# Object Tracking



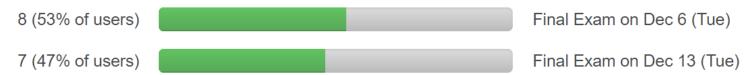
Computer Vision
Jia-Bin Huang, Virginia Tech

### Administrative stuffs

- HW 5 (Scene categorization)
  - Due 11:59pm on Wed, November 16
- Poll on Piazza –
   When should we have the final exam?
  - Dec 6
  - Dec 13

#### Final Exam date closes in 6 day(s)

A total of **15** vote(s) in **6** hours



# Today's class

- Explain HW 5 in detail
- Review/finish object detection
- Tracking Objects
  - Examples and Applications
  - Overview of probabilistic tracking
  - Kalman Filter
  - Particle Filter

#### HW 5

Color histogram and k-nearest neighbor (kNN) classifier

Bag of visual words model and nearest neighbor classifier

 Bag of visual words model and a discriminative classifier

Spatial pyramid model and a discriminative classifier

### Review: Statistical template

 Object model = log linear model of parts at fixed positions

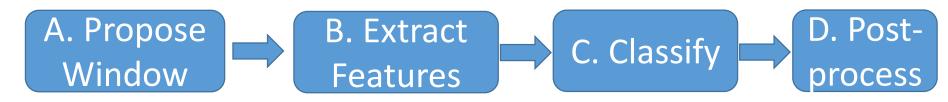


$$+3+2-2-1$$
  $-2.5 = -0.5 > 7.5$   
Non-object



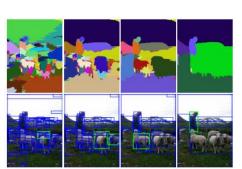
$$+4+1+0.5+3+0.5=10.5 > 7.5$$
Object

### Review: Statistical templates

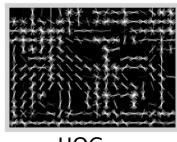




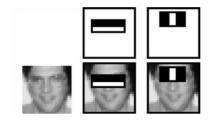
Sliding window: scan image pyramid



Region proposals: edge/region-based, resize to fixed window



HOG



Fast randomized features

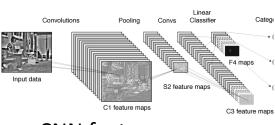


Boosted stubs

Neural network

Non-max suppression

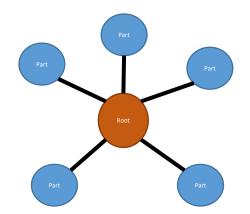
Segment or refine localization



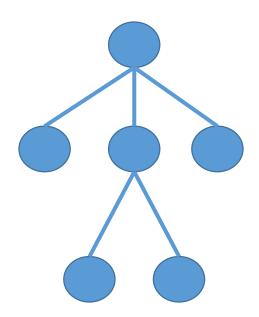
**CNN** features

### Review: Part-based Models

- 1. Star-shaped model
  - Example: Deformable Parts Model
    - Felzenswalb et al. 2010

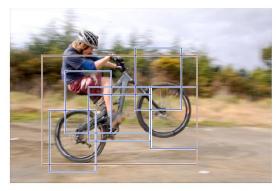


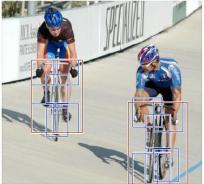
- 2. Tree-shaped model
  - Example: Pictorial structures
    - Felzenszwalb Huttenlocher 2005
- 3. Sequential prediction models

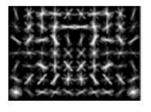


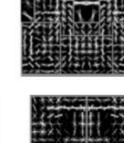
### Deformable Latent Parts Model (DPM)

