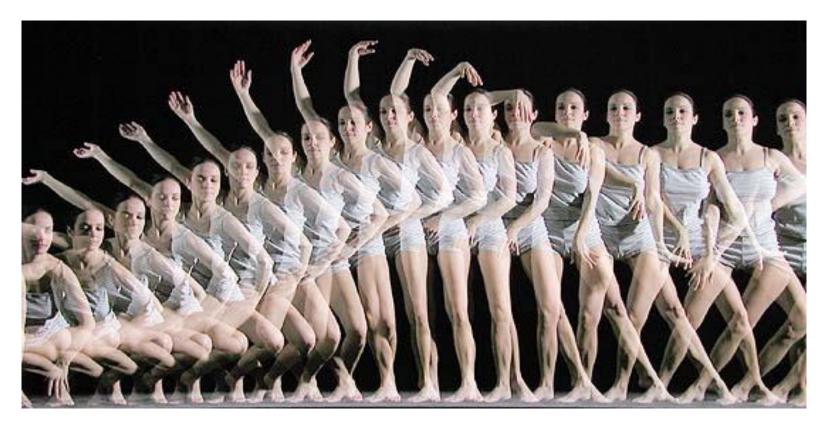
Action Recognition



Computer Vision Jia-Bin Huang, Virginia Tech

This section: advanced topics

- Convolutional neural networks in vision
- Action recognition
- 3D Scenes and Context

What is an action?

Action: a transition from one state to another

- Who is the actor?
- How is the state of the actor changing?
- What (if anything) is being acted on?
- How is that thing changing?
- What is the purpose of the action (if any)?

How do we represent actions?

Categories

Walking, hammering, dancing, skiing, sitting down, standing up, jumping

Nouns and Predicates

<man, swings, hammer> <man, hits, nail, w/ hammer>

What is the purpose of action recognition?

To describe

https://www.youtube.com/watch?v=bcgXAQcvxdc

• To predict

http://www.youtube.com/watch?v=LQm25nW6aZw

How can we identify actions?

