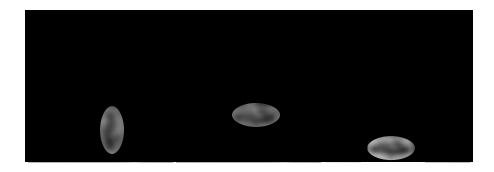
More Low-Res

• What are these blobs?



More Low-Res

• The same pixels! (a car)



There are many types of context

Local pixels

• window, surround, image neighborhood, object boundary/shape, global image statistics

• 2D Scene Gist

• global image statistics

3D Geometric

• 3D scene layout, support surface, surface orientations, occlusions, contact points, etc.

Semantic

• event/activity depicted, scene category, objects present in the scene and their spatial extents, keywords

Photogrammetric

• camera height orientation, focal length, lens distorition, radiometric, response function

Illumination

• sun direction, sky color, cloud cover, shadow contrast, etc.

Geographic

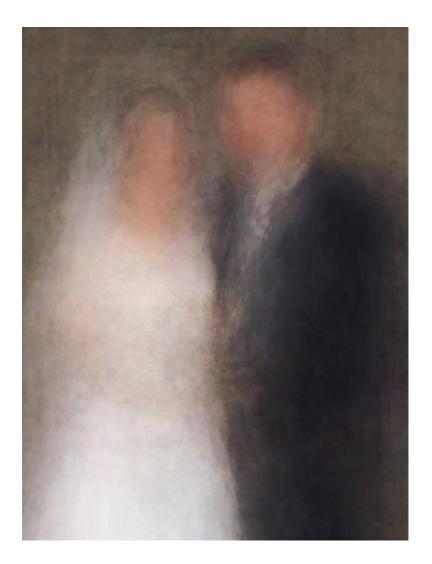
- GPS location, terrain type, land use category, elevation, population density, etc.
- Temporal
 - nearby frames of video, photos taken at similar times, videos of similar scenes, time of capture

Cultural

• photographer bias, dataset selection bias, visual cliches, etc.

from Divvala et al. CVPR 2009

Cultural context



Jason Salavon: http://salavon.com/SpecialMoments/Newlyweds.shtml

Cultural context

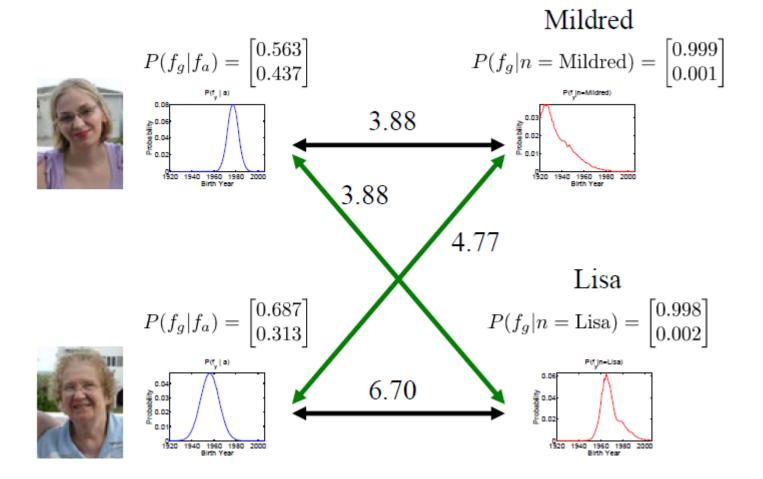
"Mildred and Lisa": Who is Mildred? Who is Lisa?

Andrew Gallagher: <u>http://chenlab.ece.cornell.edu/people/Andy/projectpage_names.html</u>

Cultural context

Age given Appearance

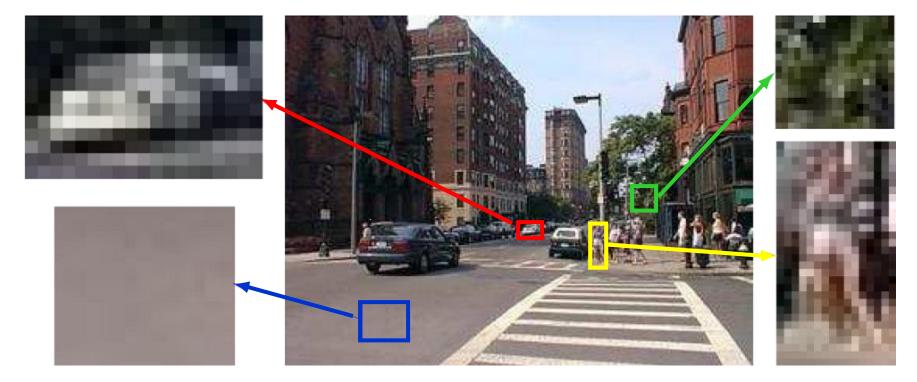
Age given Name



Andrew Gallagher: http://chenlab.ece.cornell.edu/people/Andy/projectpage_names.html

1. Context for recognition

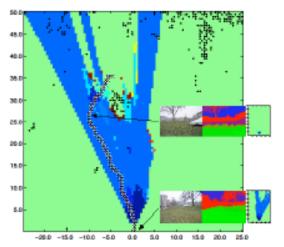
1. Context for recognition



- 1. Context for recognition
- 2. Scene understanding

- 1. Context for recognition
- 2. Scene understanding
- 3. Many direct applications
 - a) Assisted driving
 - b) Robot navigation/interaction
 - c) 2D to 3D conversion for 3D TV
 - d) Object insertion

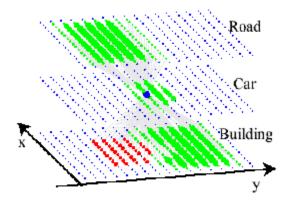
3D Reconstruction: Input, Mesh, Novel View



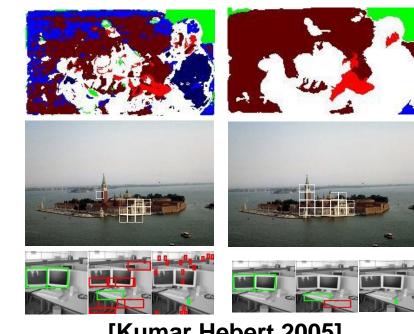
Robot Navigation: Path Planning

Spatial Layout: 2D vs. 3D?