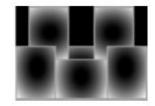
**Detections** 



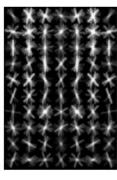




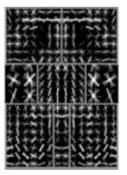




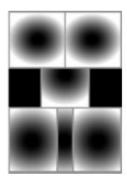
**Template Visualization** 



root filters coarse resolution



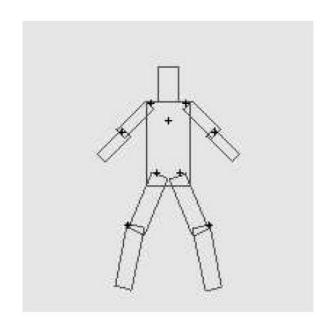
part filters finer resolution



deformation models

Felzenszwalb et al. 2008, 2010

### Pictorial Structures Model



$$P(L|I,\theta) \propto \left(\prod_{i=1}^n p(I|l_i,u_i) \prod_{(v_i,v_j) \in E} p(l_i,l_j|c_{ij})\right)$$
 Appearance likelihood Geometry likelihood

### Pictorial Structures Model

#### Optimization is tricky but can be efficient

$$L^* = \arg\min_{L} \left( \sum_{i=1}^{n} m_i(l_i) + \sum_{(v_i, v_j) \in E} d_{ij}(l_i, l_j) \right)$$

For each l<sub>1</sub>, find best l<sub>2</sub>:

Best<sub>2</sub>(
$$l_1$$
) = min  $m_2(l_2) + d_{12}(l_1, l_2)$ 

- Remove v<sub>2</sub>, and repeat with smaller tree, until only a single part
- For k parts, n locations per part, this has complexity of O(kn²), but can be solved in ~O(kn) using generalized distance transform

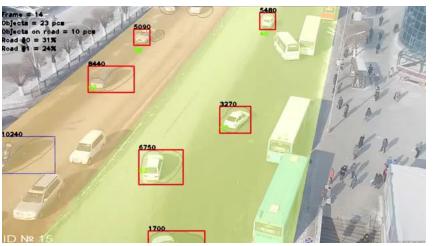
# Tracking Objects

#### **Goal:**

Locating a moving object/part across video frames

- Examples and Applications
- Overview of visual tracking
- Motion models: probabilistic tracking
  - Kalman Filter
  - Particle Filter

# Tracking examples



Traffic





**Sports** 

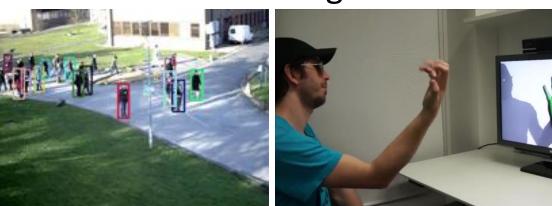


Body

Face

# Further applications

- Motion capture
- Augmented Reality
- Action Recognition
- Security, traffic monitoring
- Video Compression
- Human-computer interaction
- Video Summarization
- Medical Screening









# Tracking Examples

Traffic: <a href="https://www.youtube.com/watch?v=DiZHQ4peqig">https://www.youtube.com/watch?v=DiZHQ4peqig</a>

Soccer: <a href="http://www.youtube.com/watch?v=ZqQIItFAnxg">http://www.youtube.com/watch?v=ZqQIItFAnxg</a>

Face: <a href="http://www.youtube.com/watch?v=i bZNVmhJ2o">http://www.youtube.com/watch?v=i bZNVmhJ2o</a>

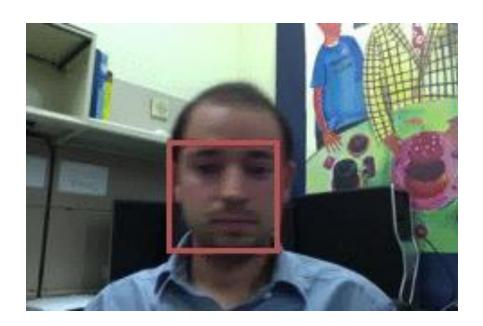
Body: <a href="https://www.youtube.com/watch?v=">https://www.youtube.com/watch?v=</a> Ahy0Gh69-M

Eye: <a href="http://www.youtube.com/watch?v=NCtYdUEMotg">http://www.youtube.com/watch?v=NCtYdUEMotg</a>

