Object Detection with Part-based Models

root filters part filters coarse resolution finer resolution

s deformation

Computer Vision Jia-Bin Huang, Virginia Tech

Many slides from D. Hoiem, J. Hays

Administrative stuffs

- HW 5 (Scene categorization) is out
 - Due 11:59pm on Wed, November 16
- HW 3 graded
- HW 4 will be out this week
- Final project

Today's class

Statistical template matching

- Dalal-Triggs pedestrian detector (basic concept)
- Viola-Jones detector (cascades, integral images)
- R-CNN detector (object proposals/CNN)

Deformable parts model

- Star-shaped model Example: Deformable Parts Model <u>Felzenswalb et al. 2010</u>
- Tree-shaped model Example: Pictorial structures <u>Felzenszwalb Huttenlocher 2005</u>
- Sequential prediction models

Review: Statistical template

 Object model = log linear model of parts at fixed positions

Example: Dalal-Triggs pedestrian detector

- 1. Extract fixed-sized (64x128 pixel) window at each position and scale
- 2. Compute HOG (histogram of gradient) features within each window
- 3. Score the window with a linear SVM classifier
- 4. Perform non-maxima suppression to remove overlapping detections with lower scores

- Tested with
 - RGB
 - LAB Slightly better performance vs. grayscale
 - Grayscale
- Gamma Normalization and Compression
 - Square root
- Very slightly better performance vs. no adjustment

• Log

• Histogram of gradient orientations

Orientation: 9 bins (for unsigned angles)

Histograms in 8x8 pixel cells

- Votes weighted by magnitude
- Bilinear interpolation between cells

$$L2 - norm : v \longrightarrow v/\sqrt{||v||_2^2 + \epsilon^2}$$

$$X = \begin{cases} X = \begin{cases} X = 1 \\ Y = 1 \\$$

 $0.16 = w^T x - b$

sign(0.16) = 1

pedestrian

Slides by Pete Barnum

Detection examples

Something to think about...

- Sliding window detectors work
 - very well for faces
 - fairly well for cars and pedestrians
 - badly for cats and dogs

• Why are some classes easier than others?

Viola-Jones sliding window detector

Fast detection through two mechanisms

- Quickly eliminate unlikely windows
- Use features that are fast to compute

Viola and Jones. <u>Rapid Object Detection using a Boosted Cascade of Simple Features</u> (2001).

Cascade for Fast Detection

- Choose threshold for low false negative rate
- Fast classifiers early in cascade
- Slow classifiers later, but most examples don't get there

Features that are fast to compute

- "Haar-like features"
 - Differences of sums of intensity
 - Thousands, computed at various positions and scales within detection window

Three-rectangle features

Etc.

Two-rectangle features

Integral Images

• ii = cumsum(cumsum(im, 1), 2)

ii(x,y) = Sum of the values in the grey region

How to compute B-A?

How to compute A+D-B-C?

Feature selection with Adaboost

- Create a large pool of features (180K)
- Select features that are discriminative and work well together
 - "Weak learner" = feature + threshold + parity

$$h_j(x) = \begin{cases} 1 & \text{if } p_j f_j(x) < p_j \theta_j \\ 0 & \text{otherwise} \end{cases}$$

- Choose weak learner that minimizes error on the weighted training set
- Reweight

Adaboost

- Given example images $(x_1, y_1), \ldots, (x_n, y_n)$ where $y_i = 0, 1$ for negative and positive examples respectively.
- Initialize weights $w_{1,i} = \frac{1}{2m}, \frac{1}{2l}$ for $y_i = 0, 1$ respectively, where m and l are the number of negatives and positives respectively.
- For t = 1, ..., T:
 - 1. Normalize the weights,

$$w_{t,i} \leftarrow rac{w_{t,i}}{\sum_{j=1}^n w_{t,j}}$$

so that w_t is a probability distribution.

- 2. For each feature, j, train a classifier h_j which is restricted to using a single feature. The error is evaluated with respect to w_t , $\epsilon_j = \sum_i w_i |h_j(x_i) - y_i|$.
- 3. Choose the classifier, h_t , with the lowest error ϵ_t .
- 4. Update the weights:

$$w_{t+1,i} = w_{t,i}\beta_t^{1-e_i}$$

where $e_i = 0$ if example x_i is classified correctly, $e_i = 1$ otherwise, and $\beta_t = \frac{\epsilon_t}{1 - \epsilon_t}$.

