# Image Segmentation



#### Computer Vision Jia-Bin Huang, Virginia Tech

Many slides from D. Hoiem

## Administrative stuffs

- HW 3 due 11:59 PM, Oct 17 (Monday)
- Final project proposal due Oct 27 (Thursday)
- Will hold office hour this Friday

## Today's class

#### • Review/finish Structure from motion

• Multi-view stereo

#### Segmentation and grouping

- Gestalt cues
- By clustering (k-means, mean-shift)
- By boundaries (watershed)
- By graph (merging , graph cuts)
- By labeling (MRF) <- Next Thursday

• Superpixels and multiple segmentations

# Perspective and 3D Geometry

#### Projective geometry and camera models

- Vanishing points/lines
- $\mathbf{x} = \mathbf{K}[\mathbf{R} \ \mathbf{t}]\mathbf{X}$

#### Single-view metrology and camera calibration

- Calibration using known 3D object or vanishing points
- Measuring size using perspective cues

#### Photo stitching

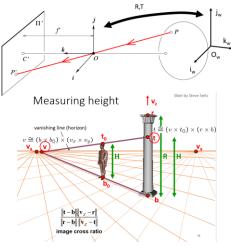
- Homography relates rotating cameras  $\mathbf{x}' = \mathbf{H}\mathbf{x}$
- Recover homography using RANSAC + normalized DLT

#### • Epipolar Geometry and Stereo Vision

- Fundamental/essential matrix relates two cameras  $\mathbf{x}'\mathbf{F}\mathbf{x} = \mathbf{0}$
- Recover F using RANSAC + normalized 8-point algorithm, enforce rank 2 using SVD

#### Structure from motion

- Perspective SfM: triangulation, bundle adjustment
- Affine SfM: factorization using SVD, enforce rank 3 constraints, resolve affine ambiguity





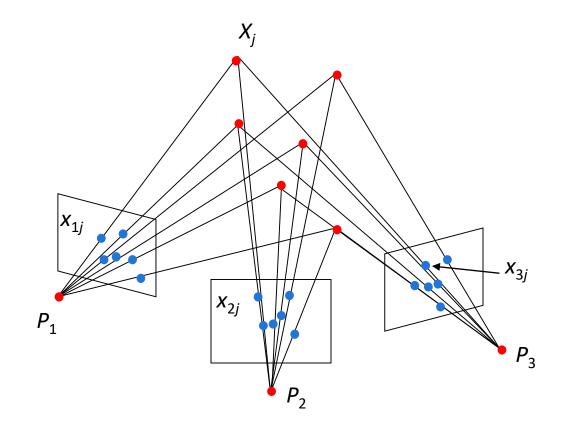
Right view

Left view

Review: Projective structure from motionGiven: *m* images of *n* fixed 3D points

$$\mathbf{x}_{ij} = \mathbf{P}_i \mathbf{X}_j, \qquad i = 1, ..., m, \quad j = 1, ..., n$$

Problem: estimate *m* projection matrices P<sub>i</sub> and *n* 3D points X<sub>i</sub> from the *mn* corresponding 2D points x<sub>ij</sub>



Slides: Lana Lazebnik

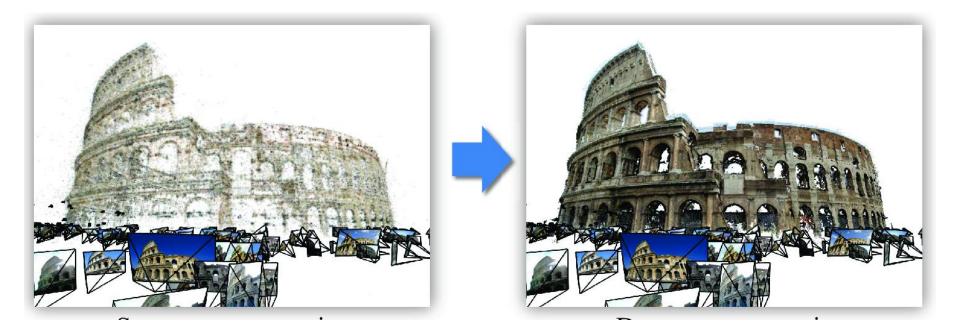
# Review: Affine structure from motion

- Given: *m* images and *n* tracked features **x**<sub>ii</sub>
- For each image *i*, *c*enter the feature coordinates
- •Construct a 2*m* × *n* measurement matrix **D**:
  - Column *j* contains the projection of point *j* in all views
  - Row *i* contains one coordinate of the projections of all the *n* points in image *i*
- Factorize **D**:
  - Compute SVD: **D** = **U W V**<sup>T</sup>
  - Create  $\mathbf{U}_3$  by taking the first 3 columns of  $\mathbf{U}$
  - Create  $V_3$  by taking the first 3 columns of V
  - Create  $\mathbf{W}_3$  by taking the upper left 3 × 3 block of  $\mathbf{W}$
- Create the motion (affine) and shape (3D) matrices:

 $A = U_3 W_3^{\frac{1}{2}}$  and  $S = W_3^{\frac{1}{2}} V_3^{T}$ 

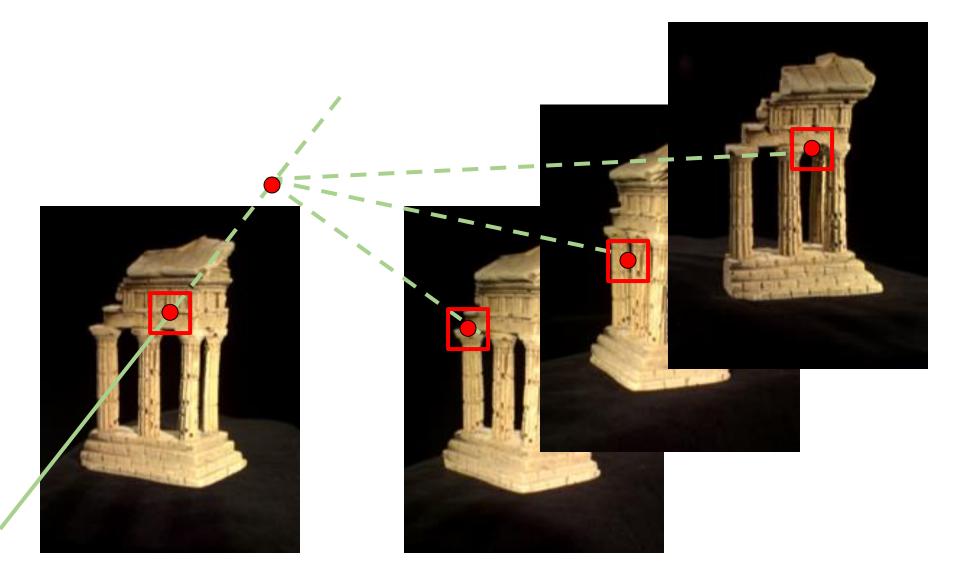
- Eliminate affine ambiguity
  - Solve **L** = **CC**<sup>T</sup> using metric constraints
  - Solve C using Cholesky decomposition
  - Update A and X: A = AC, S = C<sup>-1</sup>S