Gaze: <a href="http://www.youtube.com/watch?v=-G6Rw5cU-1c">http://www.youtube.com/watch?v=-G6Rw5cU-1c</a>

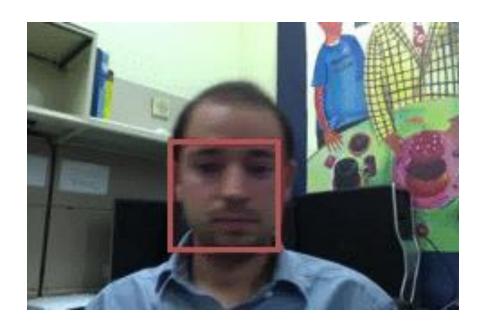
# Things that make visual tracking difficult

- Small, few visual features
- Erratic movements, moving very quickly
- Occlusions, leaving and coming back
- Surrounding similar-looking objects



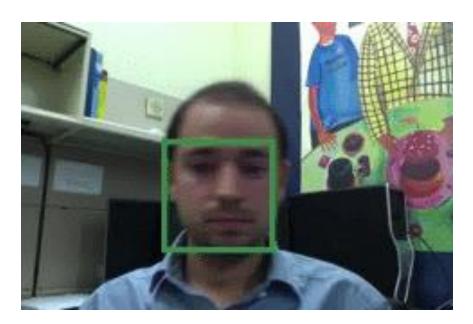
# Strategies for tracking

- Tracking by repeated detection
  - Works well if object is easily detectable (e.g., face or colored glove) and there is only one
  - Need some way to link up detections
  - Best you can do, if you can't predict motion



# Tracking with dynamics

- Key idea: Based on a model of expected motion, predict where objects will occur in next frame, before even seeing the image
  - Restrict search for the object
  - Measurement noise is reduced by trajectory smoothness
  - Robustness to missing or weak observations

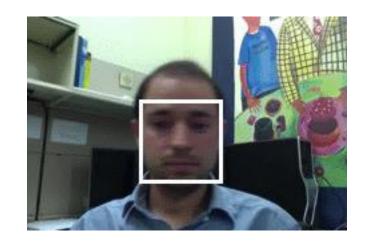


# Strategies for tracking

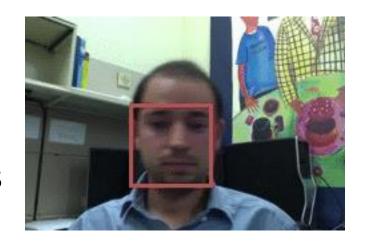
- Tracking with motion prediction
  - Predict the object's state in the next frame
  - Kalman filtering: next state can be linearly predicted from current state (Gaussian)
  - Particle filtering: sample multiple possible states of the object (non-parametric, good for clutter)

# General model for tracking

- state X: The actual state of the moving object that we want to estimate
  - -State could be any combination of position, pose, viewpoint, velocity, acceleration, etc.



- observations Y: Our actual measurement or observation of state X. Observation can be very noisy
- •At each time t, the state changes to  $X_t$  and we get a new observation  $Y_t$



# Steps of tracking

 Prediction: What is the next state of the object given past measurements?

$$P(X_t|Y_0 = y_0,...,Y_{t-1} = y_{t-1})$$

# Steps of tracking

 Prediction: What is the next state of the object given past measurements?

$$P(X_t|Y_0 = y_0,...,Y_{t-1} = y_{t-1})$$

Correction: Compute an updated estimate of the state from prediction and measurements

$$P(X_t|Y_0 = y_0,...,Y_{t-1} = y_{t-1}(Y_t = y_t))$$

# Simplifying assumptions

Only the immediate past matters

$$P(X_t|X_0,...,X_{t-1}) = P(X_t|X_{t-1})$$

dynamics model

### Simplifying assumptions

Only the immediate past matters

$$P(X_t|X_0,...,X_{t-1}) = P(X_t|X_{t-1})$$

#### dynamics model

Measurements depend only on the current state

$$P(Y_t|X_0,Y_0...,X_{t-1},Y_{t-1},X_t) = P(Y_t|X_t)$$

observation model

# Simplifying assumptions

Only the immediate past matters

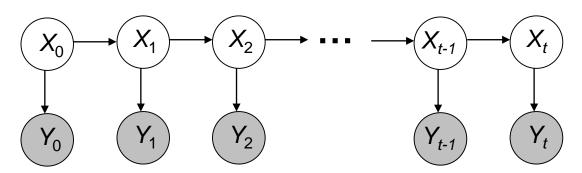
$$P(X_t|X_0,...,X_{t-1}) = P(X_t|X_{t-1})$$