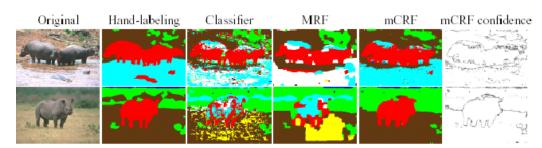
Context in Image Space



[Torralba Murphy Freeman 2004]

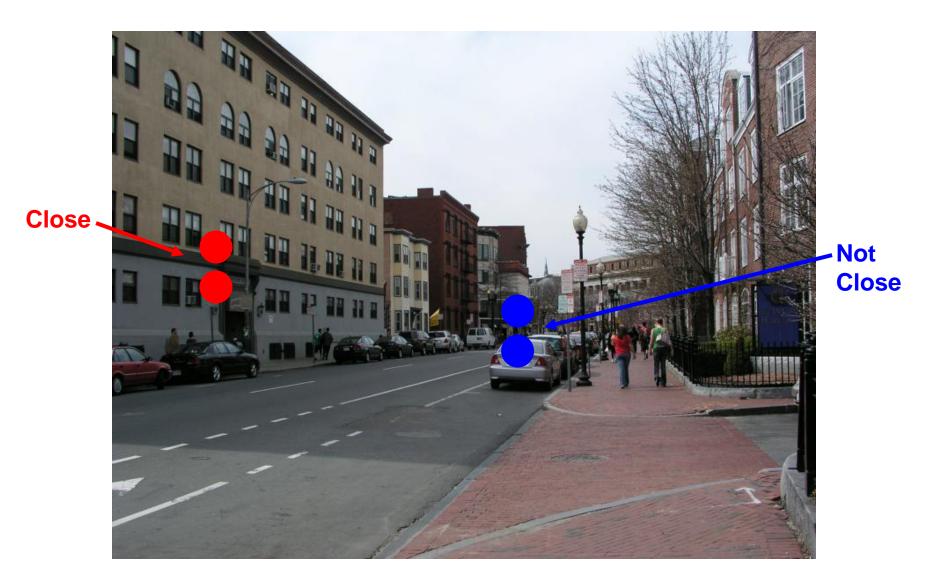


[Kumar Hebert 2005]



[He Zemel Cerreira-Perpiñán 2004]

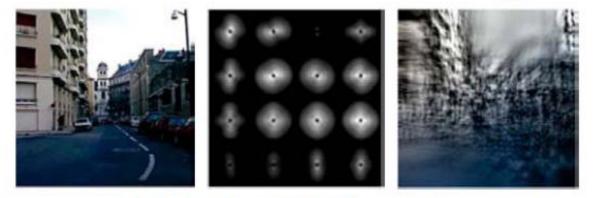
But object relations are in 3D...



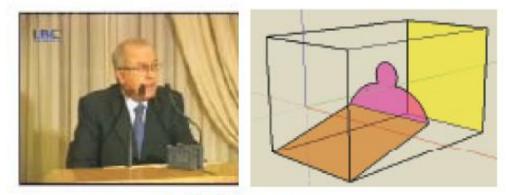
How to represent scene space?

Wide variety of possible representations

Scene-Level Geometric Description



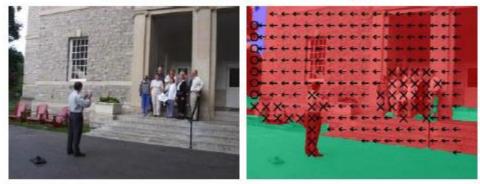
a) Gist, Spatial Envelope



b) Stages

Figs from Hoiem - Savarese 2011 book

Retinotopic Maps



c) Geometric Context

d) Depth Maps

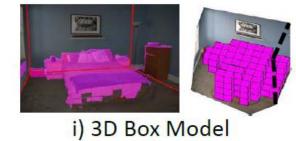
Figs from Hoiem - Savarese 2011 book

Highly Structured 3D Models

f) Ground Plane with Billboards

g) Ground Plane with Walls

h) Blocks World



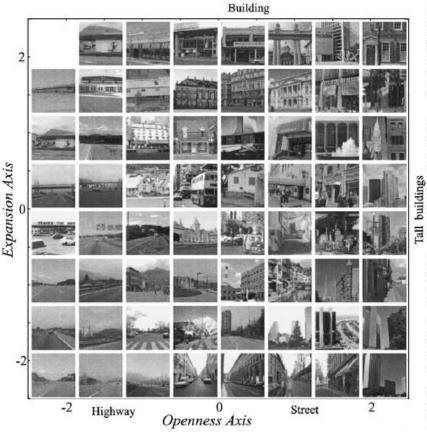
Figs from Hoiem - Savarese 2011 book

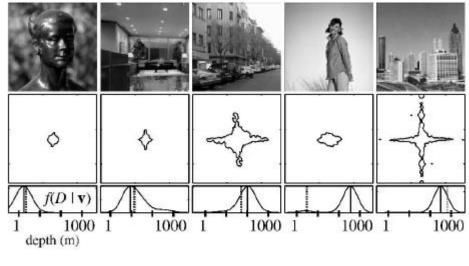
Key Trade-offs

- Level of detail: rough "gist", or detailed point cloud?
 - Precision vs. accuracy
 - Difficulty of inference
- Abstraction: depth at each pixel, or ground planes and walls?
 - What is it for: e.g., metric reconstruction vs. navigation

Low detail, Low/Med abstraction

Holistic Scene Space: "Gist"