## Multi-view stereo

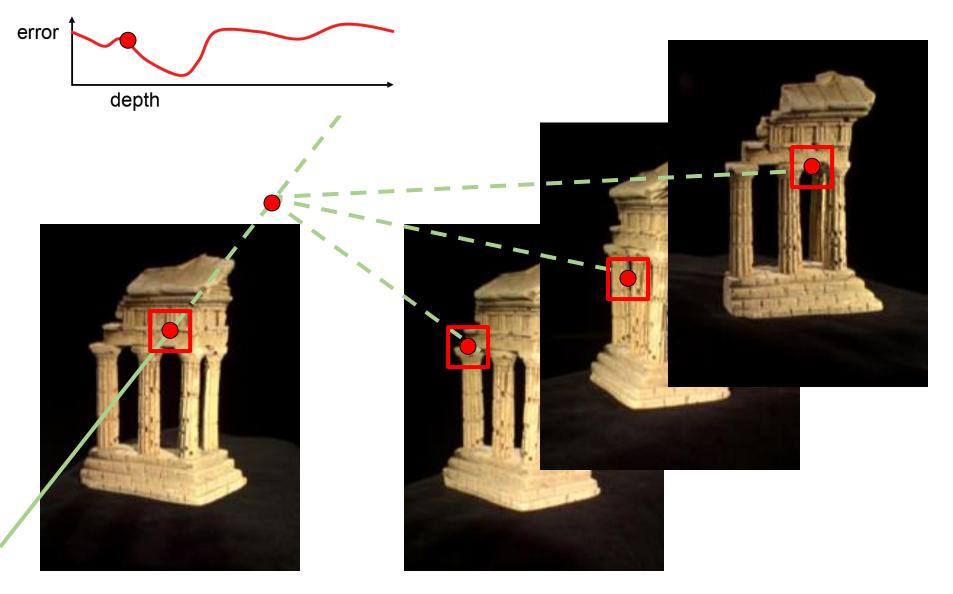


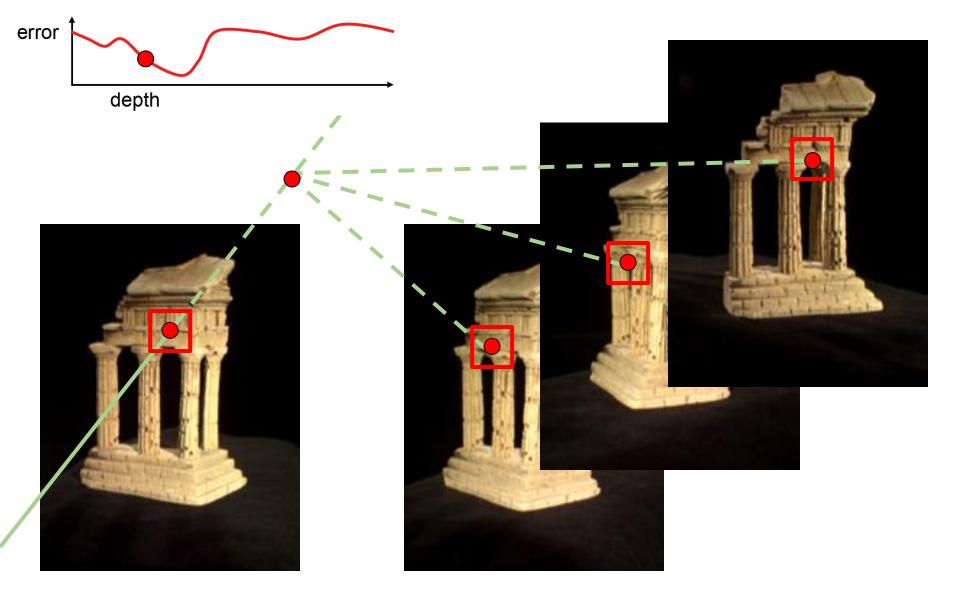
## Multi-view stereo

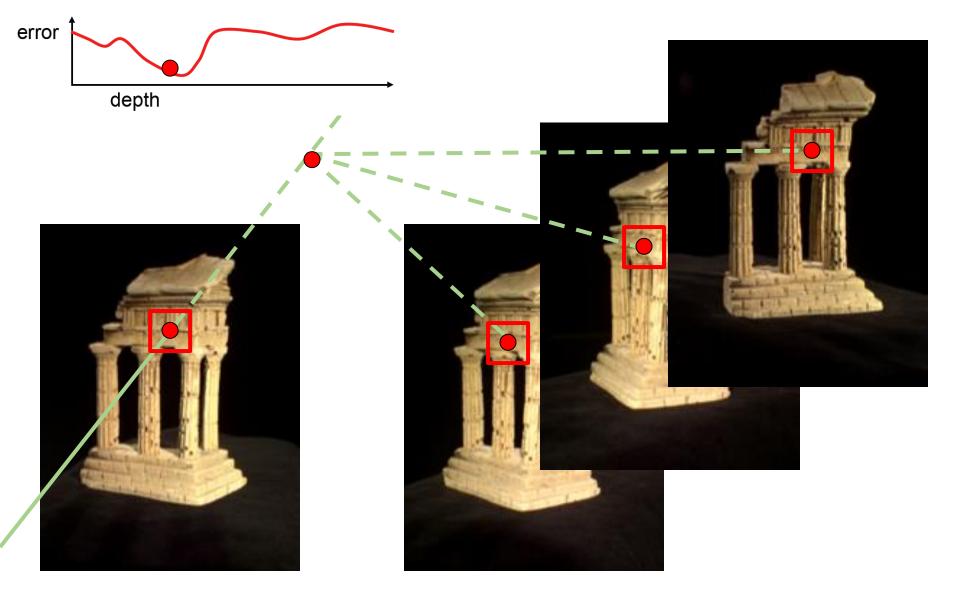
- •Generic problem formulation: given several images of the same object or scene, compute a representation of its 3D shape
- "Images of the same object or scene"
  - Arbitrary number of images (from two to thousands)
  - Arbitrary camera positions (special rig, camera network or video sequence)
  - Calibration may be known or unknown
- "Representation of 3D shape"
  - Depth maps
  - Meshes
  - Point clouds
  - Patch clouds
  - Volumetric models

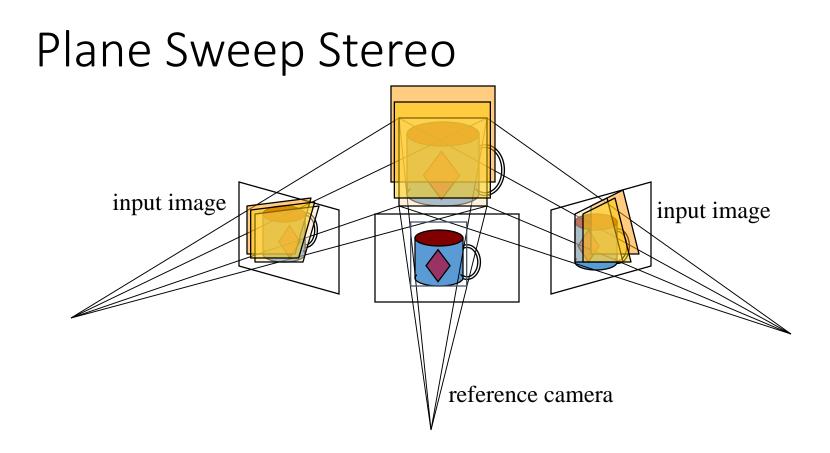


Source: Y. Furukawa





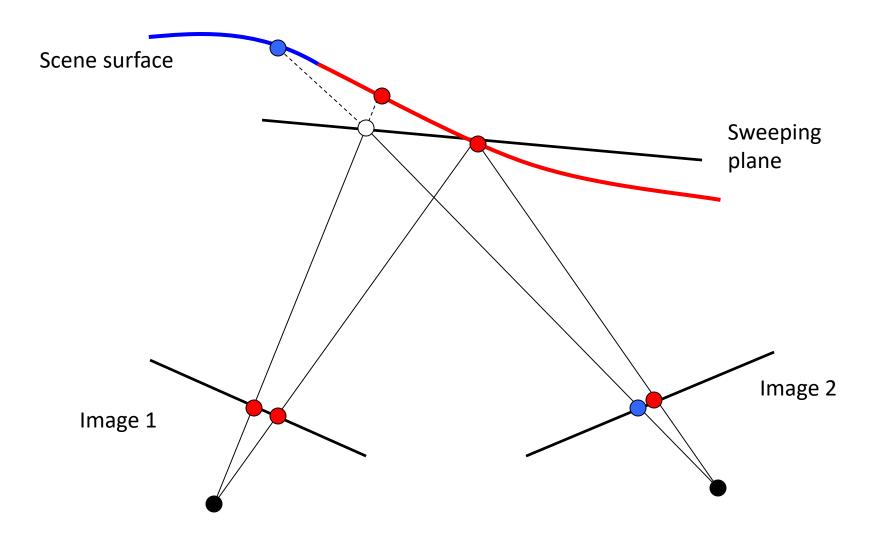




- Sweep family of planes at different depths w.r.t. a reference camera
  - For each depth, project each input image onto that plane
  - This is equivalent to a homography warping each input image into the reference view
- What can we say about the scene points that are at the right depth?

R. Collins. <u>A space-sweep approach to true multi-image matching.</u> CVPR 1996.

## Plane Sweep Stereo



## Plane Sweep Stereo



- For each depth plane
  - For each pixel in the composite image stack, compute the variance
- For each pixel, select the depth that gives the lowest variance
- Can be accelerated using graphics hardware

R. Yang and M. Pollefeys. *Multi-Resolution Real-Time Stereo on Commodity Graphics Hardware*, CVPR 2003

# Merging depth maps

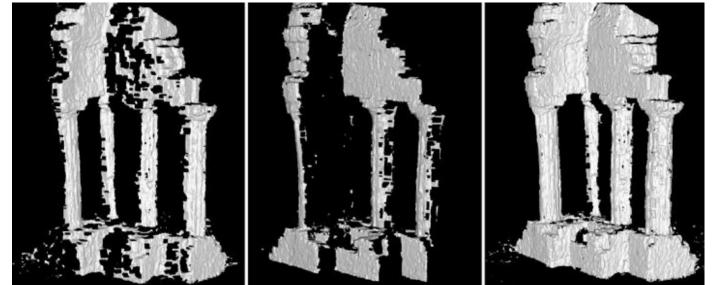


- Given a group of images, choose each one as reference and compute a depth map w.r.t. that view using a multi-baseline approach
- Merge multiple depth maps to a volume or a mesh (see, e.g., Curless and Levoy 96)

Map 1

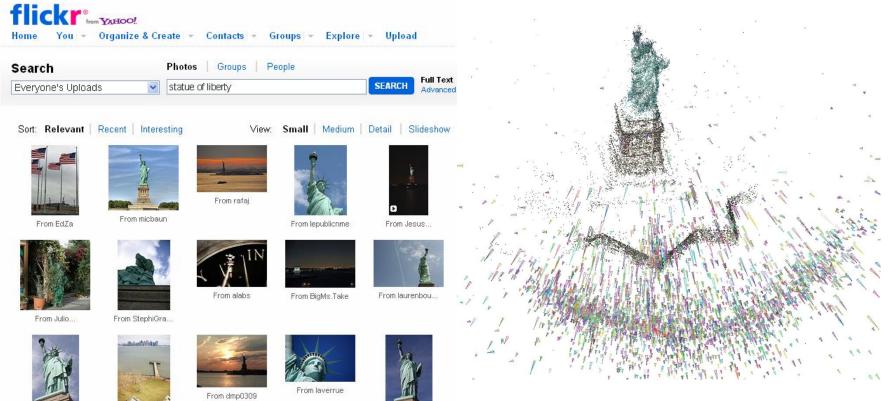
Map 2

Merged



## Stereo from community photo collections

- •Need *structure from motion* to recover unknown camera parameters
- •Need view selection to find good groups of images on which to run dense stereo



From Mojumbo22

From laurenbou...