#### dynamics model

Measurements depend only on the current state

$$P(Y_t|X_0,Y_0...,X_{t-1},Y_{t-1},X_t) = P(Y_t|X_t)$$

observation model



### Problem statement

We have models for

Likelihood of next state given current state:  $P(X_t|X_{t-1})$ Likelihood of observation given the state:  $P(Y_t|X_t)$ 

• We want to recover, for each t:  $P(X_t|y_0,...,y_t)$ 

# Probabilistic tracking

#### •Base case:

- Start with initial prior that predicts state in absence of any evidence:  $P(X_0)$
- For the first frame, correct this given the first measurement:  $Y_0 = y_0$

# Probabilistic tracking

#### •Base case:

- Start with initial prior that predicts state in absence of any evidence:  $P(X_0)$
- For the first frame, correct this given the first measurement:  $Y_0 = y_0$

$$P(X_0 | Y_0 = y_0) = \frac{P(y_0 | X_0)P(X_0)}{P(y_0)} \propto P(y_0 | X_0)P(X_0)$$

# Probabilistic tracking

#### •Base case:

- Start with initial prior that predicts state in absence of any evidence:  $P(X_0)$
- For the first frame, correct this given the first measurement:  $Y_0 = y_0$
- •Given corrected estimate for frame *t-1*:
  - Predict for frame  $t \rightarrow P(X_t | y_0, ..., y_{t-1})$
  - Observe  $y_t$ ; Correct for frame  $t \rightarrow P(X_t | y_0, ..., y_{t-1}, y_t)$



• Prediction involves representing  $P(X_t|y_0,...,y_{t-1})$  given  $P(X_{t-1}|y_0,...,y_{t-1})$ 

$$P(X_{t}|y_{0},...,y_{t-1})$$

$$= \int P(X_{t},X_{t-1}|y_{0},...,y_{t-1})dX_{t-1}$$

Law of total probability

• Prediction involves representing  $P(X_t|y_0,...,y_{t-1})$  given  $P(X_{t-1}|y_0,...,y_{t-1})$ 

$$P(X_{t}|y_{0},...,y_{t-1})$$

$$= \int P(X_{t},X_{t-1}|y_{0},...,y_{t-1})dX_{t-1}$$

$$= \int P(X_{t}|X_{t-1}|y_{0},...,y_{t-1})P(X_{t-1}|y_{0},...,y_{t-1})dX_{t-1}$$

Conditioning on  $X_{t-1}$ 

• Prediction involves representing  $P(X_t|y_0,...,y_{t-1})$  given  $P(X_{t-1}|y_0,...,y_{t-1})$ 

$$P(X_{t}|y_{0},...,y_{t-1})$$

$$= \int P(X_{t},X_{t-1}|y_{0},...,y_{t-1})dX_{t-1}$$

$$= \int P(X_{t}|X_{t-1},y_{0},...,y_{t-1})P(X_{t-1}|y_{0},...,y_{t-1})dX_{t-1}$$

$$= \int P(X_{t}|X_{t-1})P(X_{t-1}|y_{0},...,y_{t-1})dX_{t-1}$$

Independence assumption

• Prediction involves representing  $P(X_t|y_0,...,y_{t-1})$ given  $P(X_{t-1}|y_0,...,y_{t-1})$ 

$$P(X_{t}|y_{0},...,y_{t-1})$$

$$= \int P(X_{t},X_{t-1}|y_{0},...,y_{t-1})dX_{t-1}$$

$$= \int P(X_t \mid X_{t-1}, y_0, \dots, y_{t-1}) P(X_{t-1} \mid y_0, \dots, y_{t-1}) dX_{t-1}$$

$$= \int P(X_t | X_{t-1}) P(X_{t-1} | y_0, ..., y_{t-1}) dX_{t-1}$$

model

dynamics corrected estimate from previous step

•Correction involves computing  $P(X_t|y_0,...,y_t)$  given predicted value  $P(X_t|y_0,...,y_{t-1})$ 

