
Object Detection with 
Part-based Models

Computer Vision

Jia-Bin Huang, Virginia Tech

Many slides from D. Hoiem, J. Hays



Administrative stuffs

• HW 5 (Scene categorization) is out 
• Due 11:59pm on Wed, November 16

• HW 3 graded

• HW 4 will be out this week

• Final project



Today’s class

• Statistical template matching 
• Dalal-Triggs pedestrian detector (basic concept)
• Viola-Jones detector (cascades, integral images)
• R-CNN detector (object proposals/CNN)

• Deformable parts model
• Star-shaped model 

Example: Deformable Parts Model Felzenswalb et al. 2010

• Tree-shaped model
Example: Pictorial structures Felzenszwalb Huttenlocher 2005

• Sequential prediction models

http://cs.brown.edu/~pff/papers/lsvm-pami.pdf
http://www.cs.cornell.edu/~dph/papers/pict-struct-ijcv.pdf


Review: Statistical template

• Object model = log linear model of parts at fixed 
positions
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Example: Dalal-Triggs pedestrian detector

1. Extract fixed-sized (64x128 pixel) window at each 
position and scale

2. Compute HOG (histogram of gradient) features 
within each window

3. Score the window with a linear SVM classifier

4. Perform non-maxima suppression to remove 
overlapping detections with lower scores

Navneet Dalal and Bill Triggs, Histograms of Oriented Gradients for Human Detection, CVPR05



Slides by Pete Barnum Navneet Dalal and Bill Triggs, Histograms of Oriented Gradients for Human Detection, CVPR05



• Tested with
• RGB
• LAB
• Grayscale

• Gamma Normalization and Compression
• Square root
• Log

Slightly better performance vs. grayscale

Very slightly better performance vs. no adjustment



uncentered

centered

cubic-corrected

diagonal

Sobel

Slides by Pete Barnum Navneet Dalal and Bill Triggs, Histograms of Oriented Gradients for Human Detection, CVPR05

Outperforms



• Histogram of gradient orientations

• Votes weighted by magnitude
• Bilinear interpolation between cells

Orientation: 9 bins (for 
unsigned angles)

Histograms in 8x8 
pixel cells

Slides by Pete Barnum Navneet Dalal and Bill Triggs, Histograms of Oriented Gradients for Human Detection, CVPR05



Normalize with respect to 
surrounding cells

Slides by Pete Barnum Navneet Dalal and Bill Triggs, Histograms of Oriented Gradients for Human Detection, CVPR05



X=

Slides by Pete Barnum Navneet Dalal and Bill Triggs, Histograms of Oriented Gradients for Human Detection, CVPR05

# features = 15 x 7 x 9 x 4 = 3780 

# cells

# orientations

# normalizations by 
neighboring cells



Slides by Pete Barnum Navneet Dalal and Bill Triggs, Histograms of Oriented Gradients for Human Detection, CVPR05

pos w neg w



pedestrian

Slides by Pete Barnum Navneet Dalal and Bill Triggs, Histograms of Oriented Gradients for Human Detection, CVPR05



Detection examples



Something to think about…

• Sliding window detectors work 
• very well for faces
• fairly well for cars and pedestrians
• badly for cats and dogs

• Why are some classes easier than others?



Viola-Jones sliding window detector

Fast detection through two mechanisms

• Quickly eliminate unlikely windows

• Use features that are fast to compute

Viola and Jones. Rapid Object Detection using a Boosted Cascade of Simple Features (2001). 

http://www.cs.ubc.ca/~lowe/425/violaJones01.pdf


Cascade for Fast Detection

Examples

Stage 1
H1(x) > t1?

Reject

No

Yes

Stage 2
H2(x) > t2?

Stage N
HN(x) > tN?

Yes

… Pass

Reject

No

Reject

No

• Choose threshold for low false negative rate

• Fast classifiers early in cascade

• Slow classifiers later, but most examples don’t get there



Features that are fast to compute

• “Haar-like features”
• Differences of sums of intensity
• Thousands, computed at various positions and scales 

within detection window

Two-rectangle features Three-rectangle features Etc.

-1 +1



Integral Images

• ii = cumsum(cumsum(im, 1), 2)

x, y

ii(x,y) = Sum of the values in the grey region

How to compute A+D-B-C?