From StephiGra









#### 4 best neighboring views











reference view

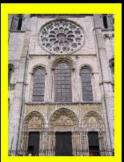




#### Local view selection

- Automatically select neighboring views for each point in the image
- Desiderata: good matches AND good baselines









#### 4 best neighboring views











reference view



#### Local view selection

- Automatically select neighboring views for each point in the image
- Desiderata: good matches AND good baselines









#### 4 best neighboring views











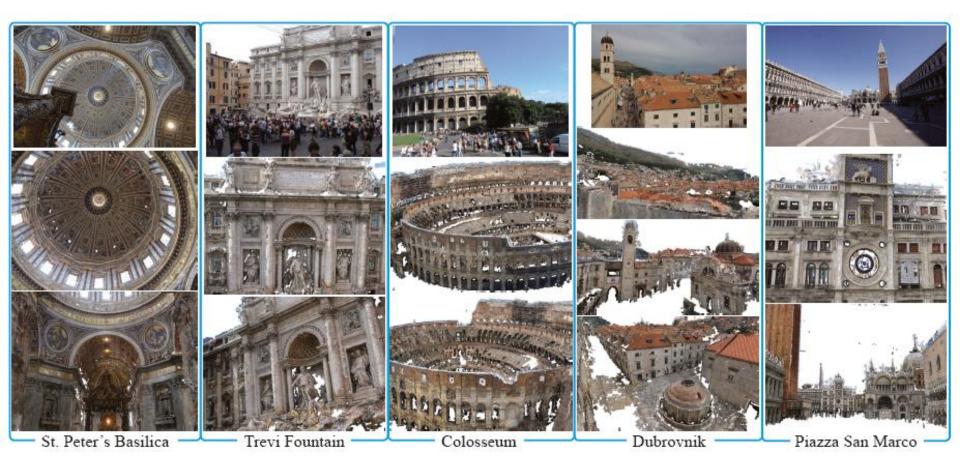
#### reference view



#### Local view selection

- Automatically select neighboring views for each point in the image
- Desiderata: good matches AND good baselines

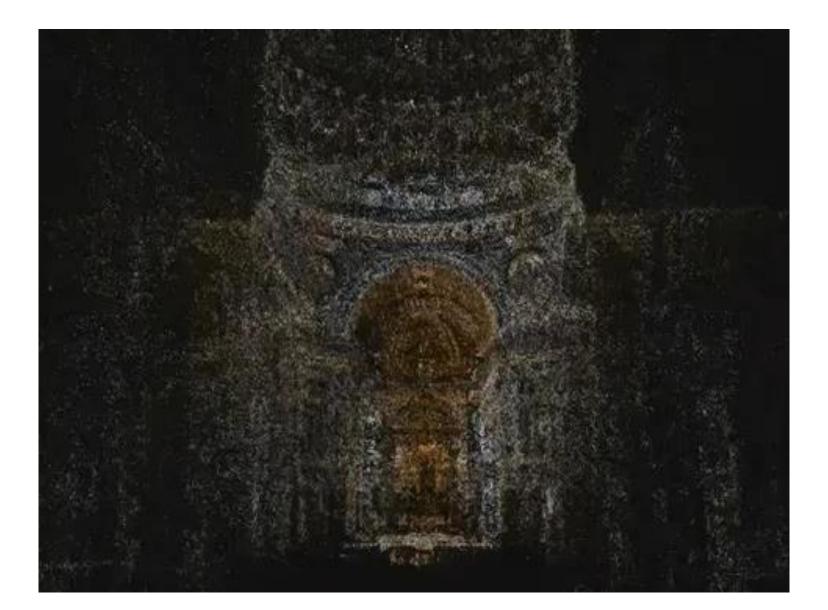
#### Towards Internet-Scale Multi-View Stereo



#### • YouTube video, high-quality video

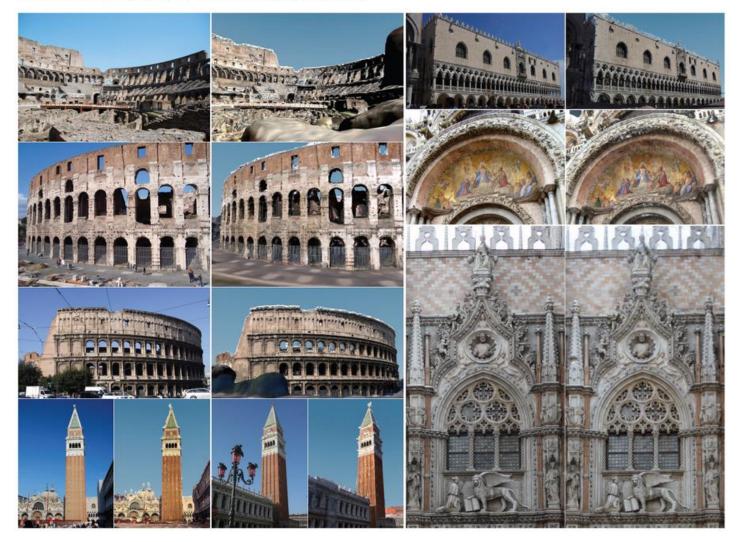
Yasutaka Furukawa, Brian Curless, Steven M. Seitz and Richard Szeliski, <u>Towards Internet-</u> <u>scale Multi-view Stereo</u>, CVPR 2010.

## Internet-Scale Multi-View Stereo



#### The Visual Turing Test for Scene Reconstruction

Rendered Images (Right) vs. Ground Truth Images (Left)



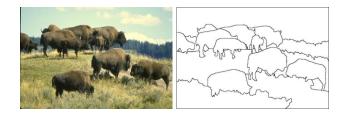
Q. Shan, R. Adams, B. Curless, Y. Furukawa, and S. Seitz, <u>"The Visual Turing Test for Scene</u> <u>Reconstruction,"</u> 3DV 2013.

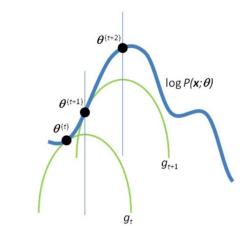
# The Reading List

- "<u>A computer algorithm for reconstructing a scene from two images</u>", Longuet-Higgins, Nature 1981
- <u>"Shape and motion from image streams under orthography:</u> <u>A factorization method.</u>" C. Tomasi and T. Kanade, *IJCV*, 9(2):137-154, November 1992
- "In defense of the eight-point algorithm", Hartley, PAMI 1997
- "An efficient solution to the five-point relative pose problem", Nister, PAMI 2004
- "Accurate, dense, and robust multiview stereopsis", Furukawa and Ponce, CVPR 2007
- "Photo tourism: exploring image collections in 3d", ACM SIGGRAPH 2006
- "<u>Building Rome in a day</u>", Agarwal et al., ICCV 2009
- <u>https://www.youtube.com/watch?v=kyIzMr917Rc</u>, 3D Computer Vision: Past, Present, and Future

# Grouping and Segmentation

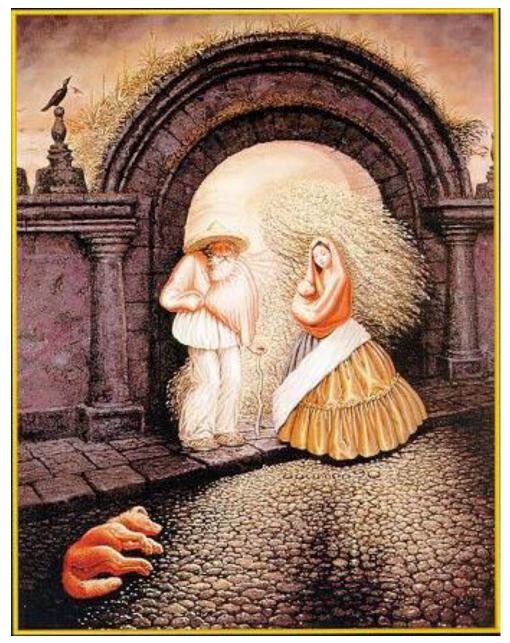
- Image Segmentation
  - Which pixels belong together?
- Hidden Variables, the EM Algorithm, and Mixtures of Gaussians
  - How to handle missing data?
- MRFs and Segmentation with Graph Cut
  - How do we solve image labeling problems?







# How many people?



Gestalt psychology or gestaltism

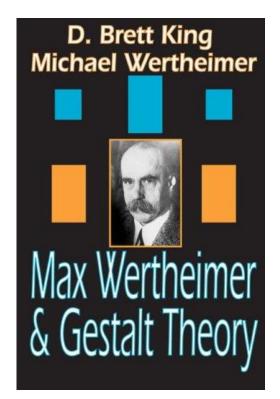
German: Gestalt - "form" or "whole"

Berlin School, early 20th century

Kurt Koffka, Max Wertheimer, and Wolfgang Köhler

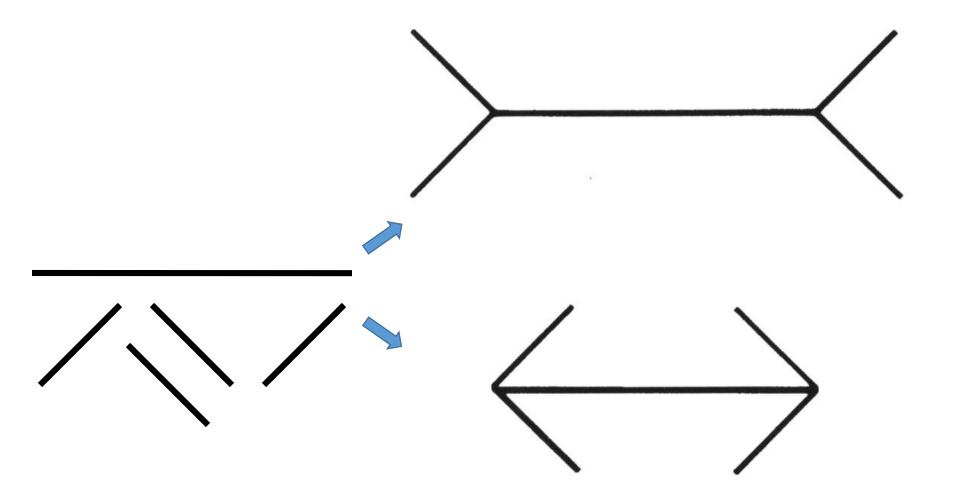
View of brain:

- whole is more than the sum of its parts
- holistic
- parallel
- analog
- self-organizing tendencies



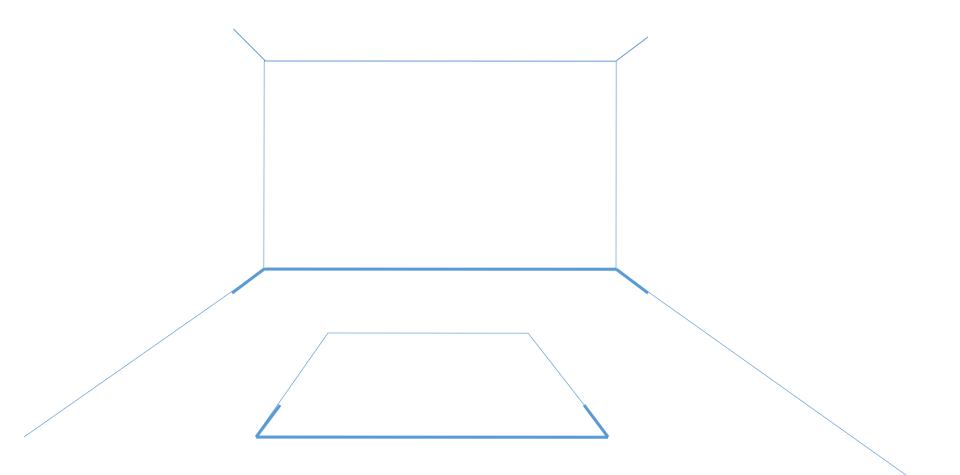
Slide from S. Saverese

## Gestaltism

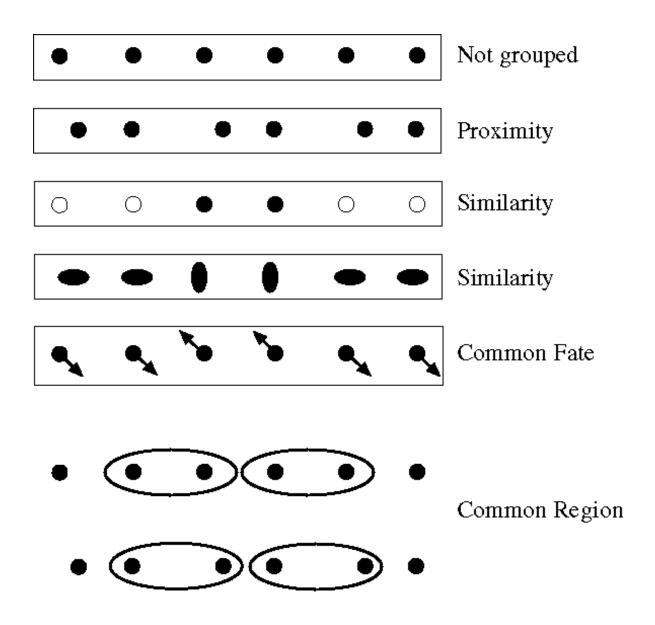


The Muller-Lyer illusion

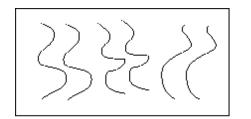
# We perceive the interpretation, not the senses



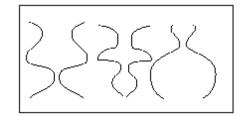
## Principles of perceptual organization



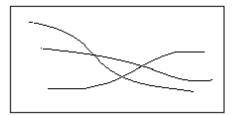
## Principles of perceptual organization



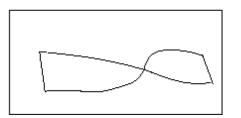
Parallelism



Symmetry

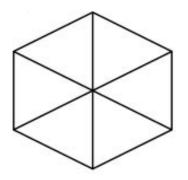


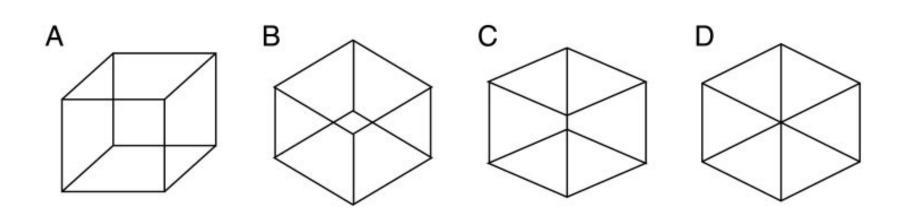
Continuity



Closure

# Gestaltists do not believe in coincidence

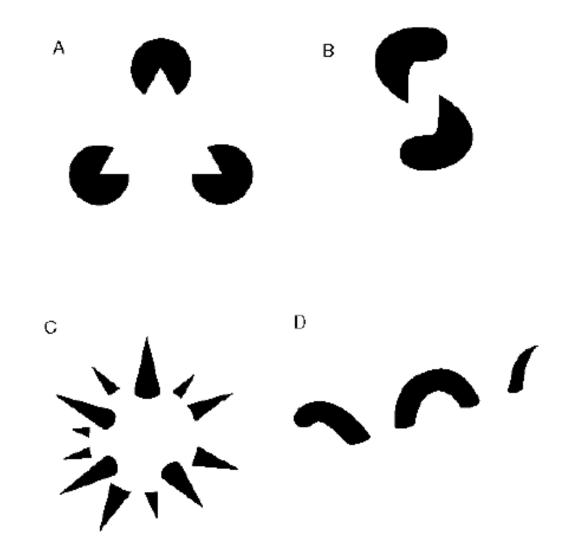




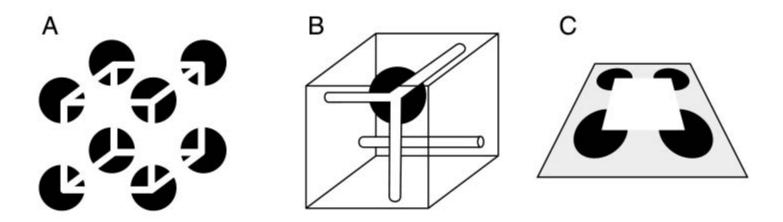
## Emergence



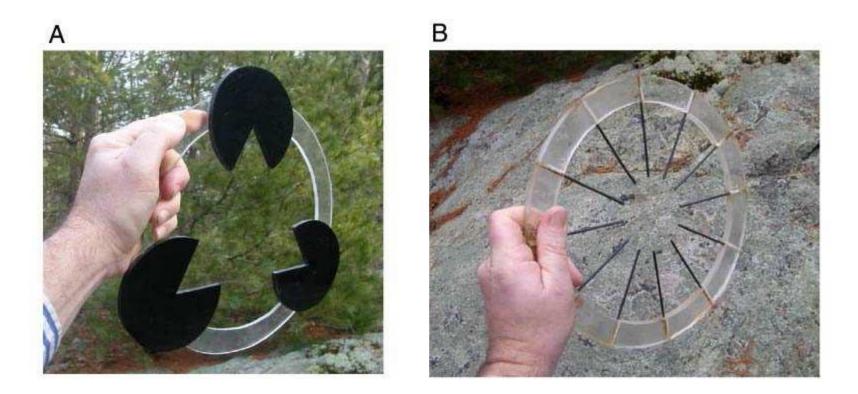
## Grouping by invisible completion



### Grouping involves global interpretation



## Grouping involves global interpretation



Gestalt cues

- Good intuition and basic principles for grouping
- Basis for many ideas in segmentation and occlusion reasoning
- Some (e.g., symmetry) are difficult to implement in practice

#### Image segmentation

# Goal: Group pixels into meaningful or perceptually similar regions



#### Segmentation for efficiency: "superpixels"





#### [Felzenszwalb and Huttenlocher 2004]





[Shi and Malik 2001]

[Hoiem et al. 2005, Mori 2005]

#### Segmentation for feature support



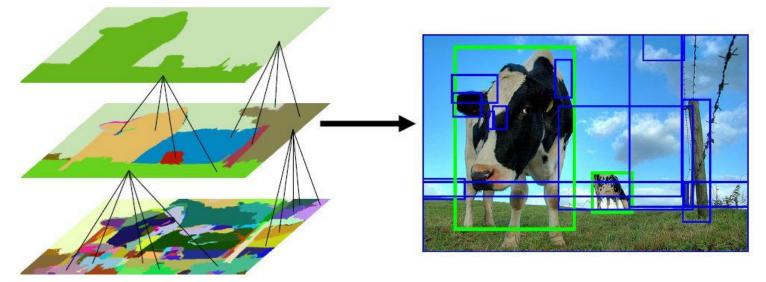
50x50 Patch



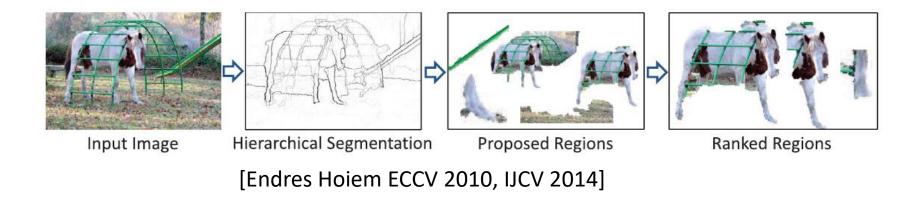
#### 50x50 Patch



#### Segmentation for object proposals



"Selective Search" [Sande, Uijlings et al. ICCV 2011, IJCV 2013]