• The final strong classifier is:

$$h(x) = \begin{cases} 1 & \sum_{t=1}^{T} \alpha_t h_t(x) \ge \frac{1}{2} \sum_{t=1}^{T} \alpha_t \\ 0 & \text{otherwise} \end{cases}$$

where $\alpha_t = \log \frac{1}{\beta_t}$

Top 2 selected features

Viola-Jones details

- 38 stages with 1, 10, 25, 50 ... features
 - 6061 total used out of 180K candidates
 - 10 features evaluated on average
- Training Examples
 - 4916 positive examples
 - 10000 negative examples collected after each stage
- Scanning
 - Scale detector rather than image
 - Scale steps = 1.25 (factor between two consecutive scales)
 - Translation 1*scale (# pixels between two consecutive windows)
- Non-max suppression: average coordinates of overlapping boxes
- Train 3 classifiers and take vote

Viola Jones Results

Speed = 15 FPS (in 2001)

False detections							
Detector	10	31	50	65	78	95	167
Viola-Jones	76.1%	88.4%	91.4%	92.0%	92.1%	92.9%	93.9%
Viola-Jones (voting)	81.1%	89.7%	92.1%	93.1%	93.1%	93.2 %	93.7%
Rowley-Baluja-Kanade	83.2%	86.0%	-	-	-	89.2%	90.1%
Schneiderman-Kanade	-	-	-	94.4%	-	-	-
Roth-Yang-Ahuja	-	-	-	-	(94.8%)	-	-

MIT + CMU face dataset

R-CNN (Girshick et al. CVPR 2014)

- Replace sliding windows with "selective search" region proposals (Uijilings et al. IJCV 2013)
- Extract rectangles around regions and resize to 227x227
- Extract features with fine-tuned CNN (that was initialized with network trained on ImageNet before training)
- Classify last layer of network features with SVM

Sliding window vs. region proposals

Sliding window

- Comprehensive search over position, scale (sometimes aspect, though expensive)
- Typically 100K candidates
- Simple
- Speed boost through convolution often possible
- Repeatable
- Even with many candidates, may not be a good fit to object

Region proposals

- Search over regions guided by image contours/patterns with varying aspect/size
- Typically 2-10K candidates
- Random (not repeatable)
- Requires a preprocess (currently 1-5s)
- Often requires resizing patch to fit fixed size
- More likely to provide candidates with very good object fit

Improvements in Object Detection

Improvements in Object Detection

Improvements in Object Detection

Mistakes are often reasonable Bicycle: AP = 0.73

Confident Mistakes

bicycle (loc): ov=0.44 1-r=0.70

bicycle (sim): ov=0.00 1-r=0.56

bicycle (bg): ov=0.00 1-r=0.47

R-CNN results

Mistakes are often reasonable

R-CNN results

Confident Mistakes

horse (sim): ov=0.00 1-r=0.66

horse (sim): ov=0.00 1-r=0.50

Misses are often predictable

Bicycle

Small objects, distinctive parts absent or occluded, unusual views

R-CNN results

Strengths and Weaknesses of Statistical Template Approach

Strengths

- Works very well for non-deformable objects: faces, cars, upright pedestrians
- Fast detection

Weaknesses

- Sliding window has difficulty with deformable objects (proposals works with flexible features works better)
- Not robust to occlusion
- Requires lots of training data

Tricks of the trade

- Details in feature computation really matter
 - E.g., normalization in Dalal-Triggs improves detection rate by 27% at fixed false positive rate
- Template size
 - Typical choice for sliding window is size of smallest detectable object
 - For CNNs, typically based on what pretrained features are available
- "Jittering" to create synthetic positive examples
 - Create slightly rotated, translated, scaled, mirrored versions as extra positive examples
- Bootstrapping to get hard negative examples
 - 1. Randomly sample negative examples
 - 2. Train detector
 - 3. Sample negative examples that score > -1
 - 4. Repeat until all high-scoring negative examples fit in memory