•Correction involves computing  $P(X_t|y_0,...,y_t)$  given predicted value  $P(X_t|y_0,...,y_{t-1})$ 

$$P(X_{t}|y_{0},...,y_{t})$$

$$= \frac{P(y_{t}|X_{t},y_{0},...,y_{t-1})}{P(y_{t}|y_{0},...,y_{t-1})}P(X_{t}|y_{0},...,y_{t-1})$$

Bayes' Rule

•Correction involves computing  $P(X_t|y_0,...,y_t)$  given predicted value  $P(X_t|y_0,...,y_{t-1})$ 

$$P(X_{t}|y_{0},...,y_{t})$$

$$= \frac{P(y_{t}|X_{t},y_{0},...,y_{t-1})}{P(y_{t}|y_{0},...,y_{t-1})}P(X_{t}|y_{0},...,y_{t-1})$$

$$= \frac{P(y_{t}|X_{t})P(X_{t}|y_{0},...,y_{t-1})}{P(y_{t}|y_{0},...,y_{t-1})}$$

Independence assumption (observation  $y_t$  directly depends only on state  $X_t$ )

• Correction involves computing  $P(X_t|y_0,...,y_t)$ given predicted value  $P(X_t|y_0,...,y_{t-1})$  $P(X_t|y_0,...,y_t)$  $= \frac{P(y_t \mid X_t, y_0, ..., y_{t-1})}{P(y_t \mid y_0, ..., y_{t-1})} P(X_t \mid y_0, ..., y_{t-1})$  $= \frac{P(y_t | X_t)P(X_t | y_0,..., y_{t-1})}{P(y_t | y_0,..., y_{t-1})}$  $P(y_t \mid X_t)P(X_t \mid y_0,...,y_{t-1})$  $= \frac{1}{\int P(y_t | X_t) P(X_t | y_0, ..., y_{t-1}) dX_t}$ 

Conditioning on  $X_t$ 

### Correction

•Correction involves computing  $P(X_t|y_0,...,y_t)$  given predicted value  $P(X_t|y_0,...,y_{t-1})$ 

$$P(X_{t}|y_{0},...,y_{t})$$

$$= \frac{P(y_{t}|X_{t},y_{0},...,y_{t-1})}{P(y_{t}|y_{0},...,y_{t-1})}P(X_{t}|y_{0},...,y_{t-1})$$

$$= \frac{P(y_{t}|X_{t})P(X_{t}|y_{0},...,y_{t-1})}{P(y_{t}|y_{0},...,y_{t-1})}$$
ration
predicted

observation model

$$\frac{P(y_t | X_t)P(X_t | y_0,...,y_{t-1})}{\int P(y_t | X_t)P(X_t | y_0,...,y_{t-1})dX_t}$$

normalization factor

# Summary: Prediction and correction

### **Prediction:**

$$P(X_{t} | y_{0},...,y_{t-1}) = \int P(X_{t} | X_{t-1}) P(X_{t-1} | y_{0},...,y_{t-1}) dX_{t-1}$$

dynamics corrected estimate model

from previous step

#### **Correction:**

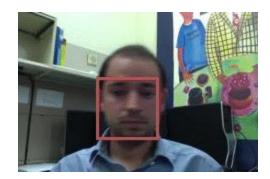
$$P(X_t \mid y_0, ..., y_t) = \frac{P(y_t \mid X_t)P(X_t \mid y_0, ..., y_{t-1})}{\int P(y_t \mid X_t)P(X_t \mid y_0, ..., y_{t-1})dX_t}$$

### The Kalman filter

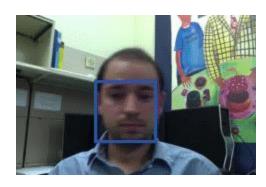
 Linear dynamics model: state undergoes linear transformation plus Gaussian noise