How to compute B-A?



Feature selection with Adaboost

• Create a large pool of features (180K)

• Select features that are discriminative and work 
well together

• “Weak learner” = feature + threshold + parity

• Choose weak learner that minimizes error on the 
weighted training set

• Reweight



Adaboost



Top 2 selected features



Viola-Jones details

• 38 stages with 1, 10, 25, 50 … features
• 6061 total used out of 180K candidates
• 10 features evaluated on average

• Training Examples
• 4916 positive examples
• 10000 negative examples collected after each stage

• Scanning
• Scale detector rather than image
• Scale steps = 1.25  (factor between two consecutive scales)
• Translation 1*scale (# pixels between two consecutive 

windows)

• Non-max suppression: average coordinates of 
overlapping boxes

• Train 3 classifiers and take vote



Viola Jones Results

MIT + CMU face dataset

Speed = 15 FPS (in 2001)



R-CNN (Girshick et al. CVPR 2014)

• Replace sliding windows with “selective search” region 
proposals (Uijilings et al. IJCV 2013)

• Extract rectangles around regions and resize to 227x227

• Extract features with fine-tuned  CNN (that was initialized 
with network trained on ImageNet before training)

• Classify last layer of network features with SVM

https://people.eecs.berkeley.edu/~rbg/papers/r-cnn-cvpr.pdf

https://people.eecs.berkeley.edu/~rbg/papers/r-cnn-cvpr.pdf


Sliding window vs. region proposals

Sliding window

• Comprehensive search over 
position, scale (sometimes 
aspect, though expensive)

• Typically 100K candidates

• Simple

• Speed boost through 
convolution often possible

• Repeatable

• Even with many candidates, 
may not be a good fit to 
object

Region proposals

• Search over regions guided 
by image contours/patterns 
with varying aspect/size

• Typically 2-10K candidates

• Random (not repeatable)

• Requires a preprocess 
(currently 1-5s)

• Often requires resizing patch 
to fit fixed size

• More likely to provide 
candidates with very good 
object fit



HOG: Dalal-Triggs 2005
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Improvements in Object Detection

HOG Template

Statistical Template 
Matching



HOG: Dalal-Triggs 2005 DPM: Felzenszwalb et al. 2008-2012 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

2005 2007 2008 2009 2010 2012 2013 2014

M
ea

n
 A

ve
ra

ge
 P

re
ci

si
o

n
 (

V
O

C
 2

0
0

7
)

Improvements in Object Detection

Deformable Parts Model (v1-
v5)

HOG Template

Better Models of 
Complex Categories



HOG: Dalal-Triggs 2005 DPM: Felzenszwalb et al. 2008-2012 Regionlets: Wang et al. 2013     R-CNN: Girshick et al. 2014
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Improvements in Object Detection

Deformable Parts Model (v1-
v5)

HOG Template

Regionlets

R-CNN

Better FeaturesKey Advance: Learn effective features from 
massive amounts of labeled data and
adapt to new tasks with less data



Mistakes are often reasonable
Bicycle: AP = 0.73

Confident Mistakes

R-CNN results



Horse: AP = 0.69 Confident Mistakes

Mistakes are often reasonable

R-CNN results



Misses are often predictable

Small objects, distinctive parts absent or 
occluded, unusual views

Bicycle

R-CNN results



Strengths and Weaknesses of Statistical 
Template Approach

Strengths
• Works very well for non-deformable objects: faces, 

cars, upright pedestrians

• Fast detection

Weaknesses
• Sliding window has difficulty with deformable 

objects (proposals works with flexible features 
works better)

• Not robust to occlusion

• Requires lots of training data



Tricks of the trade
• Details in feature computation really matter

• E.g., normalization in Dalal-Triggs improves detection rate by 27% at 
fixed false positive rate

• Template size
• Typical choice for sliding window is size of smallest detectable 

object

• For CNNs, typically based on what pretrained features are available

• “Jittering” to create synthetic positive examples
• Create slightly rotated, translated, scaled, mirrored versions as extra 

positive examples

• Bootstrapping to get hard negative examples
1. Randomly sample negative examples

2. Train detector

3. Sample negative examples that score > -1 

4. Repeat until all high-scoring negative examples fit in memory



Influential Works in Detection
• Sung-Poggio (1994, 1998) : ~2100 citations

• Basic idea of statistical template detection (I think), bootstrapping to get “face-like” 
negative examples, multiple whole-face prototypes (in 1994)