Motion

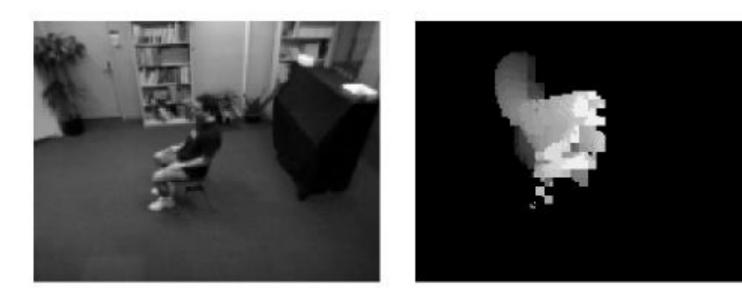
Pose

Held Objects

Nearby Objects

Representing Motion

Optical Flow with Motion History

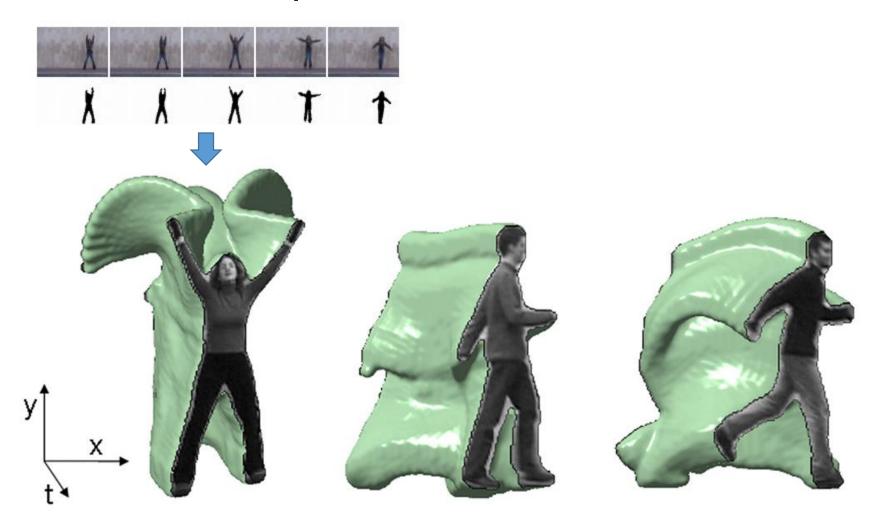


sit-down

sit-down MHI

Bobick Davis 2001

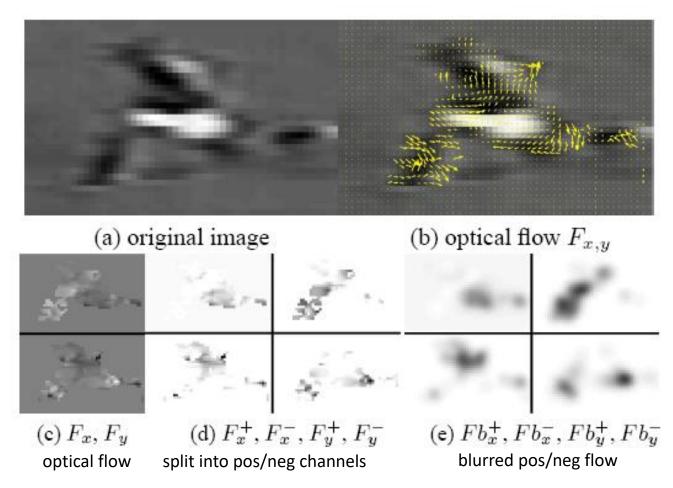
Representing Motion Space-Time Volumes



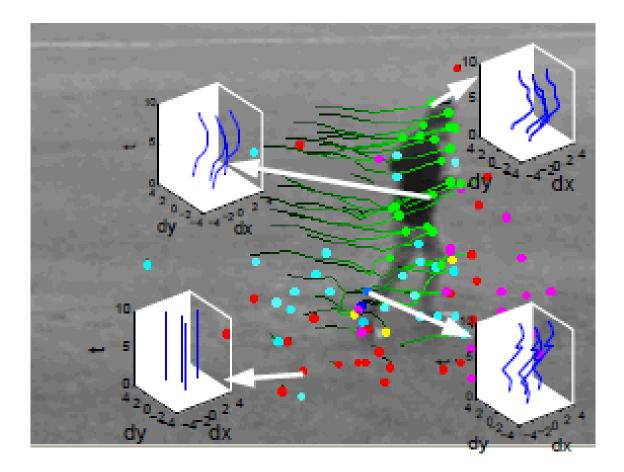
Blank et al. 2005

Representing Motion

Optical Flow with Split Channels

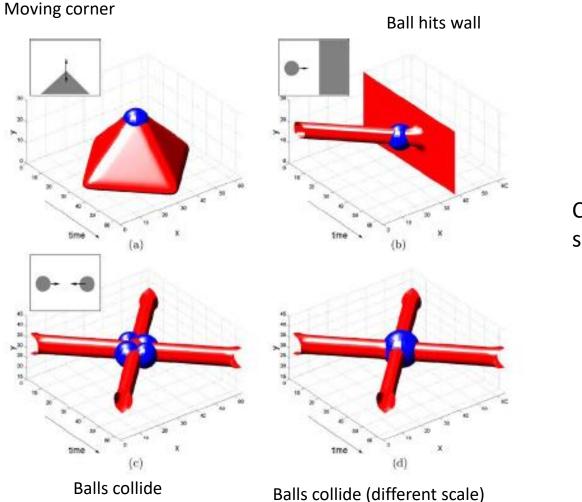


Representing Motion Tracked Points



Matikainen et al. 2009

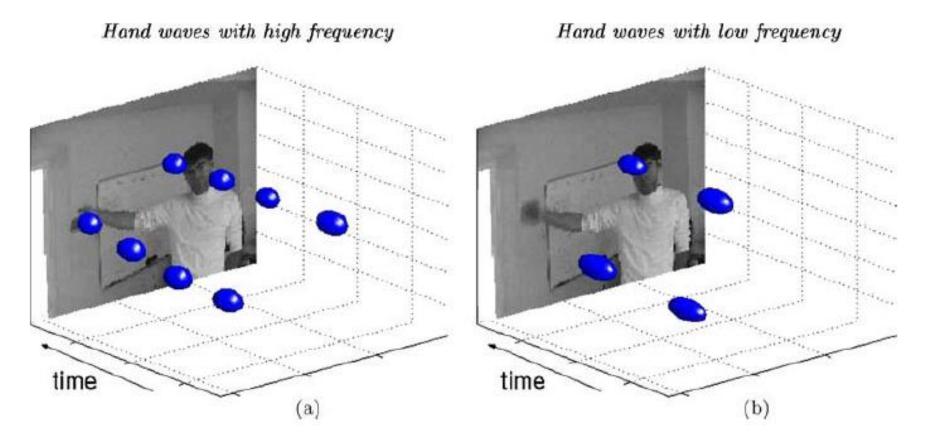
Representing Motion Space-Time Interest Points



Corner detectors in space-time

Laptev 2005

Representing Motion Space-Time Interest Points



Laptev 2005

Examples of Action Recognition Systems

• Feature-based classification

• Recognition using pose and objects

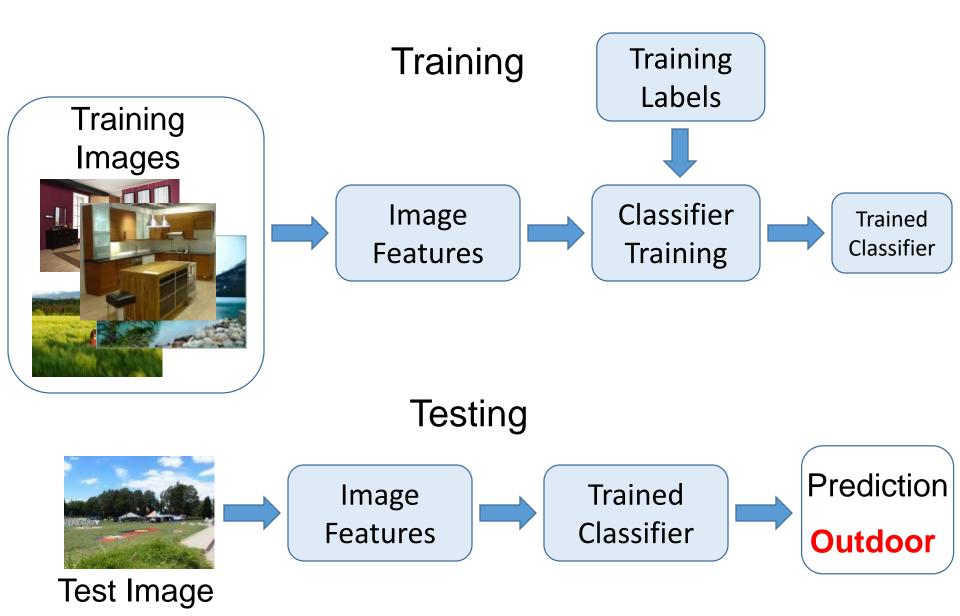
Action recognition as classification

training samples

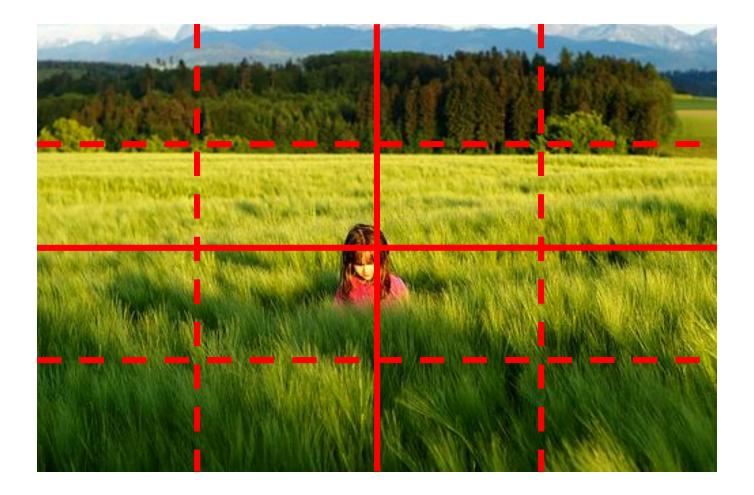
test samples

Retrieving actions in movies, Laptev and Perez, 2007

Remember image categorization...

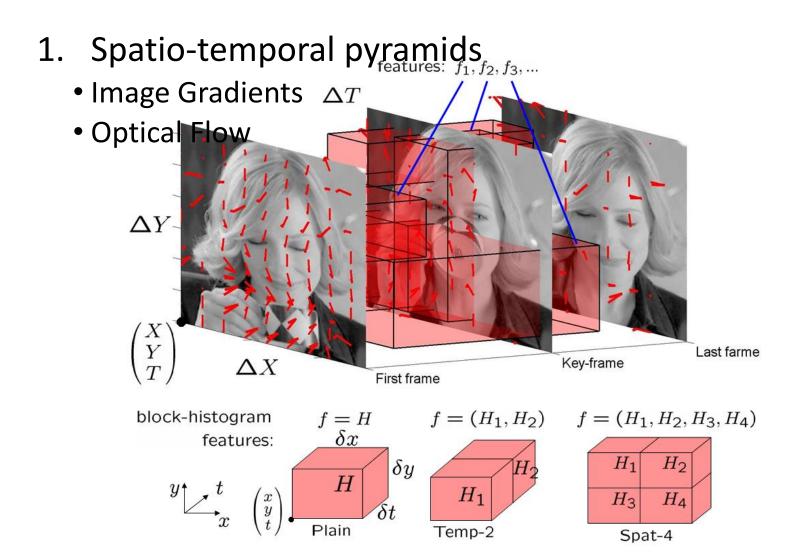


Remember spatial pyramids....