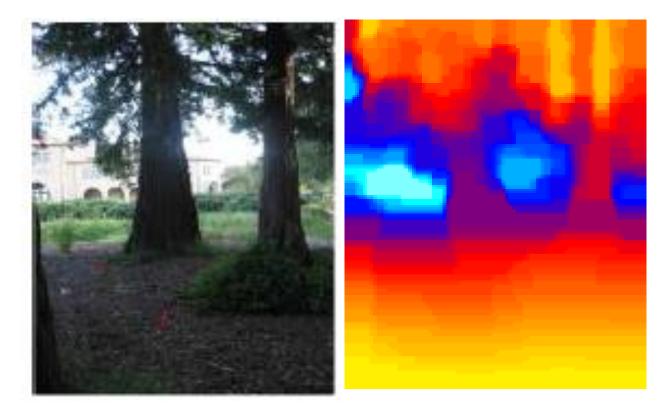


Torralba & Oliva 2002

Oliva & Torralba 2001

High detail, Low abstraction

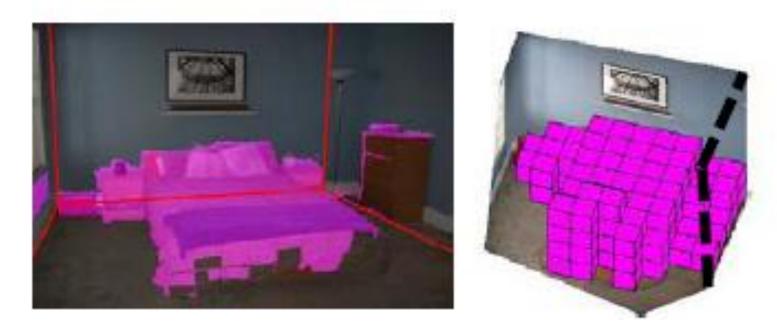
Depth Map



Saxena, Chung & Ng 2005, 2007

Medium detail, High abstraction

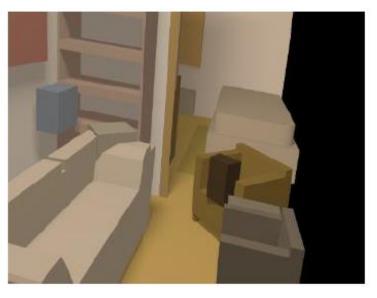
Room as a Box



Hedau Hoiem Forsyth 2009

Med-High detail, High abstraction

Complete 3D Layout



Guo Zou Hoiem 2015

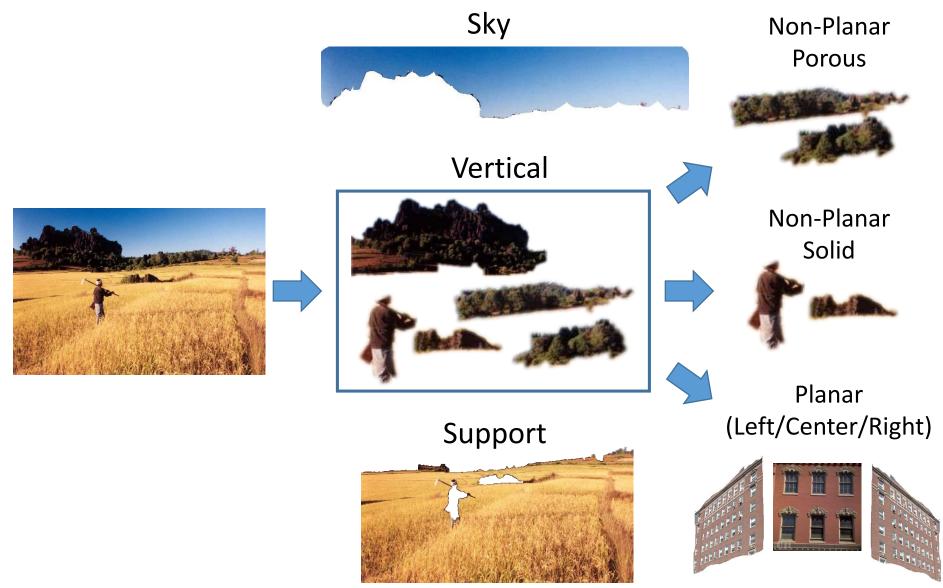
Examples of spatial layout estimation

• Surface layout

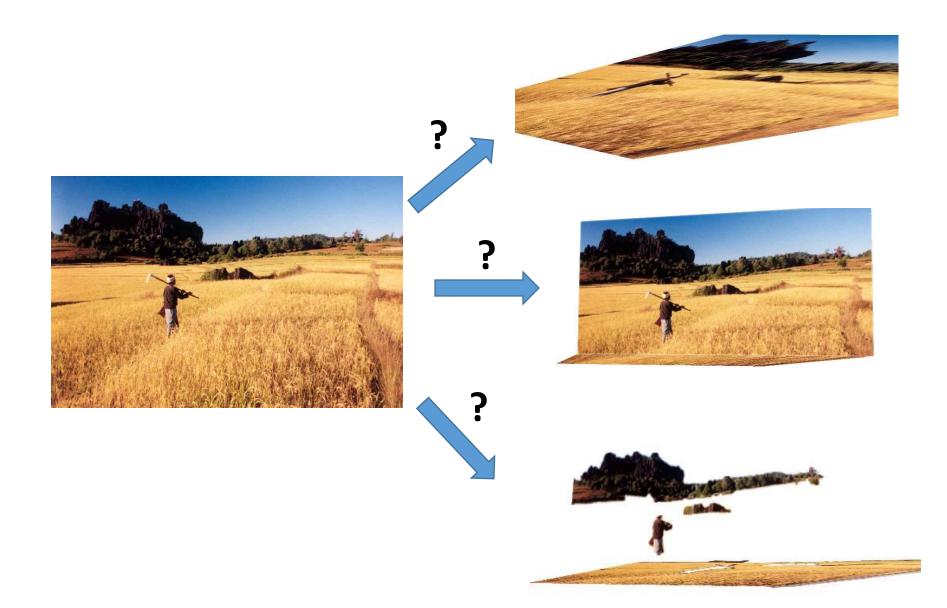
Application to 3D reconstruction

- The room as a box
 - Application to object recognition

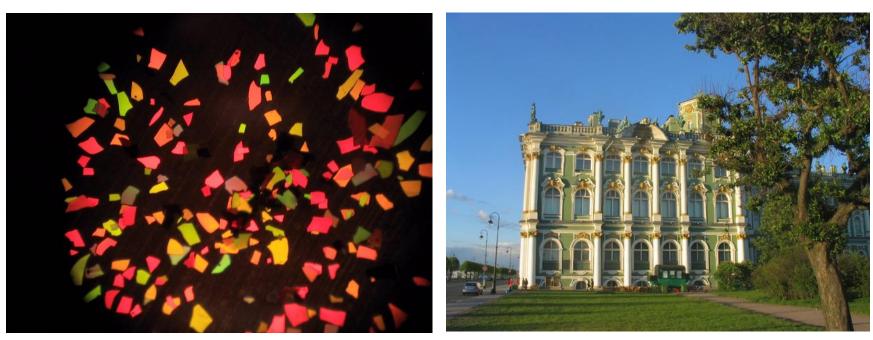
Surface Layout: describe 3D surfaces with geometric classes