- Observation model: measurement is linearly transformed state plus Gaussian noise
- The predicted/corrected state distributions are Gaussian
  - You only need to maintain the mean and covariance
  - The calculations are easy (all the integrals can be done in closed form)

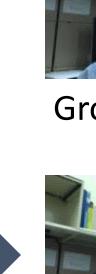
# Example: Kalman Filter



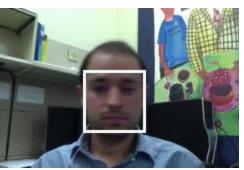
Observation



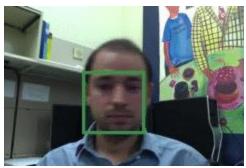
**Prediction** 



Next Frame



**Ground Truth** 

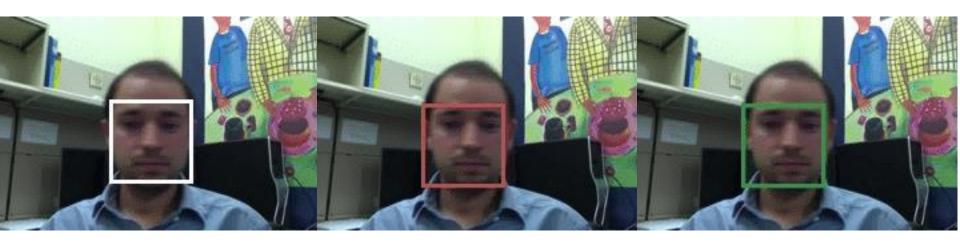


Correction



Update Location, Velocity, etc.