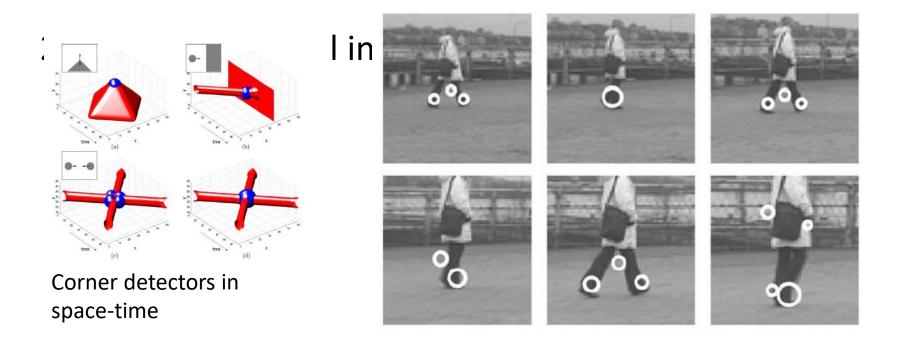


Compute histogram in each spatial bin

Features for Classifying Actions



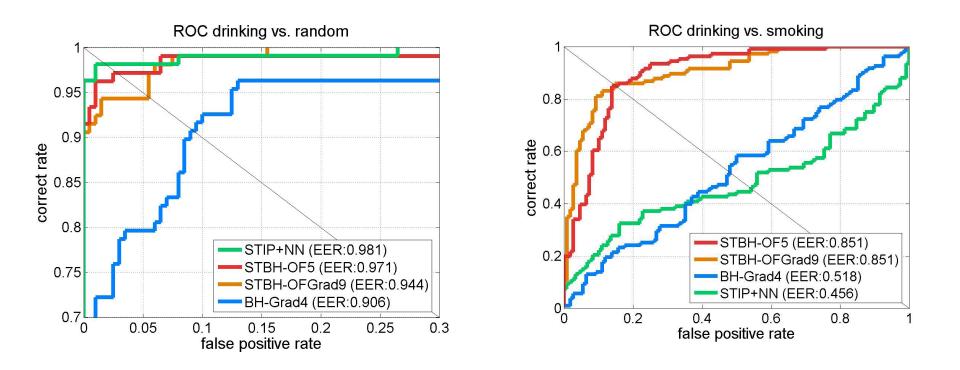
Features for Classifying Actions



Descriptors based on Gaussian derivative filters over x, y, time

Classification

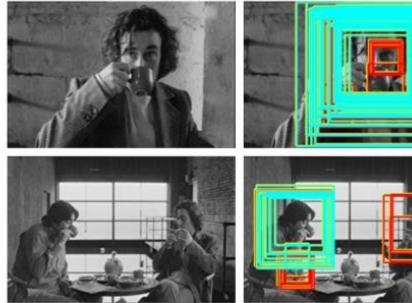
- Boosted stubs for pyramids of optical flow, gradient
- Nearest neighbor for STIP

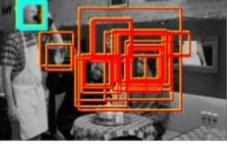


Searching the video for an action

- 1. Detect keyframes using a trained HOG detector in each frame
- 2. Classify detected keyframes as positive (e.g., "drinking") or negative ("other") Keyframe priming

Test frame samples

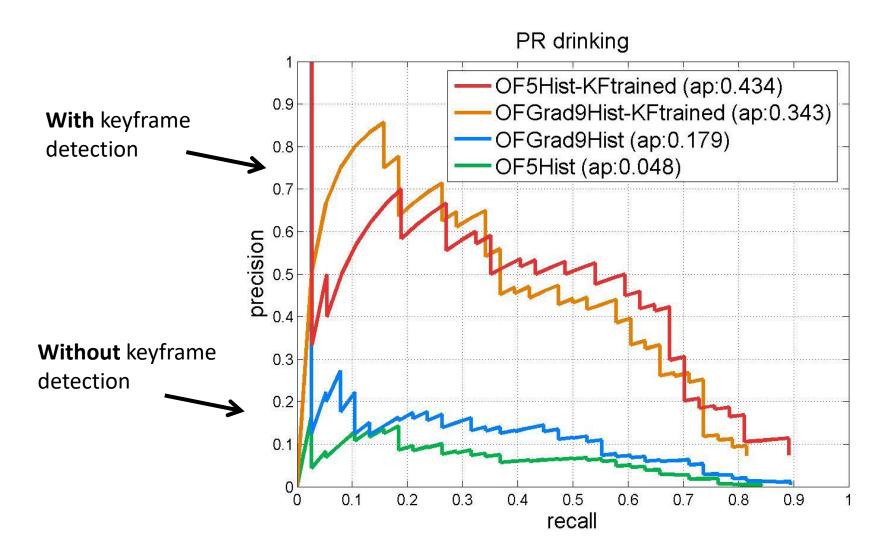




Keyframe-primed event detection

Keyframe detections

Accuracy in searching video



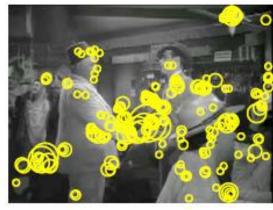
"Talk on phone"

"Get out of car"

Learning realistic human actions from movies, Laptev et al. 2008

Approach

- Space-time interest point detectors
- Descriptors
 - HOG, HOF
- Pyramid histograms (3x3x2)
- SVMs with Chi-Squared Kernel



 $y \leftarrow t \\ x$ |x| tl |x| t2 h3x1 tl o2x2 tl

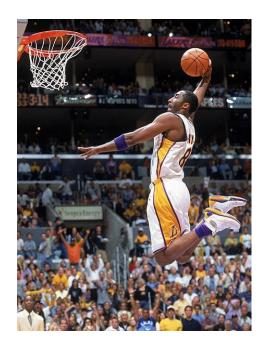
Spatio-Temporal Binning

Interest Points

Results

Task	HoG BoF	HoF BoF	Best channel	Best combination
KTH multi-class	81.6%	89.7%	91.1% (hof h3x1 t3)	91.8% (hof 1 t2, hog 1 t3)
Action AnswerPhone	13.4%	24.6%	26.7% (hof h3x1 t3)	32.1% (hof o2x2 t1, hof h3x1 t3)
Action GetOutCar	21.9%	14.9%	22.5% (hof o2x2 1)	41.5% (hof o2x2 t1, hog h3x1 t1)
Action HandShake	18.6%	12.1%	23.7% (hog h3x1 1)	32.3% (hog h3x1 t1, hog o2x2 t3)
Action HugPerson	29.1%	17.4%	34.9% (hog h3x1 t2)	40.6% (hog 1 t2, hog o2x2 t2, hog h3x1 t2)
Action Kiss	52.0%	36.5%	52.0% (hog 1 1)	53.3% (hog 1 t1, hof 1 t1, hof o2x2 t1)
Action SitDown	29.1%	20.7%	37.8% (hog 1 t2)	38.6% (hog 1 t2, hog 1 t3)
Action SitUp	6.5%	5.7%	15.2% (hog h3x1 t2)	18.2% (hog o2x2 t1, hog o2x2 t2, hog h3x1 t2)
Action StandUp	45.4%	40.0%	45.4% (hog 1 1)	50.5% (hog 1 t1, hof 1 t2)

Action Recognition using Pose and Objects



Modeling Mutual Context of Object and Human Pose in Human-Object Interaction Activities, B. Yao and Li Fei-Fei, 2010

Human-Object Interaction

Holistic image based classification

Integrated reasoning

Human pose estimation

Human-Object Interaction

Holistic image based classification

Integrated reasoning

- Human pose estimation
- Object detection

Human-Object Interaction

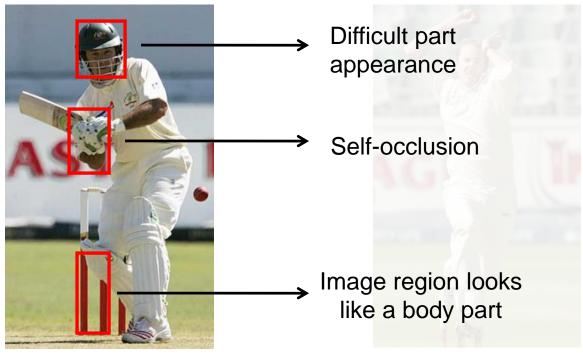
Holistic image based classification

Integrated reasoning

- Human pose estimation
- Object detection
- Action categorization

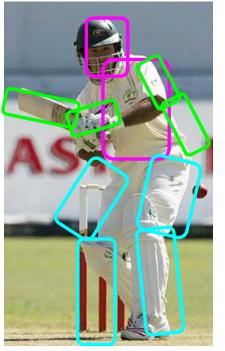
Activity: Tennis Forehand

Human pose estimation is challenging.