The challenge



Our World is Structured



Abstract World

Our World

Image Credit (left): F. Cunin and M.J. Sailor, UCSD

Learn the Structure of the World

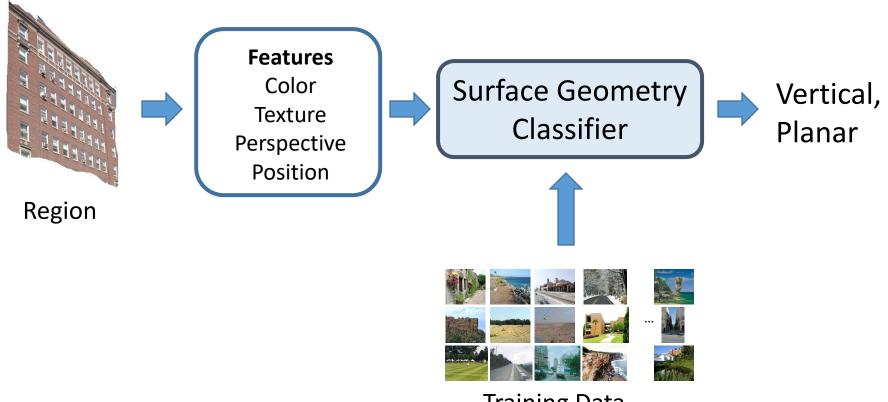
Training Images

Infer the most likely interpretation

Unlikely

Likely

Geometry estimation as recognition



Training Data

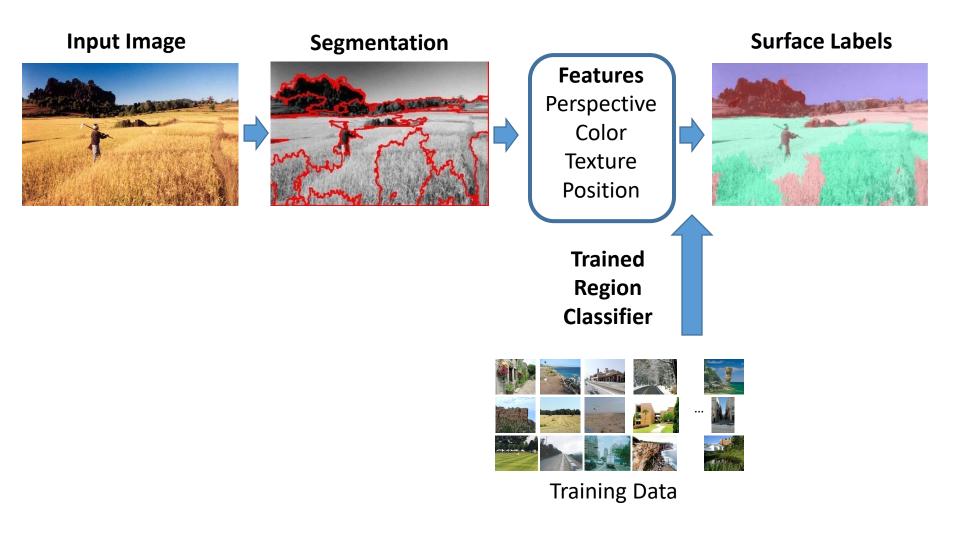
Use a variety of image cues

Vanishing points, lines

Color, texture, image location

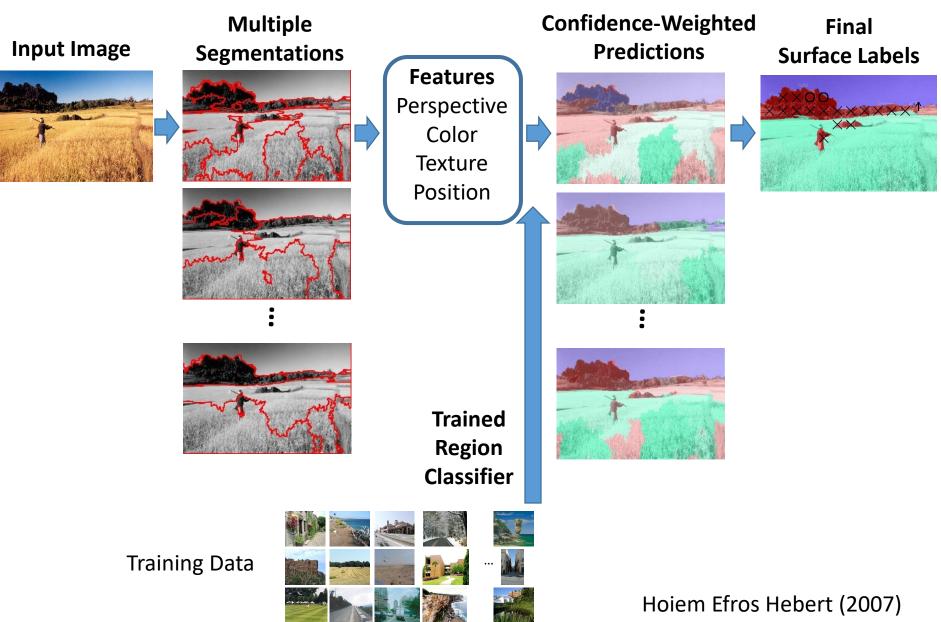
Texture gradient

Surface Layout Algorithm



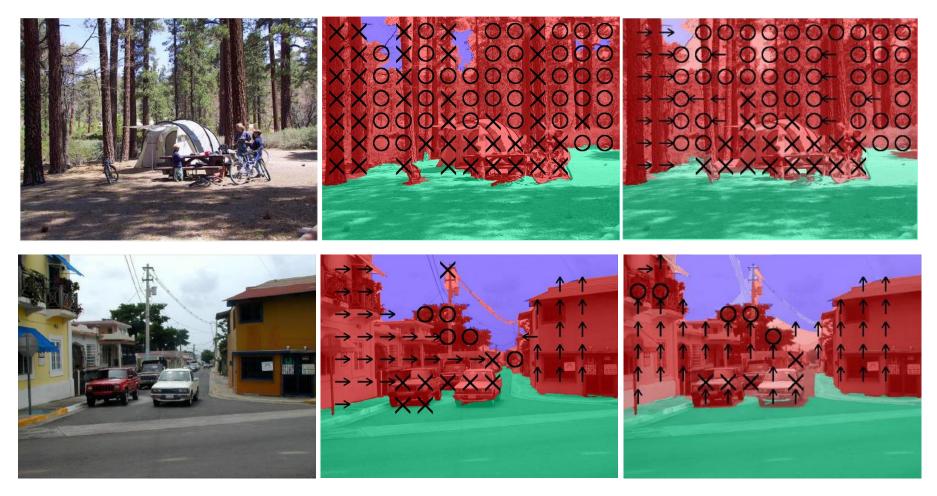
Hoiem Efros Hebert (2007)