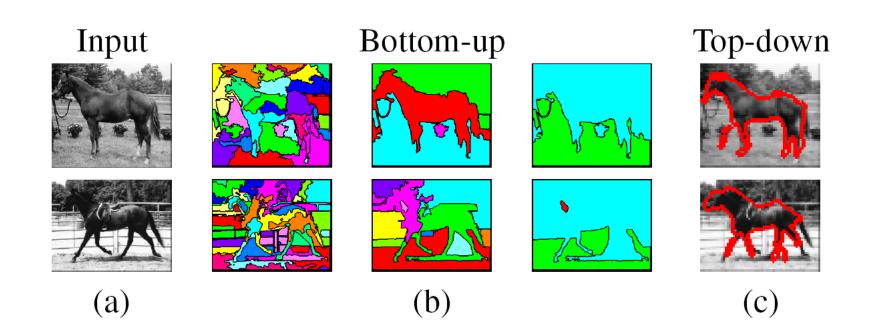
#### Segmentation as a result



Rother et al. 2004

### Major processes for segmentation

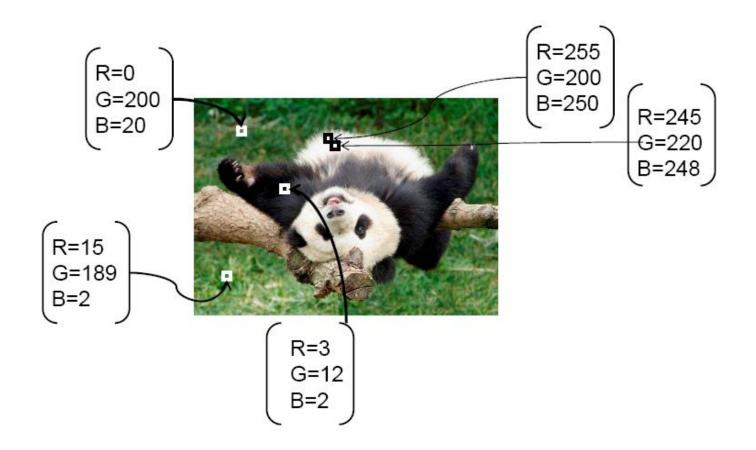
- Bottom-up: group tokens with similar features
- Top-down: group tokens that likely belong to the same object



#### Segmentation using clustering

- Kmeans
- Mean-shift

#### Feature Space



## K-means algorithm

$$\underset{S,\mu_{i,i=1..K}}{\operatorname{argmin}} \sum_{i=1}^{K} \sum_{x \in S_i} ||x - \mu_i||^2$$

Partition the data into K sets  $S = \{S_1, S_2, \dots, S_K\}$  with corresponding centers  $\mu_i$ 

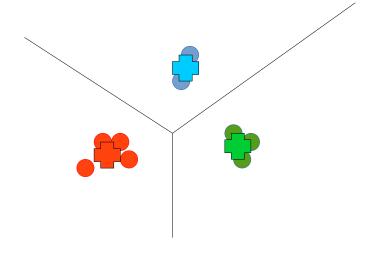
Partition such that variance in each partition is as low as possible

## K-means algorithm

$$\underset{S,\mu_{i,i=1..K}}{\operatorname{argmin}} \sum_{i=1}^{K} \sum_{x \in S_i} ||x - \mu_i||^2$$

Partition the data into K sets  $S = \{S_1, S_2, \dots, S_K\}$  with corresponding centers  $\mu_i$ 

Partition such that variance in each partition is as low as possible



# K-means algorithm

1.Initialize K centers µ<sub>i</sub> (usually randomly)
2.Assign each point x to its nearest center:

$$S^{t} = \underset{S}{\operatorname{argmin}} \sum_{i=1}^{K} \sum_{x \in S_{i}} ||x - \mu_{i}||^{2}$$

3.Update cluster centers as the mean of its members

$$\mu^{t} = \underset{\mu_{i,i=1..K}}{\operatorname{argmin}} \sum_{i=1}^{K} \sum_{x \in S_{i}} ||x - \mu_{i}||^{2}$$

4.Repeat 2-3 until convergence (t = t+1)

```
function C = kmeans(X, K)
```

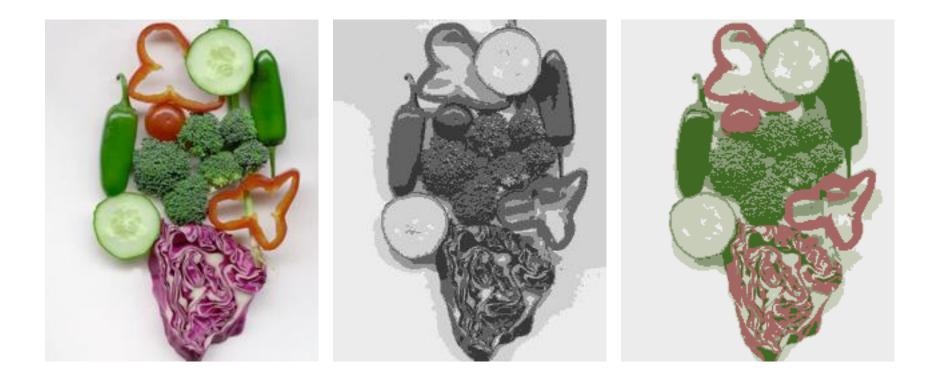
```
% Initialize cluster centers to be randomly sampled points
[N, d] = size(X);
rp = randperm(N);
C = X(rp(1:K), :);
lastAssignment = zeros(N, 1);
while true
  % Assign each point to nearest cluster center
 bestAssignment = zeros(N, 1);
  mindist = Inf*ones(N, 1);
  for k = 1:K
    for n = 1:N
      dist = sum((X(n, :)-C(k, :)).^2);
      if dist < mindist(n)</pre>
        mindist(n) = dist;
        bestAssignment(n) = k;
      end
    end
  end
  % break if assignment is unchanged
  if all(bestAssignment==lastAssignment), break; end;
  % Assign each cluster center to mean of points within it
  for k = 1:K
    C(k, :) = mean(X(bestAssignment==k, :));
  end
end
```

K-means clustering using intensity alone and color alone

Image

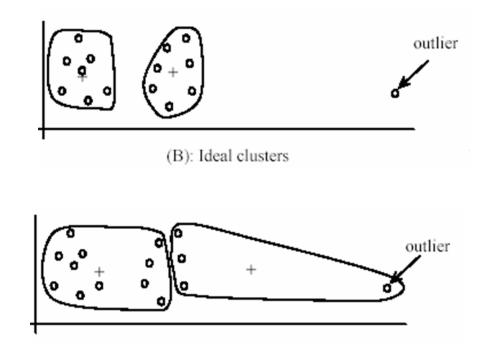
#### Clusters on intensity

#### Clusters on color



#### K-Means pros and cons

- Pros
  - -Simple and fast
  - -Easy to implement
- Cons
  - –Need to choose K–Sensitive to outliers

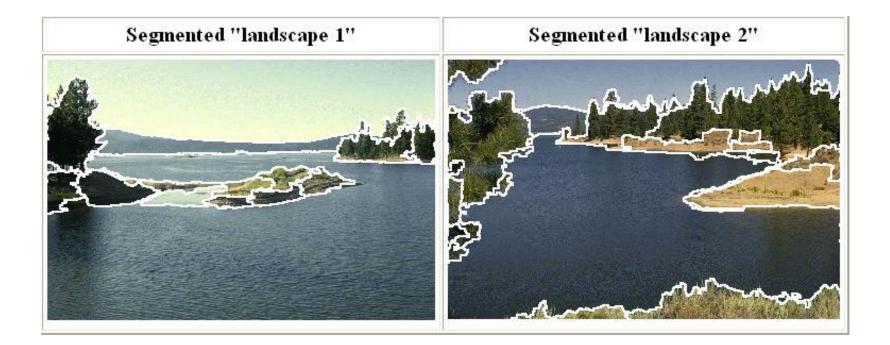


- Usage
  - –Rarely used for pixel segmentation

#### Mean shift segmentation

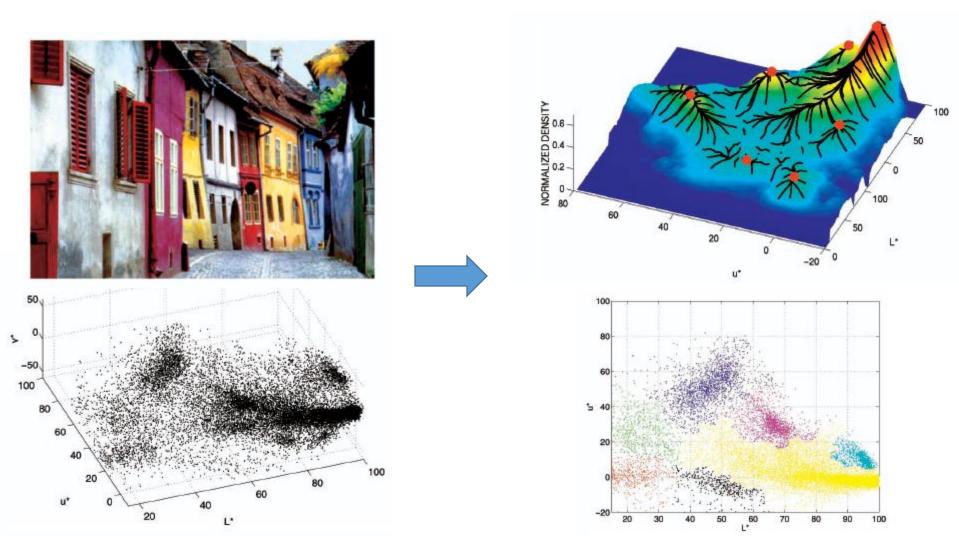
D. Comaniciu and P. Meer, Mean Shift: A Robust Approach toward Feature Space Analysis, PAMI 2002.