- Felzenszwalb & Huttenlocher, 2005
- Ren et al, 2005
- Ramanan, 2006
- Ferrari et al, 2008
- Yang & Mori, 2008
- Andriluka et al, 2009
- Eichner & Ferrari, 2009

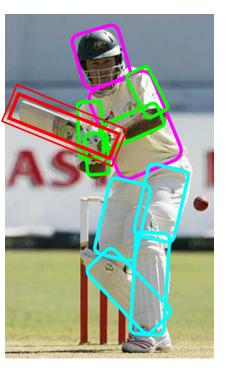
Human pose estimation is challenging.

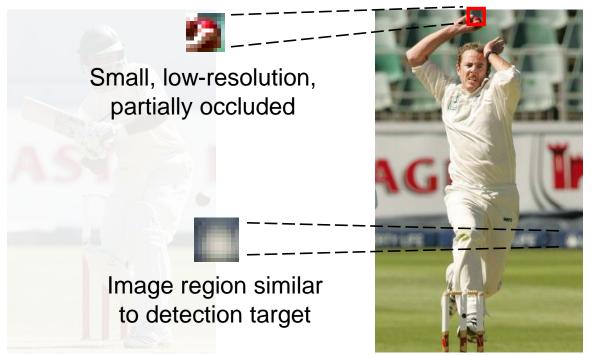


- Felzenszwalb & Huttenlocher, 2005
- Ren et al, 2005
- Ramanan, 2006
- Ferrari et al, 2008
- Yang & Mori, 2008
- Andriluka et al, 2009
- Eichner & Ferrari, 2009

Facilitate

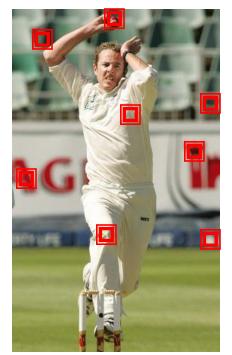
Given the object is detected.





Object detection is challenging

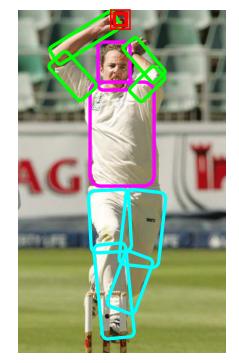
- Viola & Jones, 2001
- Lampert et al, 2008
- Divvala et al, 2009
- Vedaldi et al, 2009



Object detection is challenging

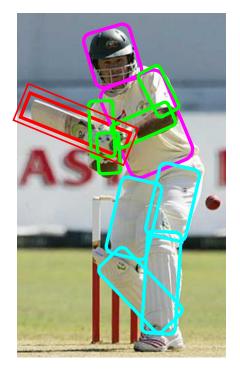
- Viola & Jones, 2001
- Lampert et al, 2008
- Divvala et al, 2009
- Vedaldi et al, 2009

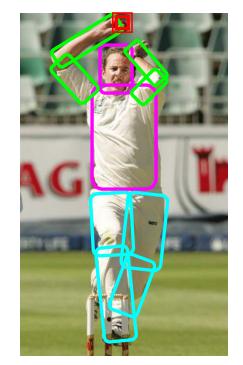
Facilitate



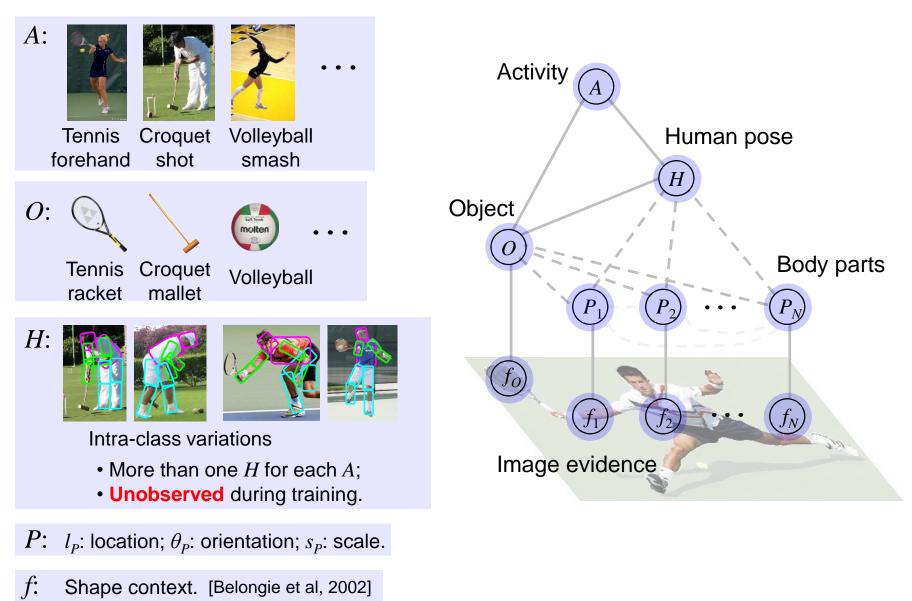
Given the pose is estimated.

Mutual Context

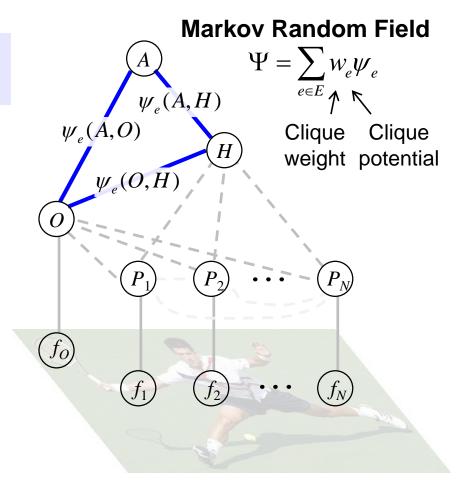




Mutual Context Model Representation



• $\psi_e(A,O)$, $\psi_e(A,H)$, $\psi_e(O,H)$: Frequency of co-occurrence between *A*, *O*, and *H*.



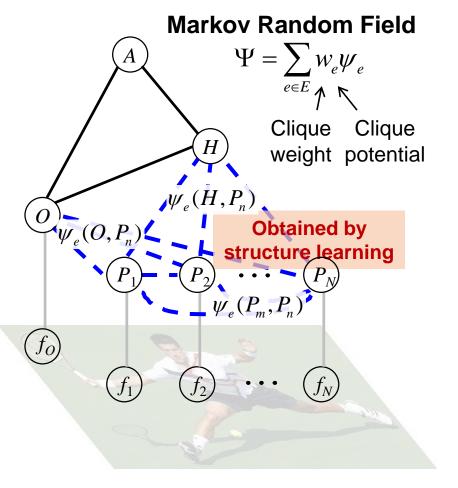
 $\Psi = \sum w_e \psi_e$ • $\psi_e(A,O)$, $\psi_e(A,H)$, $\psi_e(O,H)$: Frequency of co-occurrence between A, O, and H. Clique Clique • $\psi_e(O, P_n), \psi_e(H, P_n), \psi_e(P_m, P_n)$: Spatial Н weight potential relationship among object and body parts. $\operatorname{bin}(l_{O}-l_{P_{n}})\cdot\operatorname{bin}(\theta_{O}-\theta_{P_{n}})\cdot\operatorname{N}(s_{O}/s_{P_{n}})$ $\psi_e(H, P_r)$ $\underbrace{O}_{\psi_e}(O,P_n)$ orientation location size fo

Markov Random Field

• $\psi_e(A,O)$, $\psi_e(A,H)$, $\psi_e(O,H)$: Frequency of co-occurrence between *A*, *O*, and *H*.