Surface Layout Algorithm



Surface Description Result

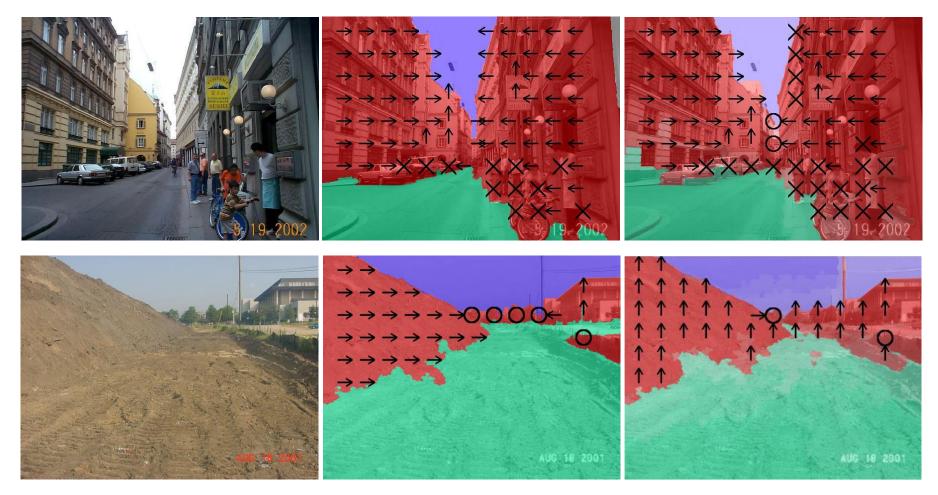
Results



Input Image

Ground Truth

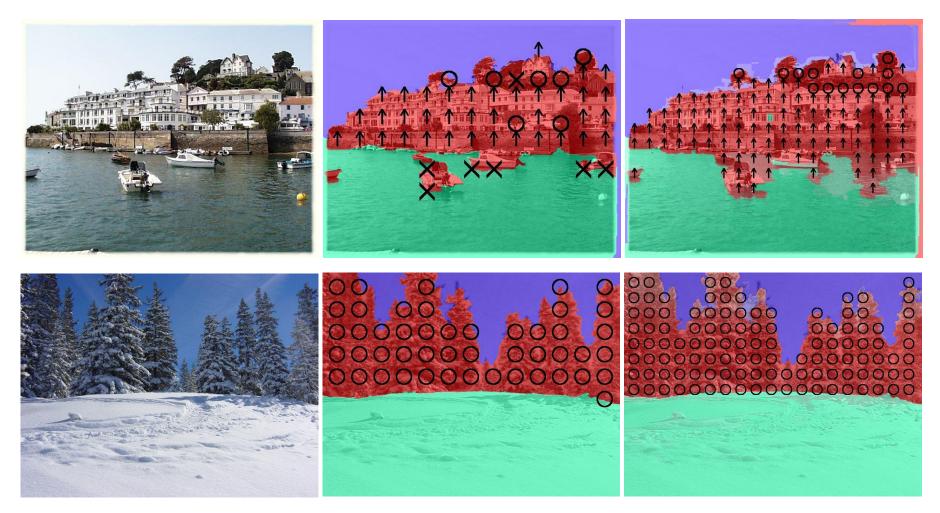
Results



Input Image

Ground Truth

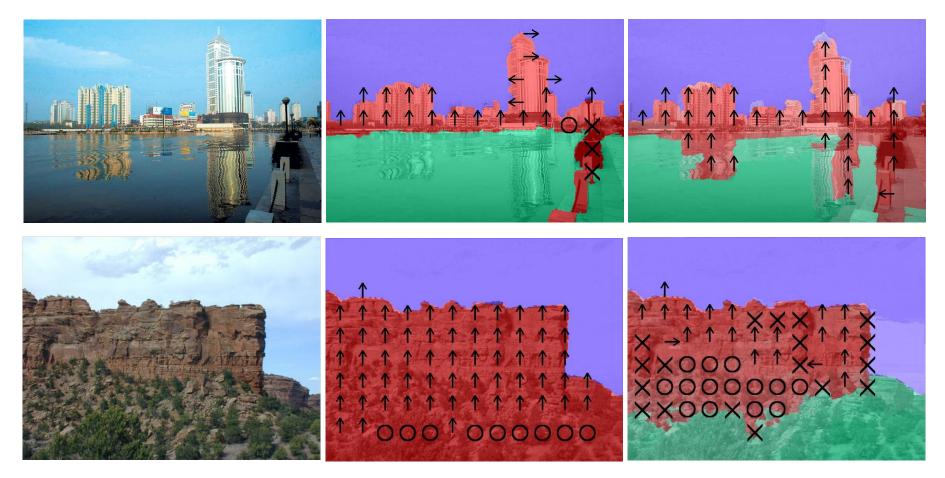
Results



Input Image

Ground Truth

Failures: Reflections, Rare Viewpoint



Input Image

Ground Truth

Average Accuracy

Main Class: 88%

Subclasses: 61%

Main Class						
	Support	Vertical	Sky			
Support	0.84	0.15	0.00			
Vertical	0.09	0.90	0.02			
Sky	0.00	0.10	0.90			

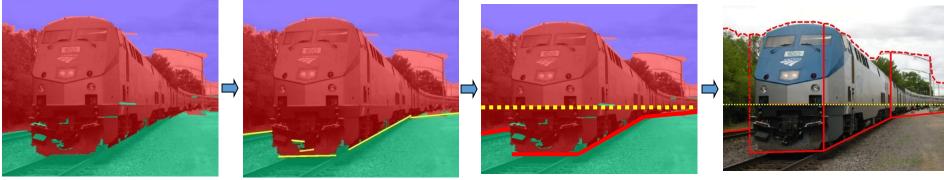
Vertical Subclass							
	Left	Center	Right	Porous	Solid		
Left	0.37	0.32	0.08	0.09	0.13		
Center	0.05	0.56	0.12	0.16	0.12		
Right	0.02	0.28	0.47	0.13	0.10		
Porous	0.01	0.07	0.03	0.84	0.06		
Solid	0.04	0.20	0.04	0.17	0.55		

Automatic Photo Popup

Labeled Image

Fit Ground-Vertical Boundary with Line Segments Form Segments into Polylines

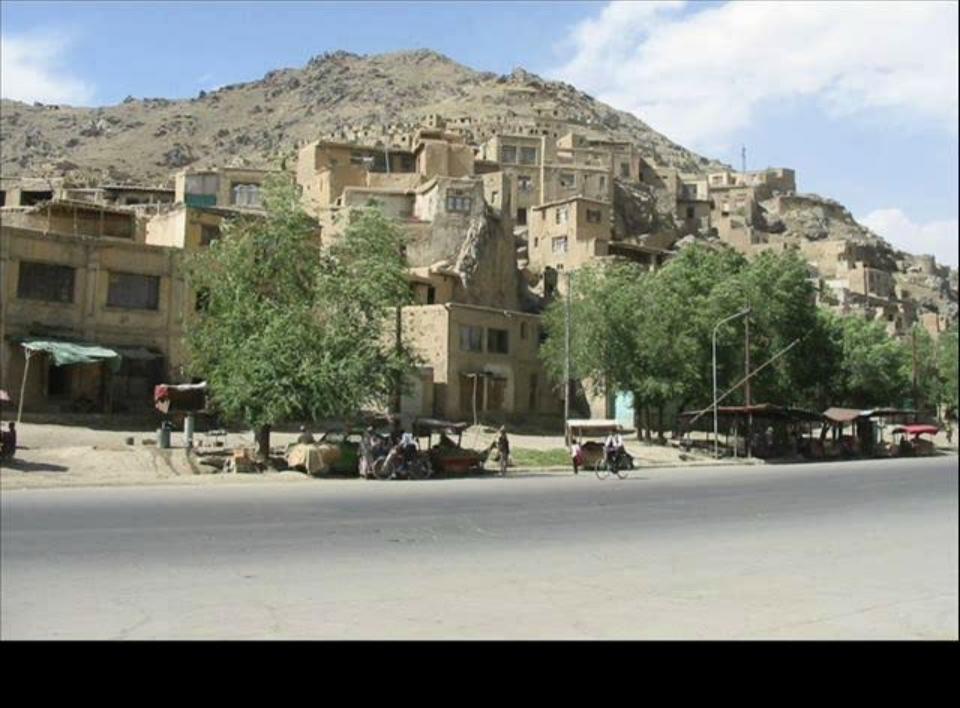
Cut and Fold



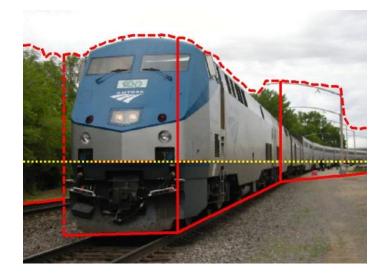
Final Pop-up Model

[Hoiem Efros Hebert 2005]