 Versatile technique for clustering-based segmentation

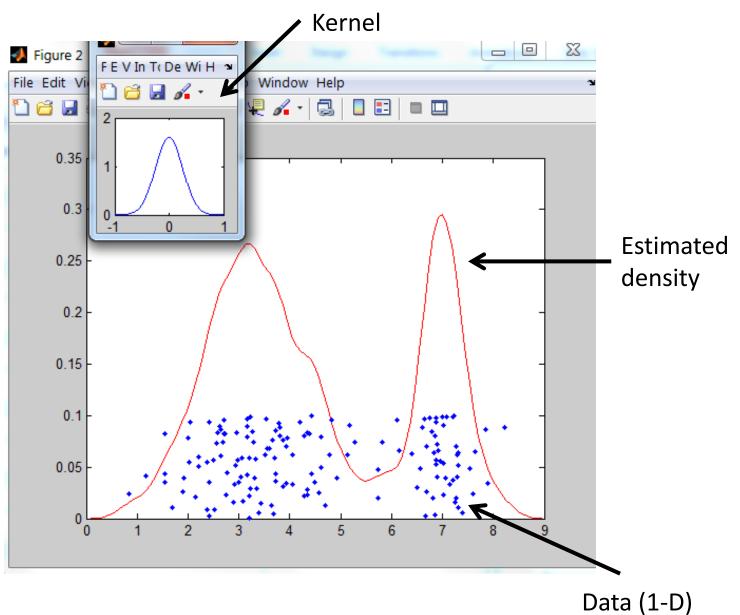


### Mean shift algorithm

• Try to find *modes* of this non-parametric density



#### Kernel density estimation

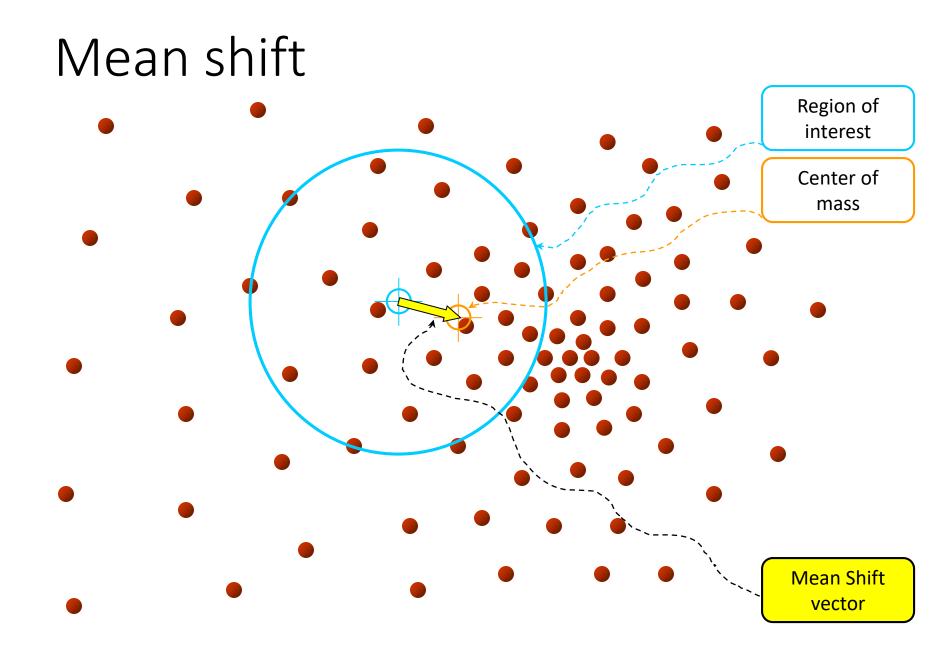


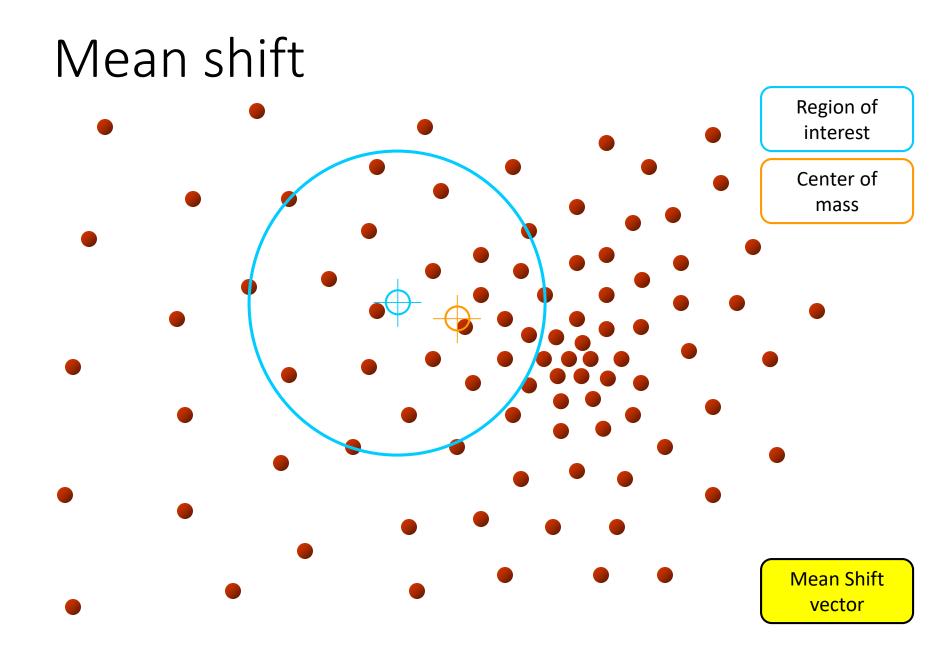
#### Kernel density estimation

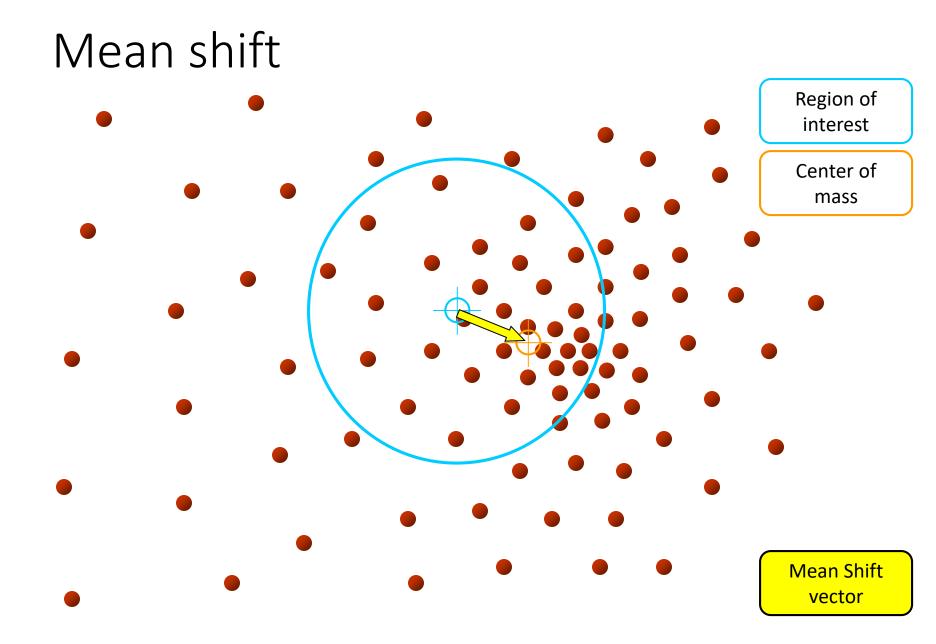
Kernel density estimation function

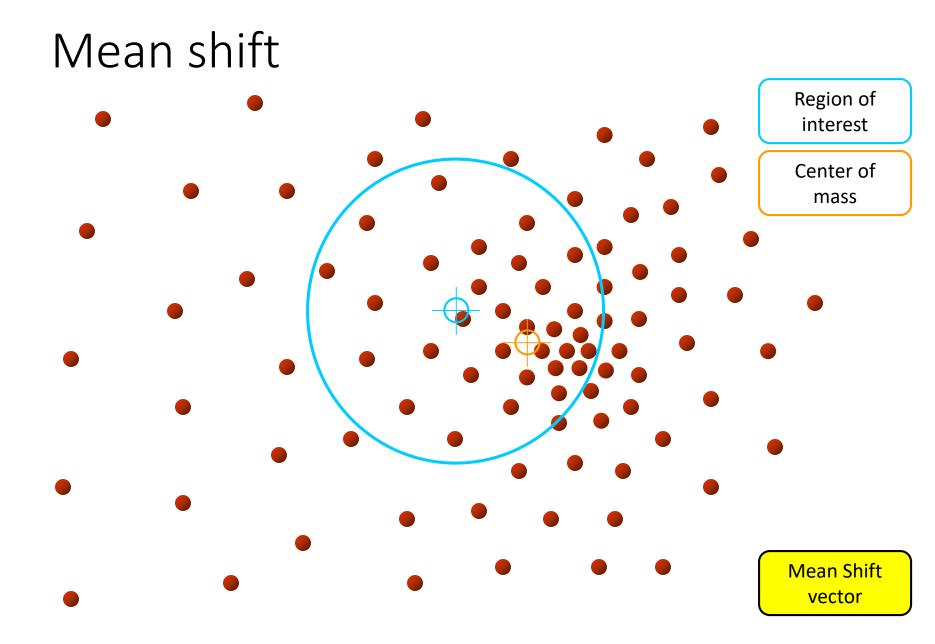
$$\widehat{f}_h(x) = \frac{1}{nh} \sum_{i=1}^n K\left(\frac{x - x_i}{h}\right)$$