• Rowley-Baluja-Kanade (1996-1998) : ~4200
• “Parts” at fixed position, non-maxima suppression, simple cascade, rotation, pretty 

good accuracy, fast

• Schneiderman-Kanade (1998-2000,2004) : ~2250
• Careful feature/classifier engineering, excellent results, cascade

• Viola-Jones (2001, 2004) : ~20,000
• Haar-like features, Adaboost as feature selection, hyper-cascade, very fast, easy to 

implement

• Dalal-Triggs (2005) : ~11000
• Careful feature engineering, excellent results, HOG feature, online code

• Felzenszwalb-Huttenlocher (2000): ~1600
• Efficient way to solve part-based detectors

• Felzenszwalb-McAllester-Ramanan (2008,2010)?  ~4000
• Excellent template/parts-based blend 

• Girshick-Donahue-Darrell-Malik (2014 )  ~300
• Region proposals + fine-tuned CNN features (marks significant advance in accuracy 

over hog-based methods)



Summary: statistical templates

A. Propose 
Window

Sliding window: scan 
image pyramid

Region proposals: 
edge/region-based, resize 
to fixed window

B. Extract 
Features

HOG

CNN features

Fast randomized features

C. Classify

SVM

Boosted stubs

Neural network

D. Post-
process

Non-max 
suppression

Segment or 
refine 
localization



When do statistical templates make sense?

Caltech 101 Average Object Images



Object models: 
Articulated parts model

• Object is configuration of parts

• Each part is detectable

Images from Felzenszwalb



Deformable objects

Images from Caltech-256

Slide Credit: Duan Tran  



Deformable objects

Images from D. Ramanan’s dataset
Slide Credit: Duan Tran  



Compositional objects



Parts-based Models

Define object by collection of parts modeled by
1. Appearance
2. Spatial configuration

Slide credit: Rob Fergus



How to model spatial relations?
• One extreme: fixed template



How to model spatial relations?
• Another extreme: bag of words

=



How to model spatial relations?
• Star-shaped model

Root

Part

Part

Part

Part

Part



How to model spatial relations?
• Star-shaped model

=X X

X
Root

Part

Part

Part

Part

Part



How to model spatial relations?
• Tree-shaped model



How to model spatial relations?

Fergus et al. ’03
Fei-Fei et al. ‘03

Leibe et al. ’04, ‘08
Crandall et al. ‘05
Fergus et al. ’05

Crandall et al. ‘05 Felzenszwalb & 
Huttenlocher ‘05

Bouchard & Triggs ‘05 Carneiro & Lowe ‘06Csurka ’04
Vasconcelos ‘00

from [Carneiro & Lowe, ECCV’06]

O(N6) O(N2) O(N3) O(N2)

• Many others...



Part-based Models

1. Star-shaped model 
• Example: Deformable Parts Model

• Felzenswalb et al. 2010

2. Tree-shaped model
• Example: Pictorial structures

• Felzenszwalb Huttenlocher 2005

3. Sequential prediction models

Root

Part

Part

Part

Part

Part

http://cs.brown.edu/~pff/papers/lsvm-pami.pdf
http://www.cs.cornell.edu/~dph/papers/pict-struct-ijcv.pdf


Deformable Latent Parts Model 
(DPM)

Detections

Template Visualization

Felzenszwalb et al. 2008, 2010



Review: Dalal-Triggs detector

-.
= 0.16

1. Extract fixed-sized (64x128 pixel) window at each 
position and scale

2. Compute HOG (histogram of gradient) features 
within each window

3. Score the window with a linear SVM classifier

4. Perform non-maxima suppression to remove 
overlapping detections with lower scores

Image Window HOG SVM weights (pos/neg) score



Deformable parts model

Root filter Part filters Spatial costs

• Root filter models coarse 
whole-object appearance

• Part filters model finer-
scale appearance of 
smaller patches

• For each root window, part 
positions that maximize 
appearance score minus 
spatial cost are found

• Total score is sum of scores 
of each filter and spatial 
costs



DPM: computing object score

With generalized distance 
transform, compute the 
maximum part score 
corresponding to each root 
position