Automatic Photo Popup



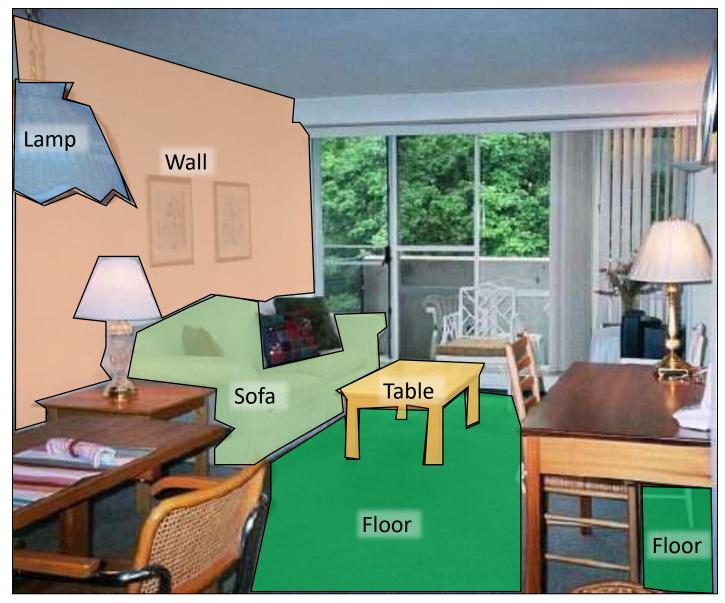
Mini-conclusions



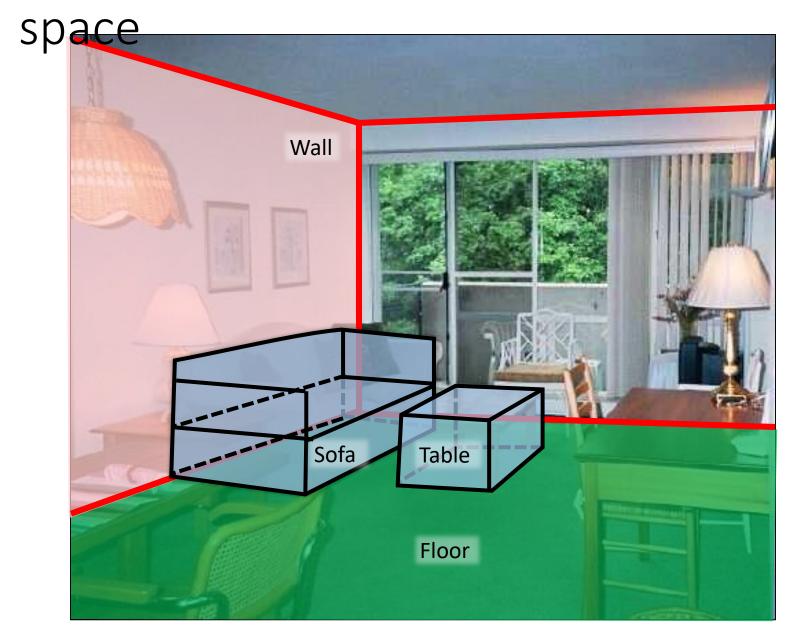
Can learn to predict surface geometry from a single image

Interpretation of indoor scenes

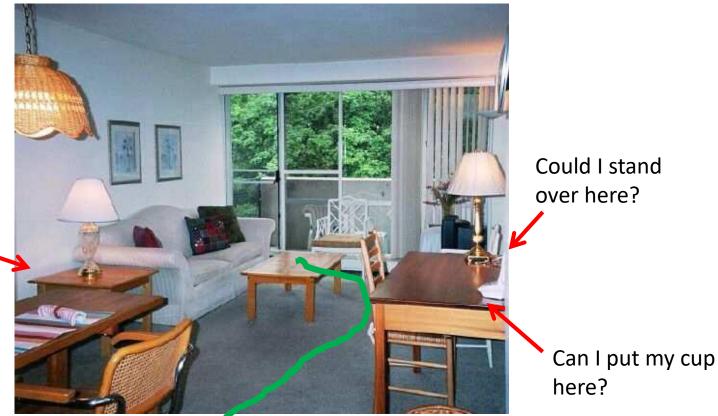
Vision = assigning labels to pixels?



Vision = interpreting within physical



Physical space needed for affordance



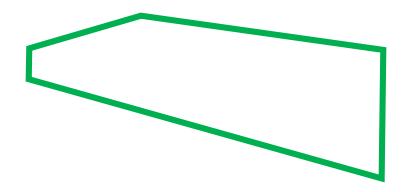
Is this a good

place to sit?

Walkable path

Physical space needed for recognition

Apparent shape depends strongly on viewpoint



Physical space needed for recognition



Physical space needed to predict appearance

Physical space needed to predict appearance

Key challenges

- How to represent the physical space?
 - Requires seeing beyond the visible

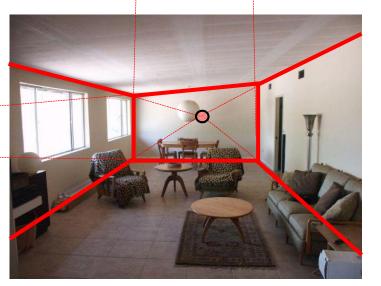
- How to estimate the physical space?
 - Requires simplified models
 - Requires learning from examples

Our Box Layout

0

• Room is an oriented 3D box

- Three vanishing points specify orientation
- Two pairs of sampled rays specify position/size



Our Box Layout

Room is an oriented 3D box

- Three vanishing points (VPs) specify orientation
- Two pairs of sampled rays specify position/size

Another box consistent with the same vanishing points

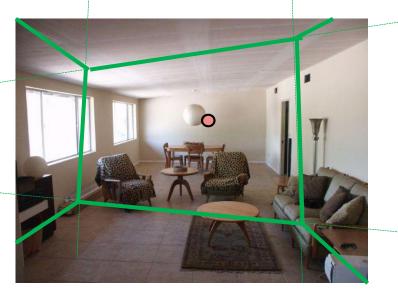
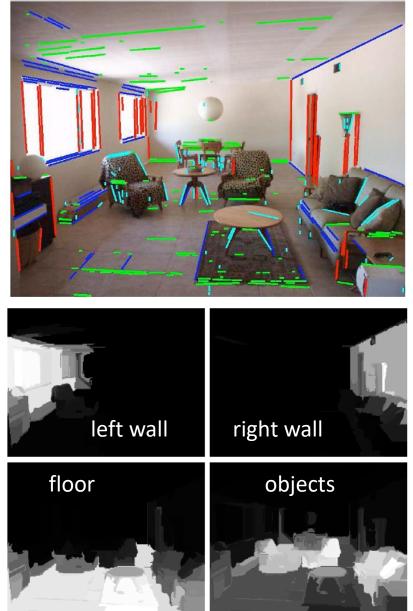
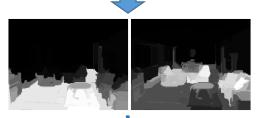


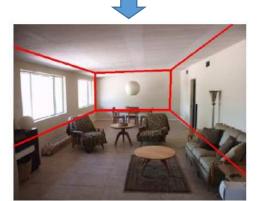
Image Cues for Box Layout

- Straight edges
 - Edges on floor/wall surfaces are usually oriented towards VPs
 - Edges on objects might mislead
- Appearance of visible surfaces
 - Floor, wall, ceiling, object labels should be consistent with box



Box Layout Algorithm





- 1. Detect edges
- 2. Estimate 3 orthogonal vanishing points
- 3. Apply region classifier to label pixels with visible surfaces
 - Boosted decision trees on region based on color, texture, edges, position
- 4. Generate box candidates by sampling pairs of rays from VPs
- 5. Score each box based on edges and pixel labels
 - Learn score via structured learning
- 6. Jointly refine box layout and pixel labels to get final estimate