Influential Works in Detection

- Sung-Poggio (1994, 1998) : ~2100 citations
 - Basic idea of statistical template detection (I think), bootstrapping to get "face-like" negative examples, multiple whole-face prototypes (in 1994)
- Rowley-Baluja-Kanade (1996-1998) : ~4200
 - "Parts" at fixed position, non-maxima suppression, simple cascade, rotation, pretty good accuracy, fast
- Schneiderman-Kanade (1998-2000,2004) : ~2250
 - Careful feature/classifier engineering, excellent results, cascade
- Viola-Jones (2001, 2004) : ~20,000
 - Haar-like features, Adaboost as feature selection, hyper-cascade, very fast, easy to implement
- Dalal-Triggs (2005) : ~11000
 - Careful feature engineering, excellent results, HOG feature, online code
- Felzenszwalb-Huttenlocher (2000): ~1600
 - Efficient way to solve part-based detectors
- Felzenszwalb-McAllester-Ramanan (2008,2010)? ~4000
 - Excellent template/parts-based blend
- Girshick-Donahue-Darrell-Malik (2014) ~300
 - Region proposals + fine-tuned CNN features (marks significant advance in accuracy over hog-based methods)

Summary: statistical templates

Region proposals: edge/region-based, resize to fixed window

Fast randomized features

When do statistical templates make sense?

Caltech 101 Average Object Images

Object models: Articulated parts model

- Object is configuration of parts
- Each part is detectable

Deformable objects

Images from Caltech-256

Deformable objects

Images from D. Ramanan's dataset

Slide Credit: Duan Tran

Compositional objects

Parts-based Models

Define object by collection of parts modeled by

- 1. Appearance
- 2. Spatial configuration

Slide credit: Rob Fergus

• One extreme: fixed template

• Another extreme: bag of words

Star-shaped model

Star-shaped model

How to model spatial relations? • Tree-shaped model

How to model spatial relations? • Many others...

Csurka '04 Vasconcelos '00

- b) Star shape
- Leibe et al. '04, '08 Crandall et al. '05 Fergus et al. '05

Crandall et al. '05

Felzenszwalb & Huttenlocher '05

Bouchard & Triggs '05

g) Sparse flexible model

Carneiro & Lowe '06

from [Carneiro & Lowe, ECCV'06]

Part-based Models

- 1. Star-shaped model
 - Example: Deformable Parts Model
 - Felzenswalb et al. 2010
- 2. Tree-shaped model
 - Example: Pictorial structures
 - Felzenszwalb Huttenlocher 2005
- 3. Sequential prediction models

Deformable Latent Parts Model (DPM)

Detections

Template Visualization

root filters coarse resolution

part filters finer resolution

deformation models

Felzenszwalb et al. 2008, 2010

Review: Dalal-Triggs detector

- 1. Extract fixed-sized (64x128 pixel) window at each position and scale
- 2. Compute HOG (histogram of gradient) features within each window
- 3. Score the window with a linear SVM classifier
- 4. Perform non-maxima suppression to remove overlapping detections with lower scores

Deformable parts model

- Root filter models coarse whole-object appearance
- Part filters model finerscale appearance of smaller patches
- For each root window, part positions that maximize appearance score minus spatial cost are found
- Total score is sum of scores of each filter and spatial costs

Root filter

Spatial costs

DPM: computing object score

DPM: mixture model

- Each positive example is modeled by one of M detectors
- In testing, all detectors are applied with nonmax suppression

DPM: Training

```
1 F_n := \emptyset
                                                         Solve for latent parameters
2 for relabel := 1 to num-relabel do
                                                         (root/part positions, mixture
       F_p := \emptyset
 3
                                                         component) that maximize
       for i := 1 to n do
4
                                                         score and are consistent with
           Add detect-best (\beta, I_i, B_i) to F_p
 5
                                                         ground truth bounding box
       end
6
       for datamine := 1 to num-datamine do
 7
                                                                   Add negative examples
           for j := 1 to m do
8
                                                                   that achieve some
               if |F_n| \ge memory-limit then break
9
                                                                   minimum score (> 1 -
               Add detect-all (\beta, J_{i'} - (1 + \delta)) to F_n
10
                                                                   delta)
           end
11
           \beta :=gradient-descent (F_p \cup F_n) \longleftarrow
                                                                  Solve for SVM weights
12
           Remove (i, v) with \beta \cdot v < -(1 + \delta) from F_n
                                                                  given current latent
13
                                                                  parameters and negative
       end
14
                                                                  examples
15 end
                      Procedure Train
```

Results

person

horse

sofa

bottle

Improvement over time for HOGbased detectors

Tree-shaped model

Pictorial Structures Model

Felzenszwalb and Huttenlocher 2005

Pictorial Structures Model

$$P(L|I, \theta) \propto \left(\prod_{i=1}^{n} p(I|l_i, u_i) \prod_{(v_i, v_j) \in E} p(l_i, l_j|c_{ij})\right)$$