Scores from individual part 
detectorsScores from 

root detector



DPM: mixture model

• Each positive example is 
modeled by one of M 
detectors

• In testing, all detectors 
are applied with non-
max suppression



DPM: Training

Solve for latent parameters 
(root/part positions, mixture 
component) that maximize 
score and are consistent with 
ground truth bounding box

Add negative examples 
that achieve some 
minimum score (> 1 –
delta)

Solve for SVM weights 
given current latent 
parameters and negative 
examples



Results



Improvement over time for HOG-
based detectors
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Tree-shaped model



Pictorial Structures Model

Part = oriented rectangle Spatial model = relative size/orientation

Felzenszwalb and Huttenlocher 2005



Pictorial Structures Model

Appearance likelihood Geometry likelihood



Modeling the Appearance

• Any appearance model could be used
• HOG Templates, etc.
• Here: rectangles fit to background subtracted binary map

• Can train appearance models independently (easy, 
not as good) or jointly (more complicated but 
better)

Appearance likelihood Geometry likelihood



Part representation

• Background subtraction



Pictorial structures model
Optimization is tricky but can be efficient

• For each l1, find best l2:

• Remove v2, and repeat with smaller tree, until 
only a single part

• For k parts, n locations per part, this has complexity 
of O(kn2), but can be solved in ~O(kn) using 
generalized distance transform



• For each pixel p, how far away is the nearest 
pixel q of set G

–

– G is often the set of edge pixels

Distance Transform

G: black pixels

p1

q1

p2

q2



Distance Transform - Applications

• Set distances – e.g. Hausdorff Distance

• Image processing – e.g. Blurring

• Robotics – Motion Planning

• Alignment
• Edge images
• Motion tracks
• Audio warping

• Deformable Part Models 



Generalized Distance Transform
• Original form: 

• General form:

• For many deformation costs, 

Quadratic

Abs Diff

Min Composition

Bounded



Results for person matching

67



Results for person matching

68



Enhanced pictorial structures

BMVC 2009

• Learn spatial prior

• Color models from 
soft segmentation 
(initialized by 
location priors of 
each part)





Example from Ramakrishna



Sequential structured prediction

• Can consider pose estimation as predicting a set of 
related variables (called structured prediction)

• Some parts easy to find (head), some are hard (wrists)

• One solution: jointly solve for most likely variables 
(DPM, pictorial structures)

• Another solution: iteratively predict each variable 
based in part on previous predictions



Pose machines

Ramakrishna et al. ECCV 2014









Example results



General principle

• “Auto-context” (Tu CVPR 2008): instead of fancy 
graphical models, create feature from past 
predictions and repredict

• Can view this as an “unrolled belief propagation” 
(Ross et al. 2011)

Tu Bai 2010: Auto-context
Ross Munoz Hebert Bagnell 2011: Message-Passing Inference Machines

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.184.3323&rep=rep1&type=pdf
http://www.cs.cmu.edu/~sross1/publications/Ross-CVPR11.pdf


Cascaded Classification Model

Heitz Gould Saxena Koller 2008
Li Kowdle Saxena Chen 2010

Autocontext

Tu 2008
Tu Bai 2010

Scene Analysis 
Processes

Surface Orientation
Object/Viewpoint
Occlusion/Depth

Input Image
Intrinsic Images

Closing the Loop

Hoiem Efros Hebert 2008

Many uses and variations on 
sequential structured prediction



Learning to search for landmarks

• Learn to find easy landmarks (body joints) first and 
use them as context for harder ones

Singh et al. CVPR 2015



Results: best (top) to worst (bottom)



Convolutional Pose Machine

CVPR 2016 https://arxiv.org/pdf/1602.00134.pdf



Graphical models vs. structured prediction

• Advantages of sequential prediction
• Simple procedures for training and inference
• Learns how much to rely on each prediction
• Can model very complex relations

• Advantages of BP/graphcut/etc
• Elegant
• Relations are explicitly modeled
• Exact inference in some cases



Things to remember

• Models can be broken down into 
part appearance and spatial 
configuration

• Wide variety of models

• Efficient optimization can be 
tricky but usually possible

• Generalized distance transform is a 
useful trick

• Rather than explicitly modeling 
contextual relations, can encode 
through features/classifiers



Next class

• Visual tracking