# Comparison

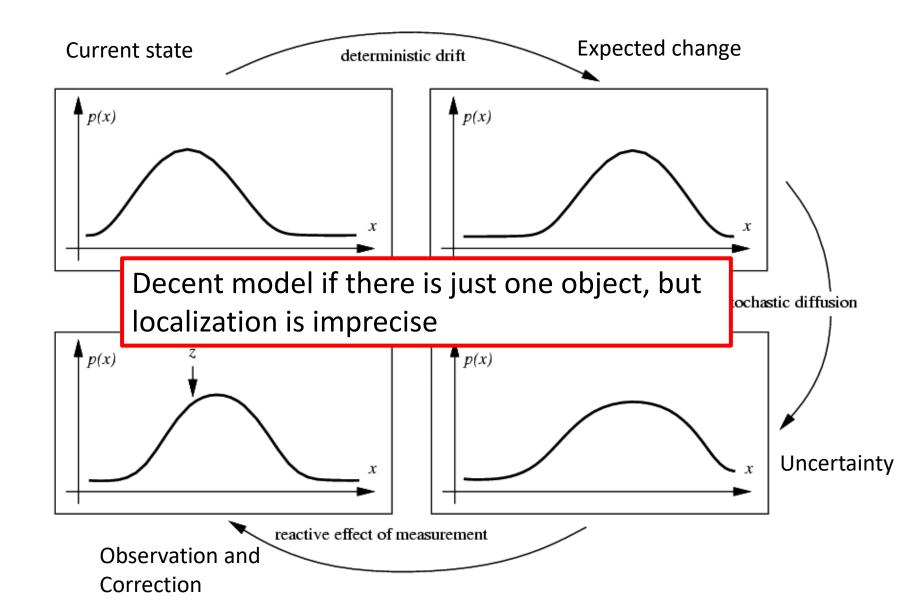


**Ground Truth** 

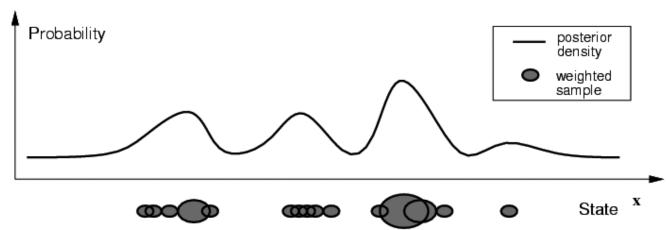
Observation

Correction

### Propagation of Gaussian densities



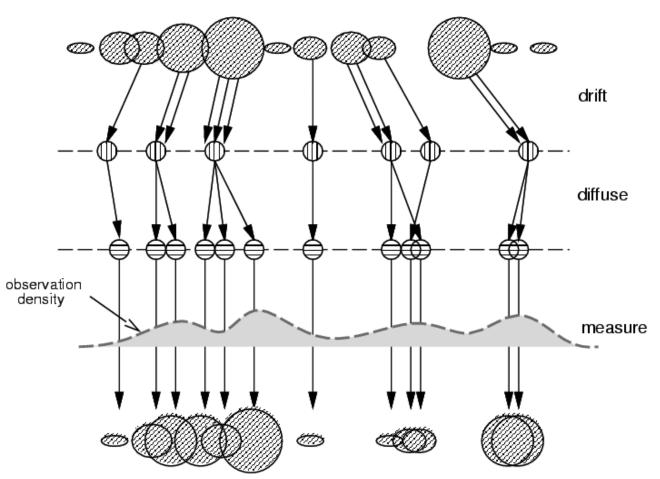
### Particle filtering



Represent the state distribution non-parametrically

- ullet Prediction: Sample possible values  $X_{t\text{-}1}$  for the previous state
- Correction: Compute likelihood of  $X_t$  based on weighted samples and  $P(y_t|X_t)$

## Particle filtering



Start with weighted samples from previous time step

Sample and shift according to dynamics model

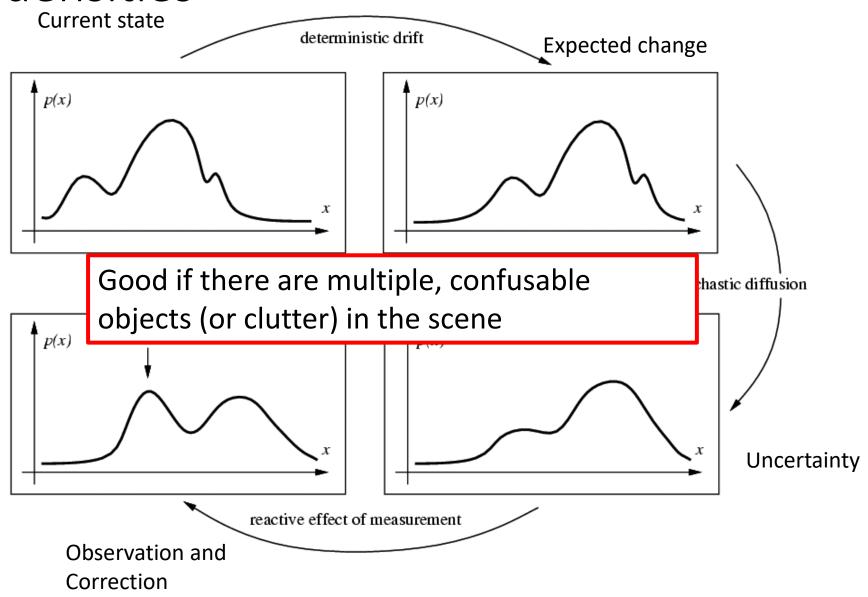
Spread due to randomness; this is predicted density  $P(X_t|Y_{t-1})$ 

Weight the samples according to observation density

Arrive at corrected density estimate  $P(X_t | Y_t)$ 

M. Isard and A. Blake, <u>CONDENSATION -- conditional density propagation for visual tracking</u>, IJCV 29(1):5-28, 1998

# Propagation of non-parametric densities



### Particle filtering results

People: <a href="http://www.youtube.com/watch?v=wCMk-pHzScE">http://www.youtube.com/watch?v=wCMk-pHzScE</a>

Hand: <a href="http://www.youtube.com/watch?v=tljuflnUqZM">http://www.youtube.com/watch?v=tljuflnUqZM</a>

Localization (similar model): <a href="http://www.youtube.com/watch?v=rAuTgsiM2-8">http://www.cvlibs.net/publications/Brubaker2013CVPR.pdf</a>