Evaluation

- Dataset: 308 indoor images
 - Train with 204 images, test with 104 images

Experimental results

Detected Edges

Surface Labels

Box Layout

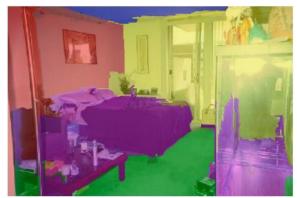
Detected Edges

Surface Labels

Box Layout

Experimental results

Detected Edges



Surface Labels

Box Layout

Detected Edges

Surface Labels

Box Layout

Experimental results

- Joint reasoning of surface label / box layout helps
 - Pixel error: $26.5\% \rightarrow 21.2\%$
 - Corner error: 7.4% \rightarrow 6.3%
- Similar performance for cluttered and uncluttered rooms

Mini-Conclusions

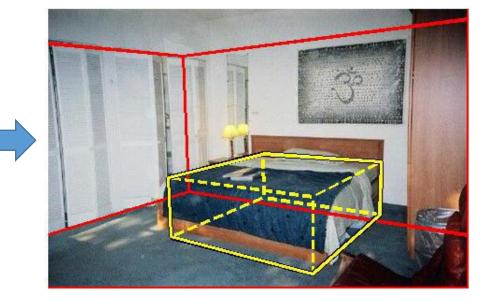
- Can fit a 3D box to the rooms boundaries from one image
 - Robust to occluding objects
 - Decent accuracy, but still much room for improvement

Using room layout to improve object detection Box layout helps

- 1. Predict the appearance of objects, because they are often aligned with the room
- 2. Predict the position and size of objects, due to physical constraints and size consistency

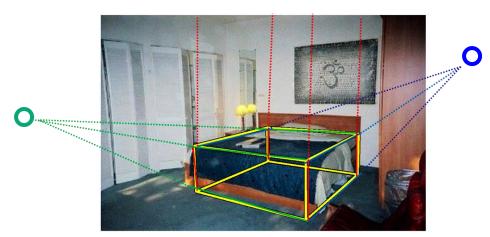
2D Bed Detection

3D Bed Detection with Scene Geometry

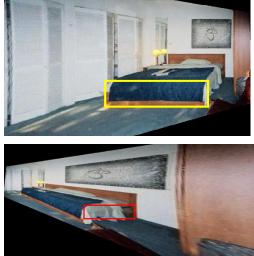


Hedau, Hoiem, Forsyth, ECCV 2010, CVPR 2012

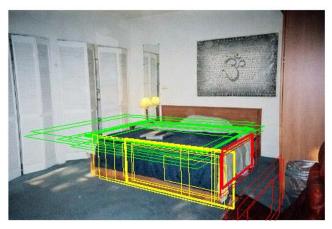
Search for objects in room coordinates



Recover Room Coordinates



Rectify Features to Room Coordinates



Rectified Sliding Windows

Hedau Forsyth Hoiem (2010)

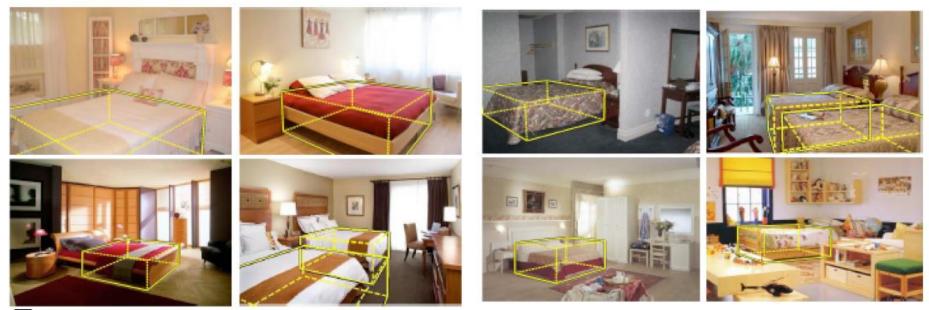
Reason about 3D room and bed space

Joint Inference with Priors

- Beds close to walls
- Beds within room
- Consistent bed/wall size
- Two objects cannot occupy the same space

Hedau Forsyth Hoiem (2010)

3D Bed Detection from an Image



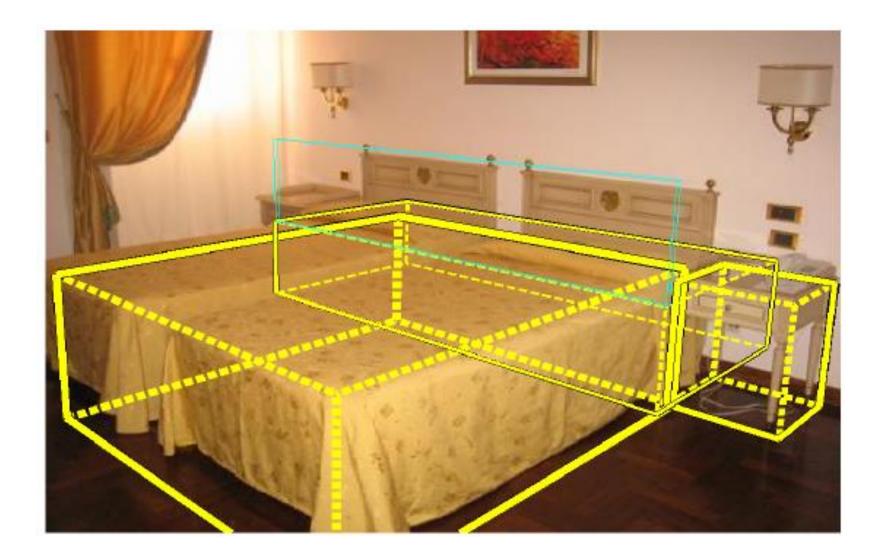
True positives

False positives

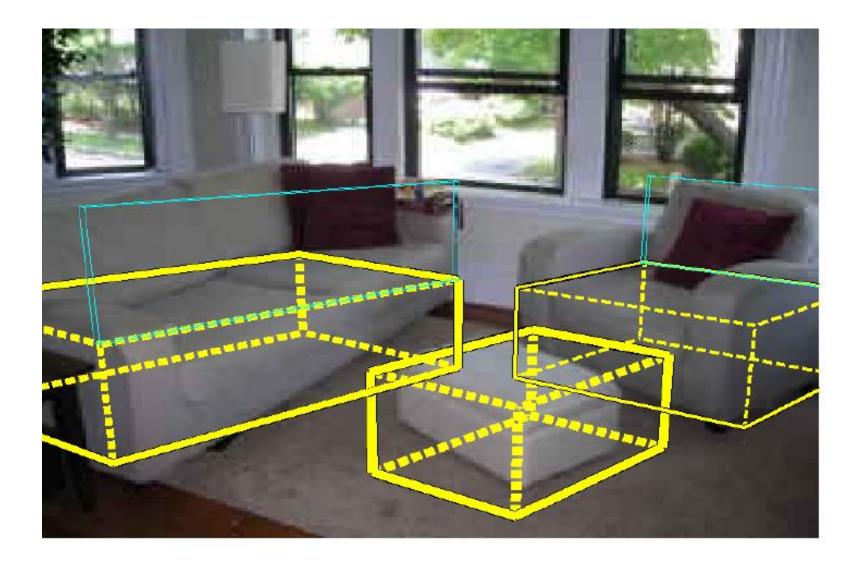
Generic boxy object detection

Hedau et al. 2012

Generic boxy object detection



Generic boxy object detection



Mini-Conclusions

- Simple room box layout helps detect objects by predicting appearance and constraining position
- We can search for objects in 3D space and directly evaluate on 3D localization