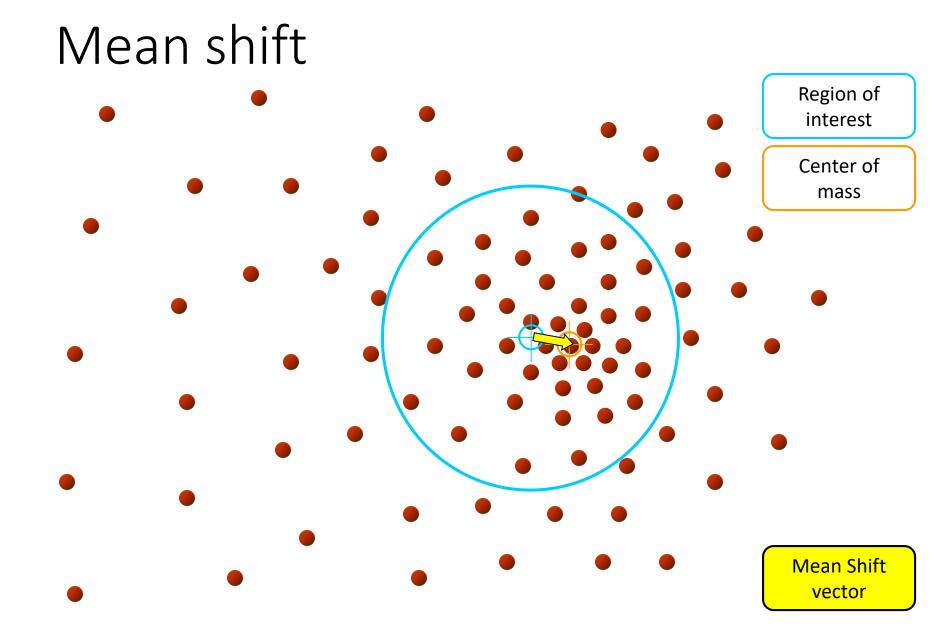
Gaussian kernel $K\left(\frac{x-x_i}{h}\right) = \frac{1}{\sqrt{2\pi}} e^{-\frac{(x-x_i)^2}{2h^2}}.$ 

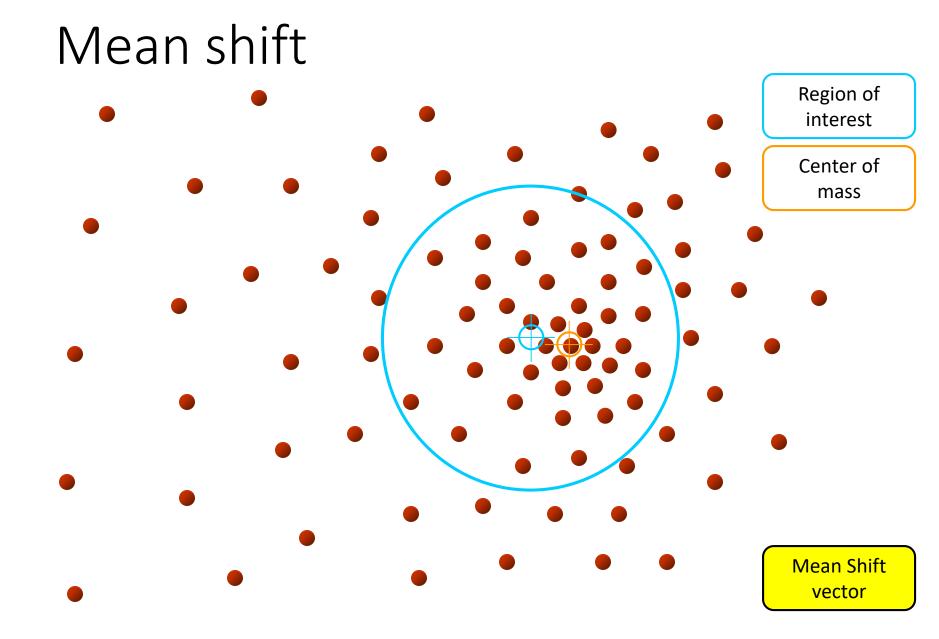




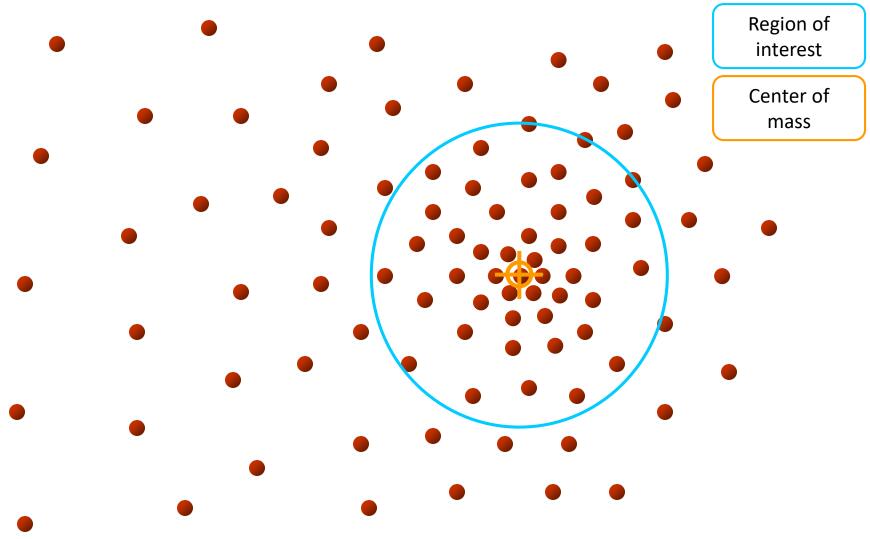








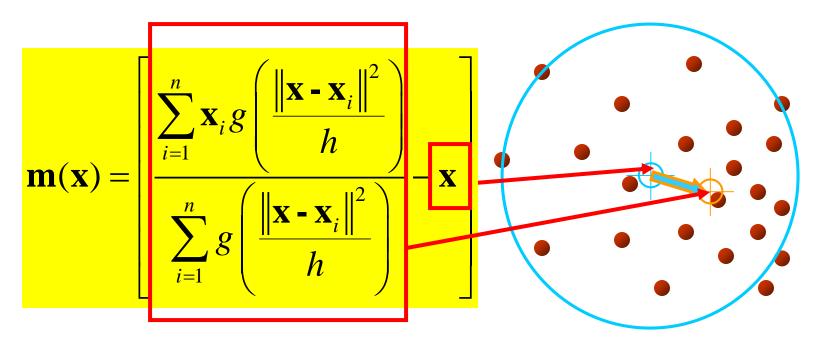
#### Mean shift



### Computing the Mean Shift

Simple Mean Shift procedure:

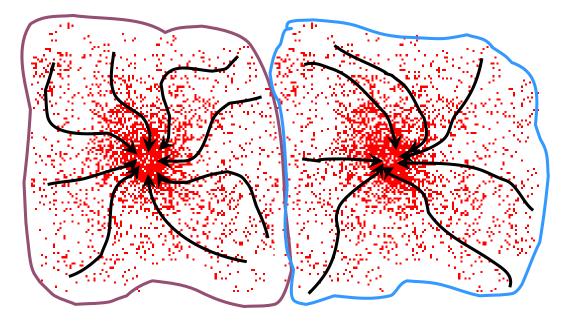
- Compute mean shift vector
- •Translate the Kernel window by m(x)



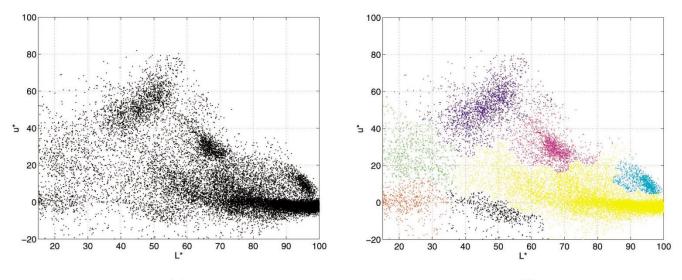
Real Modality Analysis  $\bigcirc$  $\bigcirc$  $\bigcirc$  $\bigcirc$  $\bigcirc$ 

#### Attraction basin

- Attraction basin: the region for which all trajectories lead to the same mode
- Cluster: all data points in the attraction basin of a mode

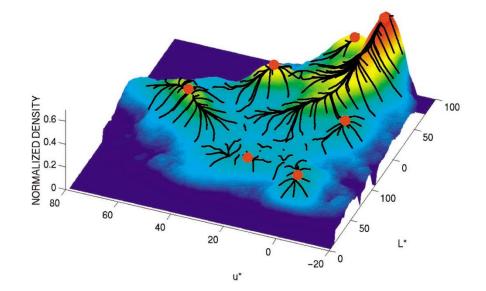


#### Attraction basin





(b)

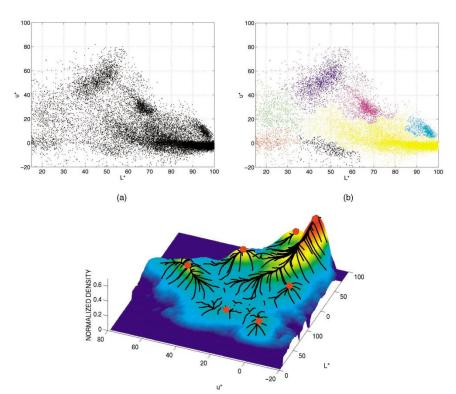


#### Mean shift clustering

- The mean shift algorithm seeks *modes* of the given set of points
  - 1. Choose kernel and bandwidth
  - 2. For each point:
    - a) Center a window on that point
    - b) Compute the mean of the data in the search window
    - c) Center the search window at the new mean location
    - d) Repeat (b,c) until convergence
  - 3. Assign points that lead to nearby modes to the same cluster

### Segmentation by Mean Shift

- Compute features for each pixel (color, gradients, texture, etc); also store each pixel's position
- Set kernel size for features K<sub>f</sub> and position K<sub>s</sub>
- Initialize windows at individual pixel locations
- Perform mean shift for each window until convergence
- Merge modes that are within width of K<sub>f</sub> and K<sub>s</sub>