• $\psi_e(O, P_n), \psi_e(H, P_n), \psi_e(P_m, P_n)$: Spatial relationship among object and body parts. $bin(l_O - l_{P_n}) \cdot bin(\theta_O - \theta_{P_n}) \cdot N(s_O/s_{P_n})$ location orientation size

• Learn structural connectivity among the body parts and the object.



• $\psi_e(A,O)$, $\psi_e(A,H)$, $\psi_e(O,H)$: Frequency of co-occurrence between *A*, *O*, and *H*.

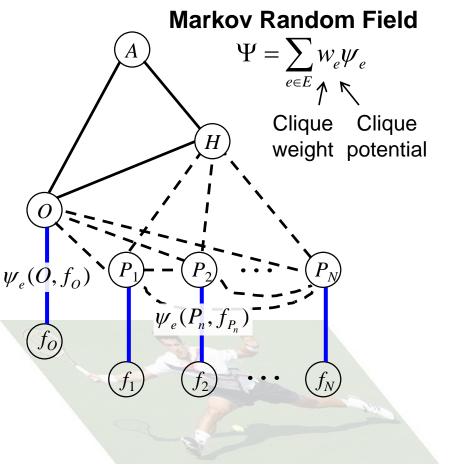
• $\psi_e(O, P_n), \psi_e(H, P_n), \psi_e(P_m, P_n)$: Spatial relationship among object and body parts. $bin(l_O - l_{P_n}) \cdot bin(\theta_O - \theta_{P_n}) \cdot N(s_O/s_{P_n})$ location orientation size

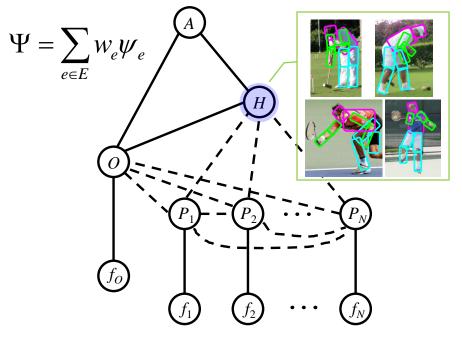
• Learn structural connectivity among the body parts and the object.

• $\Psi_e(O, f_O)$ and $\Psi_e(P_n, f_{P_n})$: Discriminative part detection scores.

Shape context + AdaBoost

[Andriluka et al, 2009] [Belongie et al, 2002] [Viola & Jones, 2001]



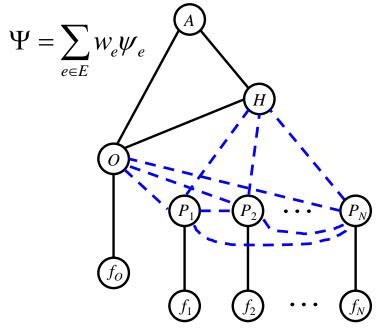


Input:

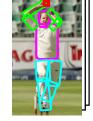
cricket shot cricket bowling

<u>Goals:</u>

Hidden human poses



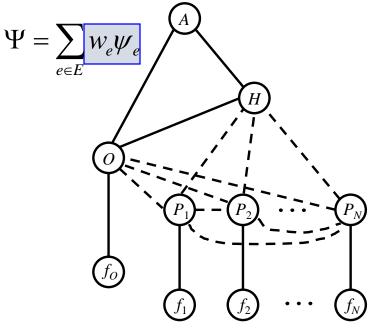
Input:



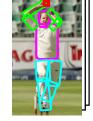
cricket shot cricket bowling

<u>Goals:</u>

Hidden human poses Structural connectivity



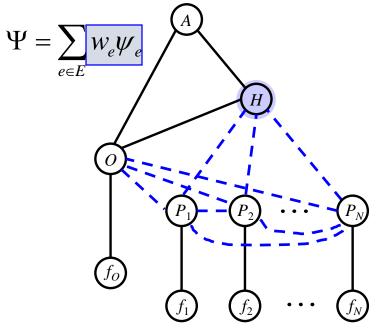
Input:



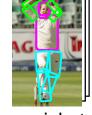
cricket shot cricket bowling

<u>Goals:</u>

Hidden human poses Structural connectivity Potential parameters Potential weights



Input:

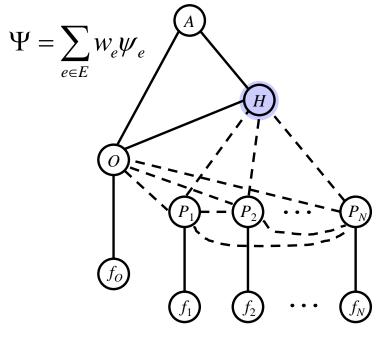


cricket shot cricket bowling

<u>Goals:</u>

- Hidden human poses \rightarrow Hidden variables
- Structural connectivity -> Structure learning
- Potential parameters
- Potential weights

- Parameter estimation

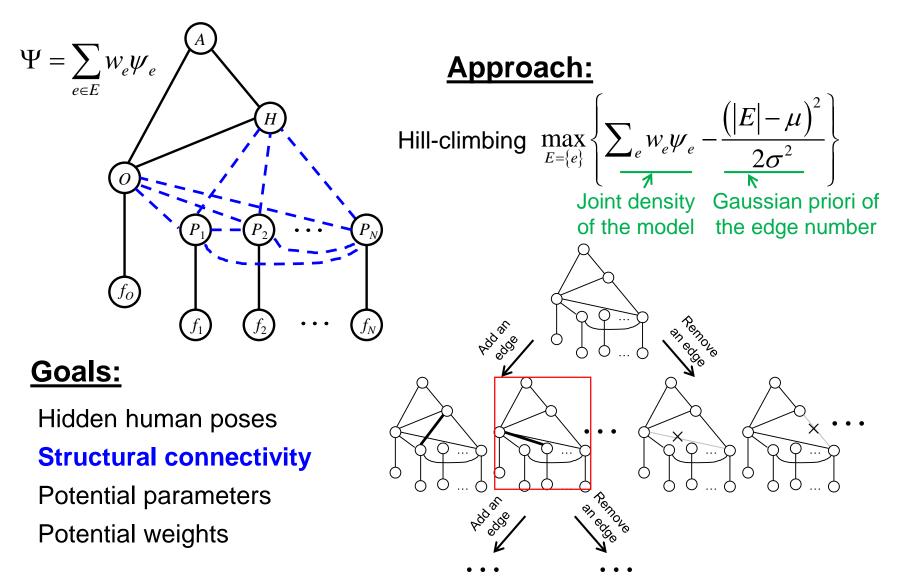


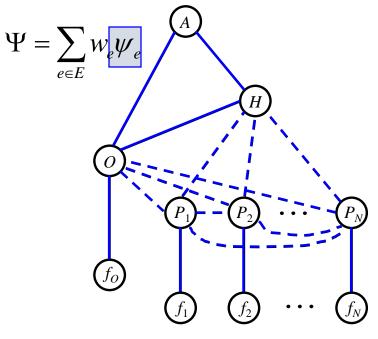
Goals:

Hidden human poses

Structural connectivity Potential parameters Potential weights

Approach:





<u>Goals:</u>

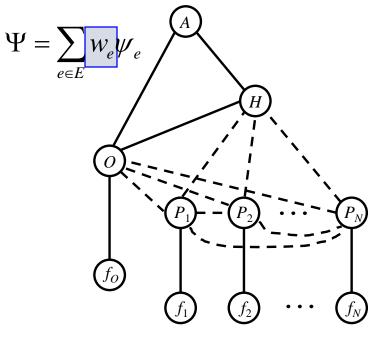
Hidden human poses Structural connectivity