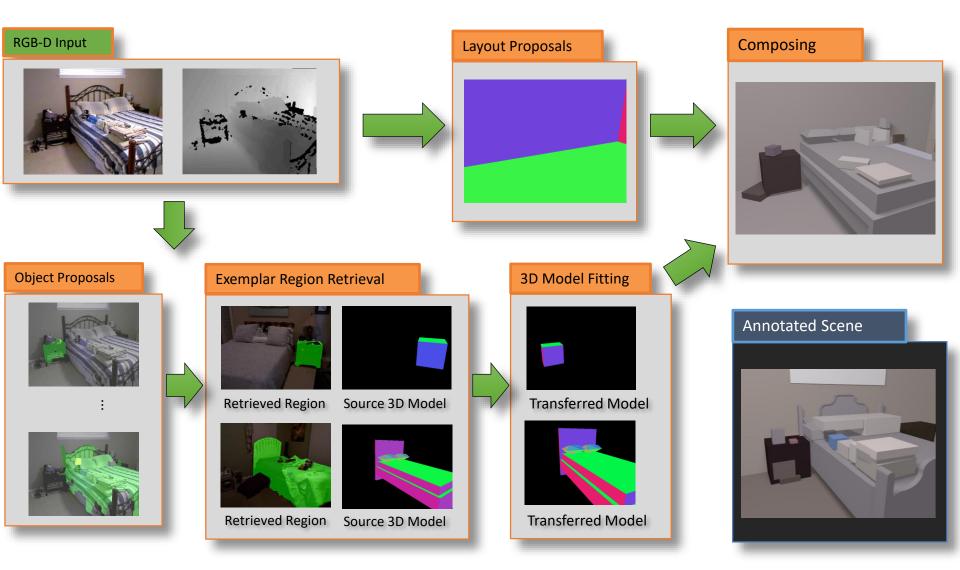
Predicting complete models from RGBD

Key idea: create **complete** 3D scene hypothesis that is **consistent** with observed depth and appearance

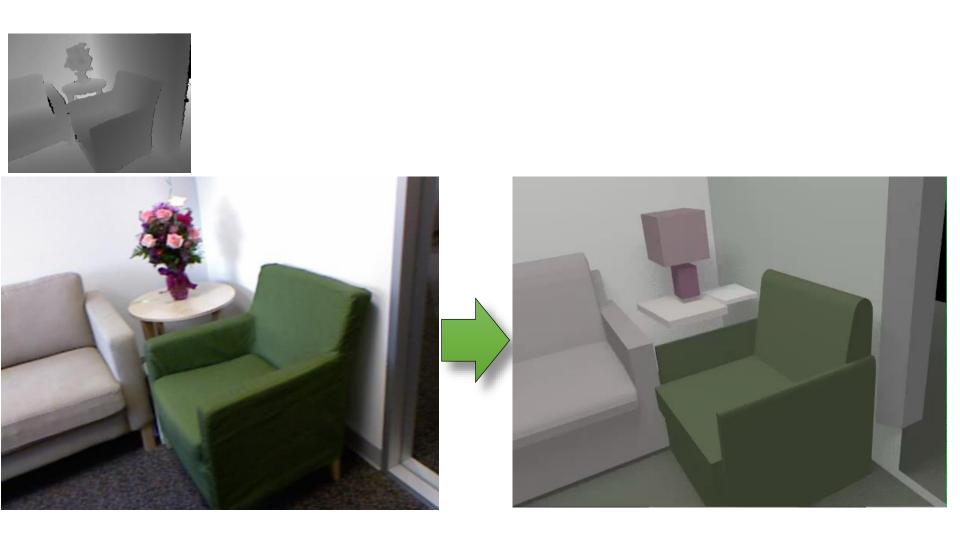


Guo Hoiem Zou 2015

Overview of approach



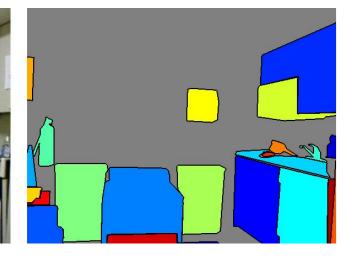
Example result (fully automatic)



Manual Segmentation

Composition with Manual Segmentation

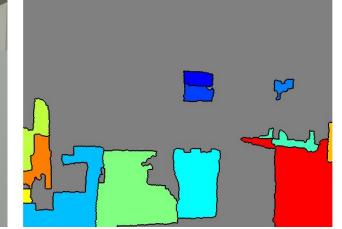
Original Image



Ground Truth Annotation

Auto Proposal

Composition with Auto Proposal

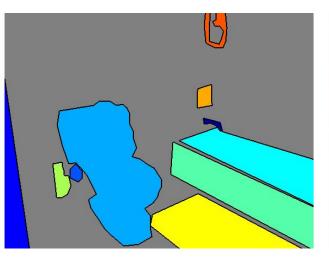




Original Image

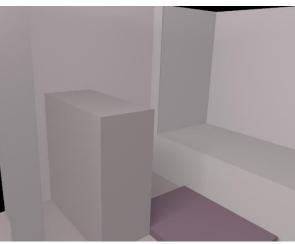
Manual Segmentation

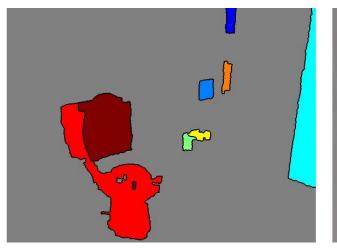
Composition w. Manual Segmentation



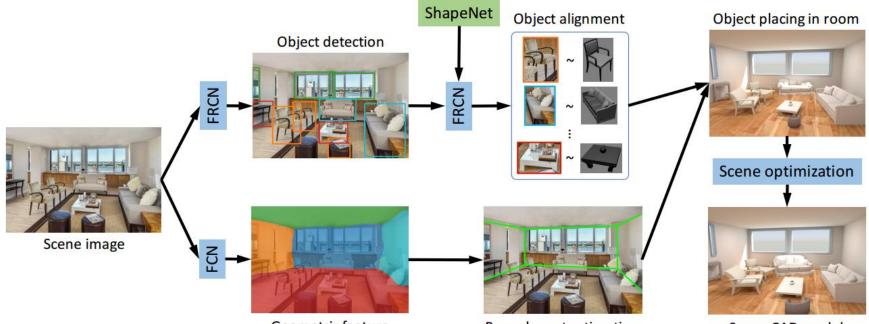
Ground Truth Annotation

Composition w. Auto Proposal





Im2CAD



Geometric feature

Room layout estimation

Scene CAD model

Im2CAD

Things to remember

- Objects should be interpreted in the context of the surrounding scene
 - Many types of context to consider
- Spatial layout is an important part of scene interpretation, but many open problems
 - How to represent space?
 - How to learn and infer spatial models?
 - Important to see beyond the visible

• Consider trade-off of abstraction vs. precision