# Mean shift segmentation results









http://www.caip.rutgers.edu/~comanici/MSPAMI/msPamiResults.html



#### http://www.caip.rutgers.edu/~comanici/MSPAMI/msPamiResults.html

#### Mean-shift: other issues

#### • Speedups

- Binned estimation replace points within some "bin" by point at center with mass
- -Fast search of neighbors e.g., k-d tree or approximate NN
- -Update all windows in each iteration (faster convergence)
- Other tricks

-Use kNN to determine window sizes adaptively

#### • Lots of theoretical support

D. Comaniciu and P. Meer, Mean Shift: A Robust Approach toward Feature Space Analysis, PAMI 2002.

#### Mean shift pros and cons

- Pros
  - Good general-purpose segmentation
  - Flexible in number and shape of regions
  - Robust to outliers
  - General mode-finding algorithm (useful for other problems such as finding most common surface normals)
- Cons
  - Have to choose kernel size in advance
  - Not suitable for high-dimensional features
- When to use it
  - Oversegmentation
  - Multiple segmentations
  - Tracking, clustering, filtering applications
    - D. Comaniciu, V. Ramesh, P. Meer: <u>Real-Time Tracking of Non-Rigid</u> <u>Objects using Mean Shift</u>, Best Paper Award, IEEE Conf. Computer Vision and Pattern Recognition (CVPR'00), Hilton Head Island, South Carolina, Vol. 2, 142-149, 2000

# Mean-shift reading

#### • Nicely written mean-shift explanation (with math)

http://saravananthirumuruganathan.wordpress.com/2010/04/01/introduction-to-mean-shiftalgorithm/

- Includes .m code for mean-shift clustering
- Mean-shift paper by Comaniciu and Meer

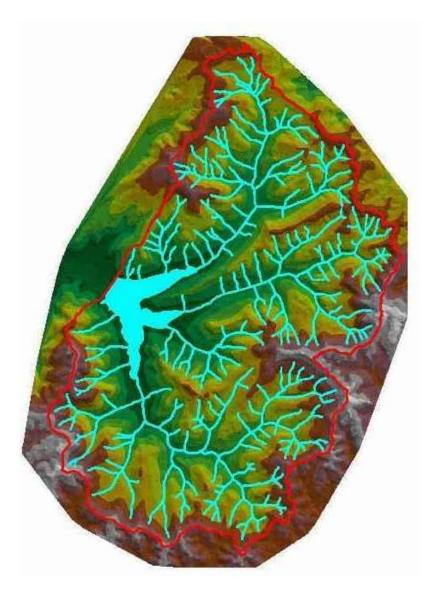
http://www.caip.rutgers.edu/~comanici/Papers/MsRobustApproach.pdf

• Adaptive mean shift in higher dimensions <u>http://mis.hevra.haifa.ac.il/~ishimshoni/papers/chap9.pdf</u>

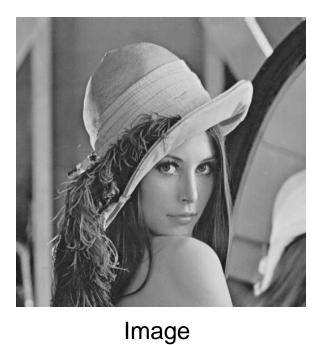
# Superpixel algorithms

- Goal: divide the image into a large number of regions, such that each regions lie within object boundaries
- Examples
  - Watershed
  - Felzenszwalb and Huttenlocher graph-based
  - Turbopixels
  - SLIC

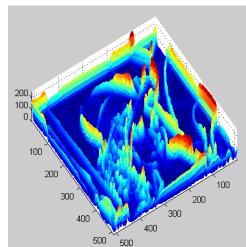
### Watershed algorithm

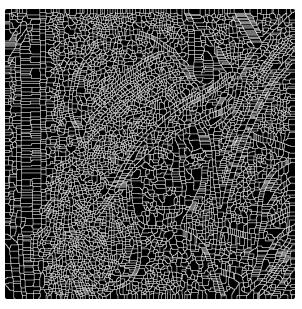


### Watershed segmentation



Gradient





#### Watershed boundaries

## Meyer's watershed segmentation

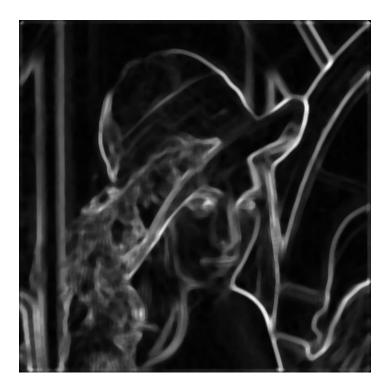
- 1. Choose local minima as region seeds
- 2. Add neighbors to priority queue, sorted by value
- 3. Take top priority pixel from queue
  - 1. If all labeled neighbors have same label, assign that label to pixel
  - 2. Add all non-marked neighbors to queue
- 4. Repeat step 3 until finished (all remaining pixels in queue are on the boundary)

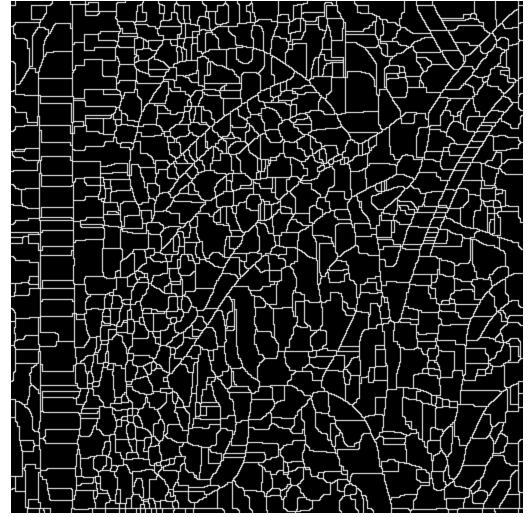
Matlab: seg = watershed(bnd\_im)

Meyer 1991

# Simple trick

• Use Gaussian or median filter to reduce number of regions





### Watershed usage

- Use as a starting point for hierarchical segmentation —Ultrametric contour map (Arbelaez 2006)
- Works with any soft boundaries

   –Pb (w/o non-max suppression)
   –Canny (w/o non-max suppression)
   –Etc.

# Watershed pros and cons

#### • Pros

-Fast (< 1 sec for 512x512 image)

-Preserves boundaries

#### • Cons

- Only as good as the soft boundaries (which may be slow to compute)
- -Not easy to get variety of regions for multiple segmentations

#### • Usage

-Good algorithm for superpixels, hierarchical segmentation

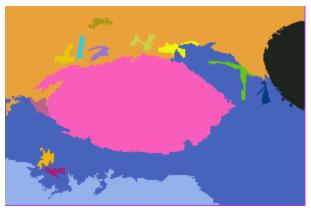
### Felzenszwalb and Huttenlocher: Graph-Based Segmentation

#### http://www.cs.brown.edu/~pff/segment/



- + Good for thin regions
- + Fast
- + Easy to control coarseness of segmentations
- + Can include both large and small regions
- Often creates regions with strange shapes
- Sometimes makes very large errors





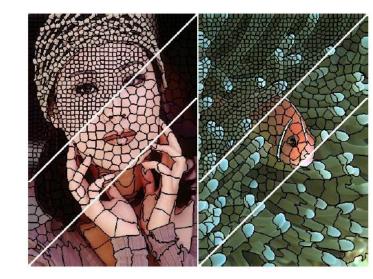
# Turbo Pixels: Levinstein et al. 2009

Tries to preserve boundaries like watershed but to produce more regular regions



#### SLIC (Achanta et al. PAMI 2012) http://infoscience.epfl.ch/record/177415/files/Superpixel\_PAMI2011-2.pdf

- 1. Initialize cluster centers on pixel grid in steps S
  - Features: Lab color, x-y position
- 2. Move centers to position in 3x3 window with smallest gradient
- 3. Compare each pixel to cluster center within 2S pixel distance and assign to nearest
- 4. Recompute cluster centers as mean color/position of pixels belonging to each cluster
- 5. Stop when residual error is small



- + Fast 0.36s for 320x240
- + Regular superpixels
- + Superpixels fit boundaries
- May miss thin objects
- Large number of superpixels

# Choices in segmentation algorithms

#### Oversegmentation

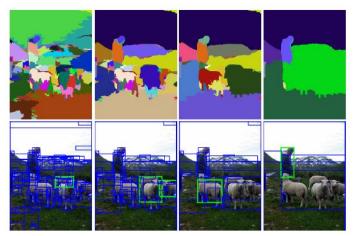
- Watershed + Structure random forest
- Felzenszwalb and Huttenlocher 2004

http://www.cs.brown.edu/~pff/segment/

- SLIC
- Turbopixels
- Mean-shift
- Larger regions (object-level)
  - Hierarchical segmentation (e.g., from Pb)
  - Normalized cuts
  - Mean-shift
  - Seed + graph cuts (discussed later)

# Multiple segmentations

- When creating regions for pixel classification or object detection, don't commit to one partitioning
- Strategies:
  - Hierarchical segmentation
    - Occlusion boundaries hierarchy: Hoiem et al. IJCV 2011 (uses trained classifier to merge)
    - Pb+watershed hierarchy: <u>Arbeleaz et al. CVPR 2009</u>
    - <u>Selective search</u>: FH + agglomerative clustering
    - Superpixel hierarchy
  - Vary segmentation parameters
    - E.g., multiple graph-based segmentations or meanshift segmentations
  - Region proposals
    - Propose seed superpixel, try to segment out object that contains it (Endres Hoiem ECCV 2010, Carreira Sminchisescu CVPR 2010)



# Things to remember

- Gestalt cues and principles of organization
- Uses of segmentation
  - -Efficiency
  - Better features
  - Propose object regions
  - Want the segmented object
- Mean-shift segmentation
  - -Good general-purpose segmentation method
  - -Generally useful clustering, tracking technique
- Watershed segmentation
  - -Good for hierarchical segmentation
  - -Use in combination with boundary prediction