Potential parameters

Potential weights

Approach:

- Maximum likelihood $\psi_e(A,O) \quad \psi_e(A,H) \quad \psi_e(O,H)$ $\psi_e(H,P_n) \quad \psi_e(O,P_n) \quad \psi_e(P_m,P_n)$
- Standard AdaBoost $\psi_e(O, f_O) \quad \psi_e(P_n, f_{P_n})$



<u>Goals:</u>

Hidden human poses Structural connectivity Potential parameters **Potential weights**

<u>-</u>

Approach:

Max-margin learning

$$\min_{\mathbf{w},\xi} \frac{1}{2} \sum_{r} \left\| \mathbf{w}_{r} \right\|_{2}^{2} + \beta \sum_{i} \xi_{i}$$

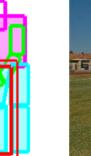
s.t. $\forall i, r \text{ where } y(r) \neq y(c_i),$ $\mathbf{w}_{c_i} \cdot \mathbf{x}_i - \mathbf{w}_r \cdot \mathbf{x}_i \geq 1 - \xi_i$ $\forall i, \xi_i \geq 0$

Notations

- \mathbf{x}_i : Potential values of the *i*-th image.
- \mathbf{w}_r : Potential weights of the *r*-th pose.
- y(r): Activity of the *r*-th pose.
- ξ_i : A slack variable for the *i*-th image.

Learning Results

Cricket defensive shot

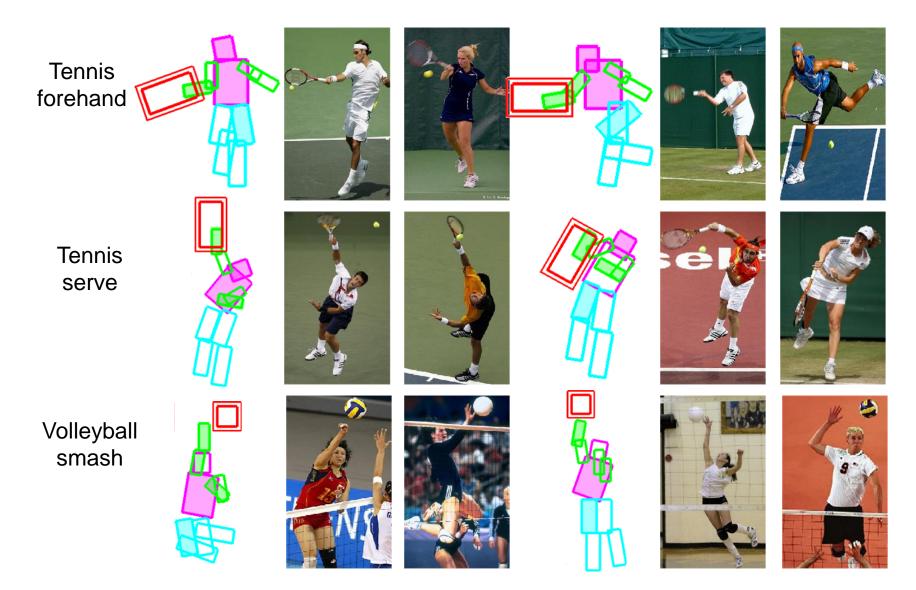


ona

Slide Credit: Yao/Fei-Fei

Croquet shot

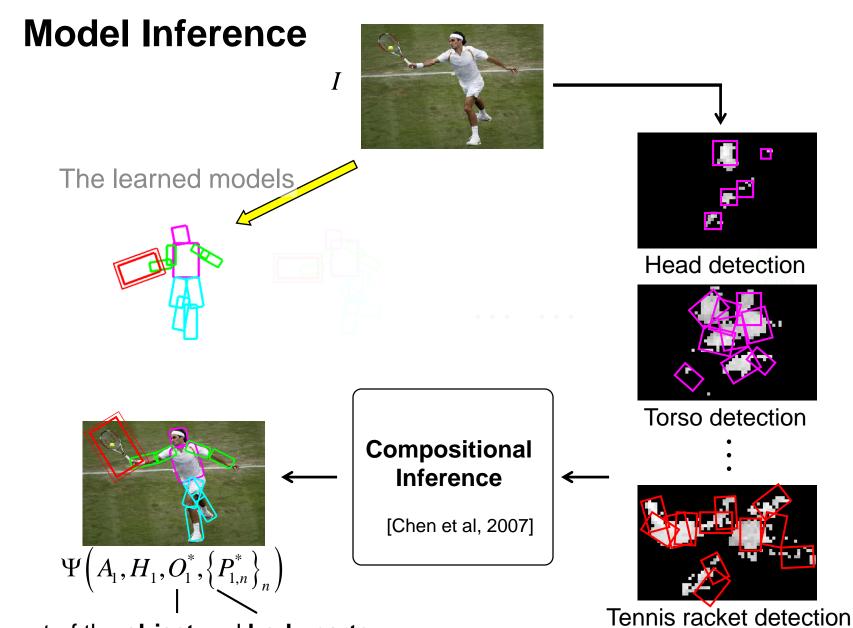
Learning Results



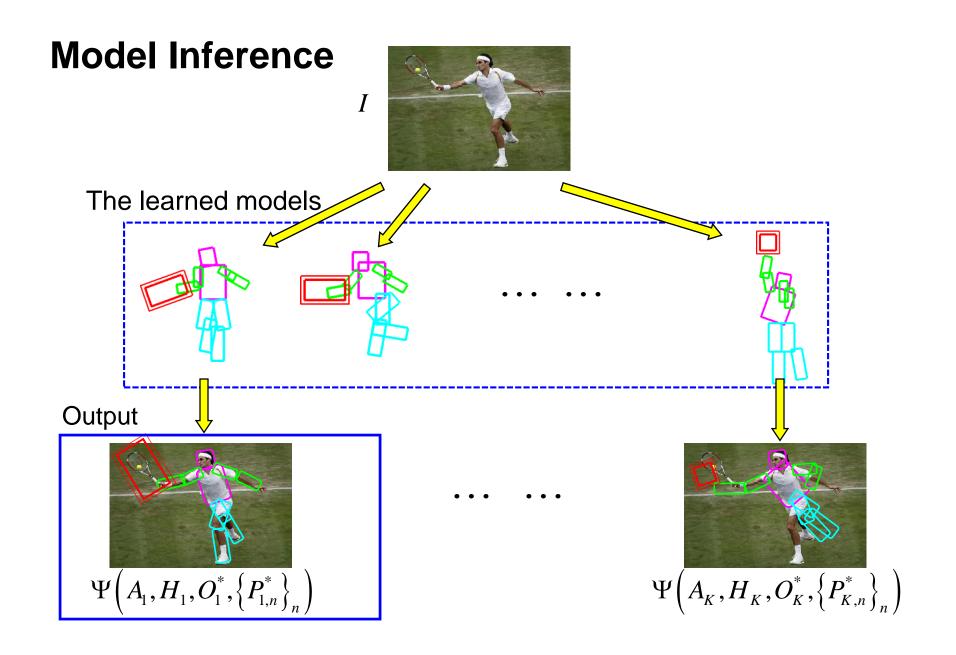
Model Inference

The learned models





Layout of the **object** and **body parts**.



Dataset and Experiment Setup

Sport data set: 6 classes

180 training (supervised with object and part locations) & 120 testing images

Cricket defensive shot

Cricket bowling

Croquet shot

<u>Tasks:</u>

- Object detection;
- Pose estimation;
- Activity classification.