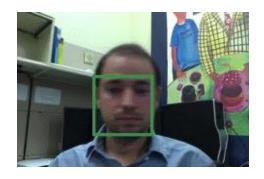


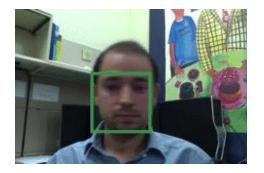
Good informal explanation: <a href="https://www.youtube.com/watch?v=aUkBa1zMKv4">https://www.youtube.com/watch?v=aUkBa1zMKv4</a>

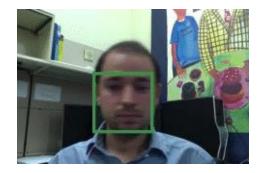
- Initialization
  - Manual
  - Background subtraction
  - Detection

- Initialization
- Getting observation and dynamics models
  - Observation model: match a template or use a trained detector
  - Dynamics model: usually specify using domain knowledge

- Initialization
- Obtaining observation and dynamics model
- Uncertainty of prediction vs. correction
  - If the dynamics model is too strong, will end up ignoring the data
  - If the observation model is too strong, tracking is reduced to repeated detection





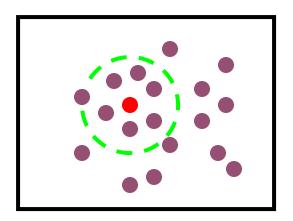


Too strong dynamics model

Too strong observation model

- Initialization
- Getting observation and dynamics models
- Prediction vs. correction
- Data association
  - When tracking multiple objects, need to assign right objects to right tracks (particle filters good for this)

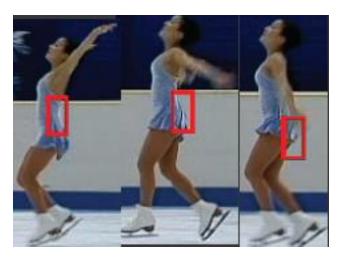


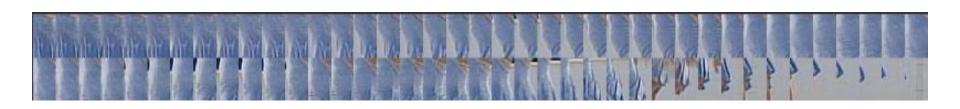


- Initialization
- Getting observation and dynamics models
- Prediction vs. correction
- Data association
- Drift
  - Errors can accumulate over time

# Drift

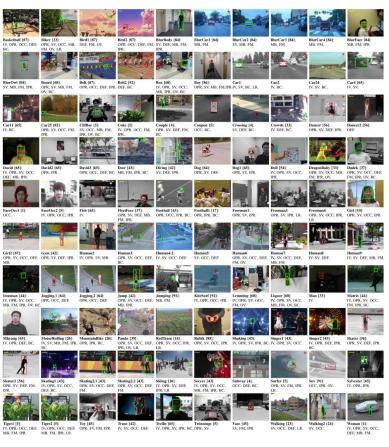






D. Ramanan, D. Forsyth, and A. Zisserman. <u>Tracking People by Learning their Appearance</u>. PAMI 2007.

## State-of-the-art object tracking



Object tracking benchmark, PAMI15



**VOT 2016** 

[0.562] Ours [0.530] MEEM [0.475] KCF [0.459] Struck

[0.445] SCM

[0.424] TLD

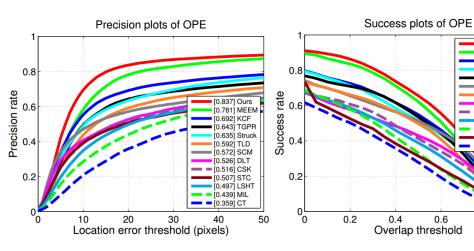
[0.384] DLT

■ [0.383] CSK ■ [0.362] LSHT

[0.331] MIL [0.319] STC

[0.281] CT

8.0



## Things to remember

- Tracking objects = detection + prediction
- Probabilistic framework
  - Predict next state
  - Update current state based on observation
- Two simple but effective methods
  - Kalman filters: Gaussian distribution
  - Particle filters: multimodal distribution