Appearance likelihood Geometry likelihood

Modeling the Appearance

- Any appearance model could be used
 - HOG Templates, etc.
 - Here: rectangles fit to background subtracted binary map
- Can train appearance models independently (easy, not as good) or jointly (more complicated but better)

$$P(L|I,\theta) \propto \left(\prod_{i=1}^{n} p(I|l_i, u_i) \prod_{(v_i, v_j) \in E} p(l_i, l_j | c_{ij})\right)$$

Appearance likelihood Geometry likelihood

Part representation

Background subtraction

Pictorial structures model Optimization is tricky but can be efficient

$$L^* = \arg\min_{L} \left(\sum_{i=1}^n m_i(l_i) + \sum_{(v_i, v_j) \in E} d_{ij}(l_i, l_j) \right) \xrightarrow{(v_i, v_j) \in E} d_{ij}(l_i, l_j)$$

 $Best_2(l_1) = \min_{l_2} \left[m_2(l_2) + d_{12}(l_1, l_2) \right]$

- Remove v₂, and repeat with smaller tree, until only a single part
- For k parts, n locations per part, this has complexity of O(kn²), but can be solved in ~O(kn) using generalized distance transform

Distance Transform

• For each pixel p, how far away is the nearest pixel q of set G

$$-f(p) = \min_{q \in G} d(p,q)$$

G is often the set of edge pixels

Distance Transform - Applications

- Set distances e.g. Hausdorff Distance
- Image processing e.g. Blurring
- Robotics Motion Planning
- Alignment
 - Edge images
 - Motion tracks
 - Audio warping
- Deformable Part Models

Generalized Distance Transform

- Original form: $f(p) = \min_{q \in G} d(p,q)$
- General form: $f(p) = \min_{q \in [1,N]} m(q) + d(p,q)$
- For many deformation costs, $O(N^2) \rightarrow O(N)$

Quadratic $d(p,q) = \alpha(p-q)^2 + \beta(p-q)$ Abs Diff $d(p,q) = \alpha|p-q|$ Min Composition $d(p,q) = \min(d_1(p,q), d_2(p,q))$ Bounded $d_{\tau}(p,q) = \begin{cases} d(p,q) & : |p-q| < \tau \\ \infty & : |p-q| > \tau \end{cases}$

Results for person matching

Results for person matching

Enhanced pictorial structures

- Learn spatial prior
- Color models from soft segmentation (initialized by location priors of each part)

EICHNER, FERRARI: BETTER APPEARANCE MODELS FOR PICTORIAL STRUCTURES 9

BMVC 2009

Which patch corresponds to a body part?

Example from Ramakrishna

Sequential structured prediction

- Can consider pose estimation as predicting a set of related variables (called structured prediction)
 - Some parts easy to find (head), some are hard (wrists)
- One solution: jointly solve for most likely variables (DPM, pictorial structures)
- Another solution: iteratively predict each variable based in part on previous predictions
Pose machines

Image L-Elbow

Ramakrishna et al. ECCV 2014

Stage I Confidence

.

Example results

General principle

- "Auto-context" (Tu CVPR 2008): instead of fancy graphical models, create feature from past predictions and repredict
- Can view this as an "unrolled belief propagation" (Ross et al. 2011)

Many uses and variations on sequential structured prediction

Closing the Loop

Tu Bai 2010

Heitz Gould Saxena Koller 2008 Li Kowdle Saxena Chen 2010

Cascaded Classification Model

Test image

Scene: Open-country

Event: Polo Scene and Event

Categorization

Depth estimation

Learning to search for landmarks

• Learn to find easy landmarks (body joints) first and

Singh et al. CVPR 2015

Results: best (top) to worst (bottom)

Convolutional Pose Machine

CVPR 2016 https://arxiv.org/pdf/1602.00134.pdf

Graphical models vs. structured prediction

- Advantages of sequential prediction
 - Simple procedures for training and inference
 - Learns how much to rely on each prediction
 - Can model very complex relations
- Advantages of BP/graphcut/etc
 - Elegant
 - Relations are explicitly modeled
 - Exact inference in some cases

Things to remember

- Models can be broken down intc part appearance and spatial configuration
 - Wide variety of models
- Efficient optimization can be tricky but usually possible
 - Generalized distance transform is a useful trick
- Rather than explicitly modeling contextual relations, can encode through features/classifiers

Next class

• Visual tracking