Tennis forehand

Tennis serve

Volleyball smash

Slide Credit: Yao/Fei-Fei

[Gupta et al, 2009]

Dataset and Experiment Setup

Sport data set: 6 classes

180 training (supervised with object and part locations) & 120 testing images

Cricket defensive shot

Cricket bowling

Croquet shot

<u>Tasks:</u>

- Object detection;
- Pose estimation;
- Activity classification.

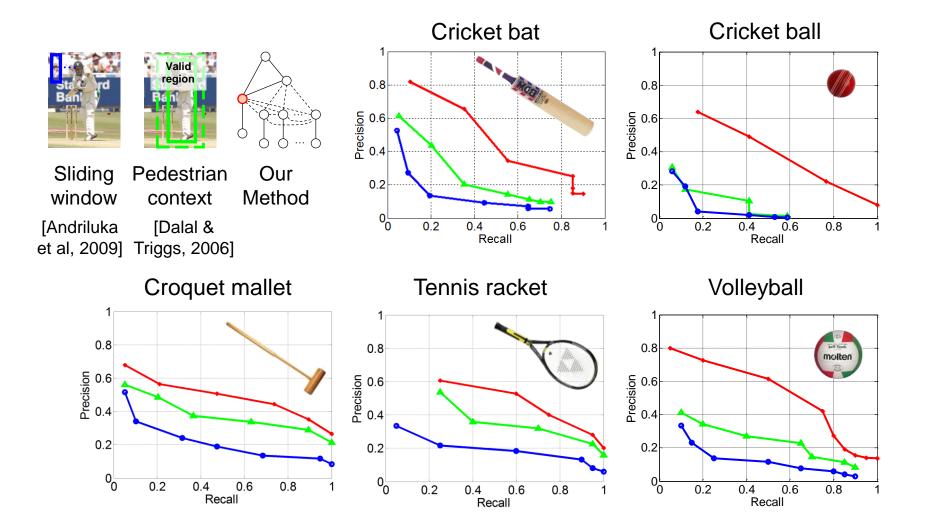
Tennis forehand

Tennis serve

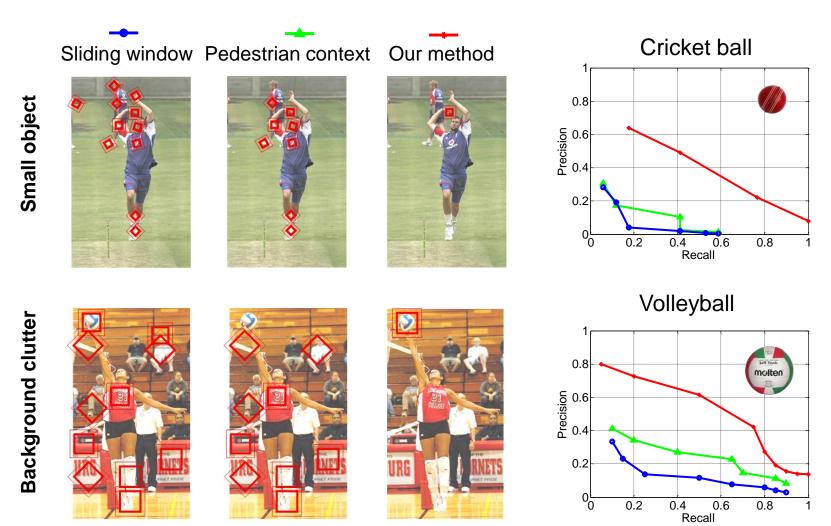
Volleyball smash

[Gupta et al, 2009]

Object Detection Results



Object Detection Results



Dataset and Experiment Setup

Sport data set: 6 classes 180 training & 120 testing images

Cricket defensive shot

Cricket bowling

Croquet shot

<u>Tasks:</u>

- Object detection;
- Pose estimation;
- Activity classification.

Tennis forehand

[Gupta et al, 2009]

Tennis serve

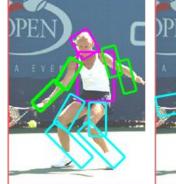
Volleyball smash

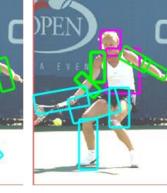
Human Pose Estimation Results

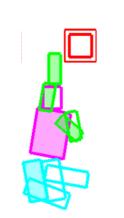
Method	Torso	Uppe	r Leg	Lowe	r Leg	Uppe	r Arm	Lowe	Head	
Ramanan, 2006	.52	.22	.22	.21	.28	.24	.28	.17	.14	.42
Andriluka et al, 2009	.50	.31	.30	.31	.27	.18	.19	.11	.11	.45
Our full model	.66	.43	.39	.44	.34	.44	.40	.27	.29	.58

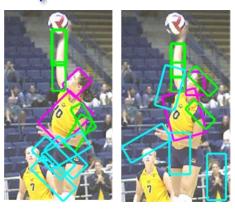
Human Pose Estimation Results

Method	Torso	Uppe	r Leg	Lowe	er Leg	Uppe	r Arm	Lowe	Head		
Ramanan, 2006	.52	.22 .22		.21	.21 .28		.24 .28		.14	.42	
Andriluka et al, 2009	.50	.31	.30	.31	.27	.18	.19	.11	.11	.45	
Our full model	.66	.43	.39	.44	.34	.44	.40	.27	.29	.58	









Tennis serve model

Our estimation result

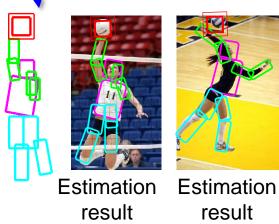
Andriluka et al, 2009

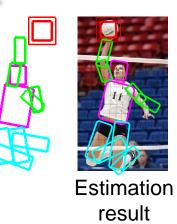
Volleyball smash model

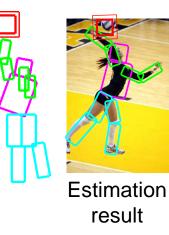
Our estimation Andriluka result et al, 2009

Human Pose Estimation Results

Method	Torso	Uppe	r Leg	Lowe	er Leg	Uppe	r Arm	Lowe	Head		
Ramanan, 2006	.52	.22 .22		.21	.28	.24	.28	.17	.14	.42	
Andriluka et al, 2009	.50	.31	.30	.31	.27	.18	.19	.11	.11	.45	
Our full model	.66	.43	.39	.44	.34	.44	.40	.27	.29	.58	
One pose per class	.63	.40	.36	.41	.31	.38	.35	.21	.23	.52	







Dataset and Experiment Setup

Sport data set: 6 classes 180 training & 120 testing images

Cricket defensive shot

Cricket bowling

Croquet shot

<u>Tasks:</u>

- Object detection;
- Pose estimation;
- Activity classification.

Tennis forehand

Tennis serve

Volleyball smash

Slide Credit: Yao/Fei-Fei

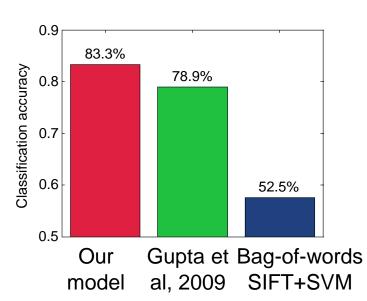
[Gupta et al, 2009]

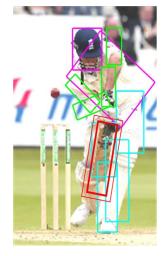
Activity Classification Results

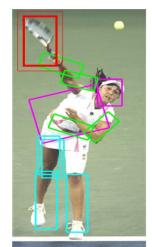
Cricket

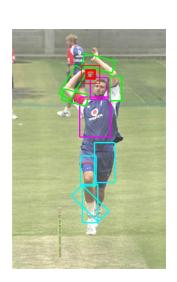
shot

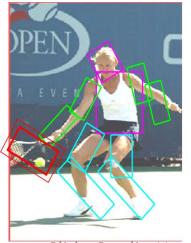
Tennis forehand



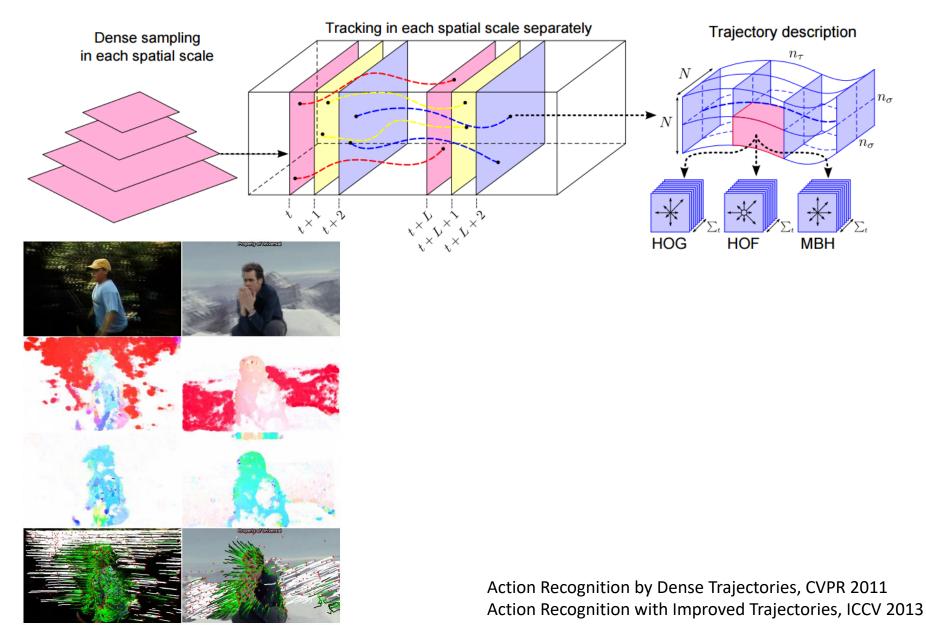




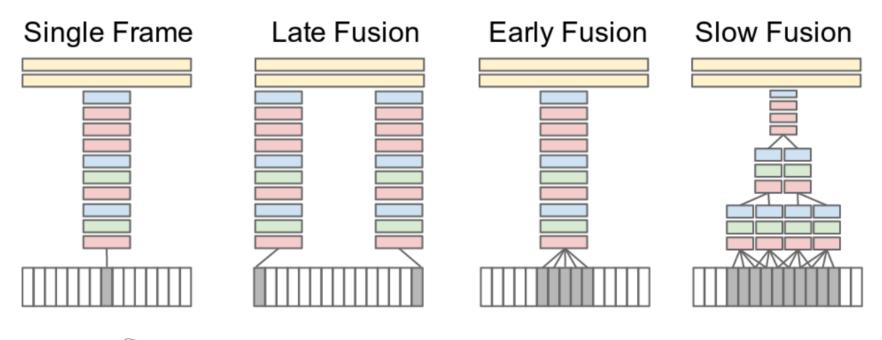


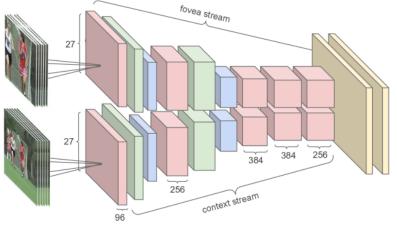


Motion features – Dense Trajectory



Video classification with CNNs





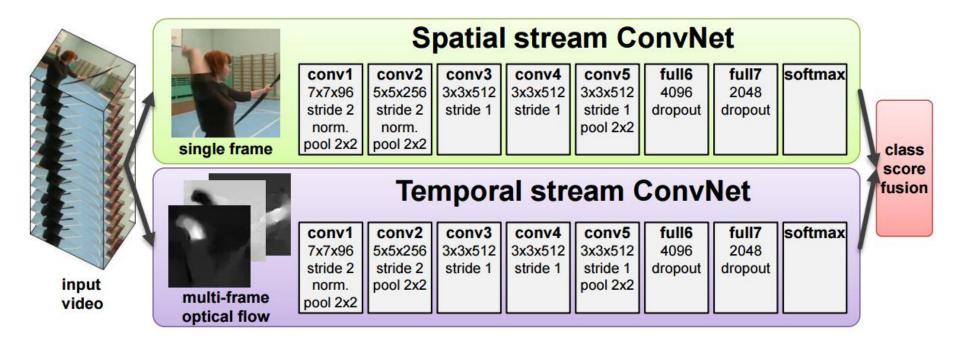
Large-scale Video Classification with Convolutional Neural Networks, CVPR 2014

Video classification with CNNs

Sports Video Classification

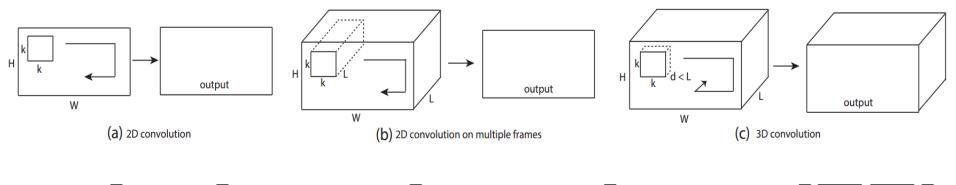
Large-scale Video Classification with Convolutional Neural Networks, CVPR 2014

Two-stream CNN

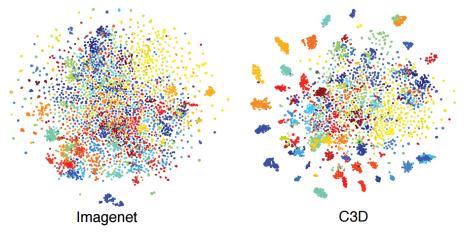


Two-Stream Convolutional Networks for Action Recognition in Videos, NIPS 2014

3D Convolutional Networks



ĺ	Conv1a	E	Conv2a	02	Conv3a	Conv3b		Conv4a	Conv4b]4	Conv5a	Conv5b] <mark>ਇ</mark>	fc6	fc7	max
	64	Po	128	Pod	256	256	Å	512	512	Å	512	512	Å	4096	4096	soft



Learning Spatiotemporal Features with 3D Convolutional Networks, ICCV 2015

Take-home messages

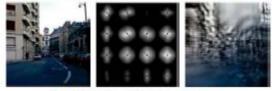
- Action recognition is an open problem.
 - How to define actions?
 - How to infer them?
 - What are good visual cues?
 - How do we incorporate higher level reasoning?

Take-home messages

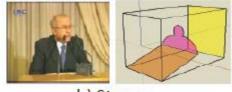
- Some work done, but it is just the beginning of exploring the problem. So far...
 - Actions are mainly categorical (could be framed in terms of effect or intent)
 - Most approaches are classification using simple features (spatial-temporal histograms of gradients or flow, s-t interest points, SIFT in images)
 - Just a couple works on how to incorporate pose and objects
 - Not much idea of how to reason about long-term activities or to describe video sequences

Next class: 3D Scenes and Context

Scene-Level Geometric Description



a) Gist, Spatial Envelope



b) Stages

Retinotopic Maps

c) Geometric Context

d) Depth Maps

Highly Structured 3D Models

e) Ground Plane

f) Ground Plane with Billboards

g) Ground Plane with Walls

h) Blocks World

i) 3D Box Model