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Many slides from S. Seitz, N Snavely, and D. Hoiem



Administrative stuffs

•HW 3 due 11:59 PM, Oct 17 (Monday)

• Top alignment results
• Mengyu Song (5.03)

• second moment ellipse + ICP

• Badour AlBahar (5.41)
• Tested the original image, multiple initializations

• Sujay Yadawadkar (6.989)
• Iterative closest point with affine transformation

• Feedback
• Detailed discussions on HW assignment
• More generous on hints



Perspective and 3D Geometry

• Projective geometry and camera models
• Vanishing points/lines 
• x = 𝐊 𝐑 𝐭 𝐗

• Single-view metrology and camera calibration
• Calibration using known 3D object or vanishing points
• Measuring size using perspective cues

• Photo stitching
• Homography relates rotating cameras   𝐱′ = 𝐇𝐱
• Recover homography using RANSAC + normalized DLT

• Epipolar Geometry and Stereo Vision
• Fundamental/essential matrix relates two cameras 𝐱′𝐅𝐱 = 𝟎
• Recover 𝐅 using RANSAC + normalized 8-point algorithm, 

enforce rank 2 using SVD

• Structure from motion (this class)
• How can we recover 3D points from multiple images?



Recap: Epipoles

C

• Point x in left image corresponds to epipolar line l’ in right 
image

• Epipolar line passes through the epipole (the intersection of 
the cameras’ baseline with the image plane

C



Recap: Fundamental Matrix

•Fundamental matrix maps from a point in one 
image to a line in the other

• If x and x’ correspond to the same 3d point X:



Recap: Automatic Estimation of F

8-Point Algorithm for Recovering F

•Correspondence Relation

1. Normalize image coordinates

2. RANSAC with 8 points
• Randomly sample 8 points
• Compute F via least squares
• Enforce by SVD
• Repeat and choose F with most inliers

3. De-normalize:

Assume we have matched points x   x’ with outliers

Txx ~ xTx ~

TFTF
~T

  0
~

det F

0 Fxx
T



Recap

•We can get projection matrices P and P’ up to a 
projective ambiguity (see HZ p. 255-256)

• Code:
function P = vgg_P_from_F(F)

[U,S,V] = svd(F);

e = U(:,3);

P = [-vgg_contreps(e)*F e];

 0IP |   e|FeP   0 Fe
T

See HZ p. 255-256

http://www.robots.ox.ac.uk/~vgg/hzbook/code/


This class: Structure from Motion

•Projective structure from motion

•Affine structure from motion

•HW 3

•Multi-view stereo (optional)



Structure [ˈstrək(t)SHər]:

3D Point Cloud of the Scene

Motion [ˈmōSH(ə)n]:
Camera Location and Orientation

Structure from Motion (SfM)
Get the Point Cloud from Moving 
Cameras



SfM Applications – 3D Modeling

http://www.3dcadbrowser.com/download.aspx?3dmodel=40454



SfM Applications – Surveying
cultural heritage structure analysis

Guidi et al. High-accuracy 3D modeling of cultural heritage, 2004



SfM Applications –
Robot navigation and mapmaking

https://www.youtube.com/watch?v=1HhOmF22oYA



SfM Applications – Visual effect 
(matchmove)

https://www.youtube.com/watch?v=bK6vCPcFkfk



Images  Points: Structure from Motion

Points More points:  Multiple View Stereo

Points Meshes: Model Fitting

Meshes Models: Texture Mapping

Images Models:         Image-based Modeling
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Images  Points: Structure from Motion

Points More points:  Multiple View Stereo
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Images Models:         Image-based Modeling
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Example: https://photosynth.net/

Slide credit: J. Xiao

https://photosynth.net/


Triangulation: Linear Solution

• Generally, rays Cx and 
C’x’ will not exactly 
intersect

• Can solve via SVD, 
finding a least squares 
solution to a system of 
equations

X

x x'

XPx PXx 

0AX 





























TT

TT

TT

TT

v

u

v

u

23

13

23

13

pp

pp

pp

pp

A

Further reading: HZ p. 312-313



Triangulation: Linear Solution

Given P, P’, x, x’
1. Precondition points and projection 

matrices
2. Create matrix A
3. [U, S, V] = svd(A)
4. X = V(:, end)

Pros and Cons
• Works for any number of 

corresponding images
• Not projectively invariant 
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Code: http://www.robots.ox.ac.uk/~vgg/hzbook/code/vgg_multiview/vgg_X_from_xP_lin.m

http://www.robots.ox.ac.uk/~vgg/hzbook/code/vgg_multiview/vgg_X_from_xP_lin.m


Triangulation: Non-linear Solution
•Minimize projected error while satisfying

Figure source: Robertson and Cipolla (Chpt 13 of Practical Image Processing and Computer Vision) 
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Triangulation: Non-linear Solution
•Minimize projected error while satisfying

•Solution is a 6-degree polynomial of t, minimizing 

Further reading: HZ p. 318

ෝ𝒙′
𝑇
𝑭ෝ𝒙=0

𝑐𝑜𝑠𝑡 𝑿 = 𝑑𝑖𝑠𝑡 𝒙, ෝ𝒙 2 + 𝑑𝑖𝑠𝑡 𝒙′, ෝ𝒙′ 2



Projective structure from motion
•Given: m images of n fixed 3D points 

xij = Pi Xj , i = 1,… , m,    j = 1, … , n

•Problem: estimate m projection matrices Pi and n 3D 
points Xj from the mn corresponding 2D points xij

x1j

x2j

x3j

Xj

P1

P2

P3

Slides from Lana Lazebnik 



Projective structure from motion
•Given: m images of n fixed 3D points 

•xij = Pi Xj , i = 1,… , m,    j = 1, … , n

•Problem: 
•Estimate unknown m projection matrices Pi and n 3D points Xj

from the known mn corresponding points xij

•With no calibration info, cameras and points can only 
be recovered up to a 4x4 projective transformation Q:

•X → QX, P → PQ-1

•We can solve for structure and motion when 

2mn >= 11m + 3n  – 15

•For two cameras, at least 7 points are needed
DoF in Pi DoF in Xj Up to 4x4 projective tform Q



Sequential structure from motion
•Initialize motion (calibration) from 
two images using fundamental matrix

•Initialize structure by triangulation

•For each additional view:
• Determine projection matrix of new 

camera using all the known 3D points 
that are visible in its image –
calibration/resectioning

ca
m

er
as

points



Sequential structure from motion
•Initialize motion from two images 
using fundamental matrix

•Initialize structure by triangulation

•For each additional view:
• Determine projection matrix of new 

camera using all the known 3D points 
that are visible in its image –
calibration

• Refine and extend structure: 
compute new 3D points, 
re-optimize existing points that   are 
also seen by this camera –
triangulation 

ca
m
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Sequential structure from motion
•Initialize motion from two images 
using fundamental matrix

•Initialize structure by triangulation

•For each additional view:
• Determine projection matrix of new 

camera using all the known 3D 
points that are visible in its image –
calibration

• Refine and extend structure: 
compute new 3D points,               re-
optimize existing points that are also 
seen by this camera – triangulation 

•Refine structure and motion: bundle 
adjustment

ca
m

er
as

points



Bundle adjustment
•Non-linear method for refining structure and motion

•Minimizing reprojection error

 
2

1 1
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j

jiijDE XPxXP

x1j

x2j

x3j

Xj

P1

P2

P3

P1Xj

P2Xj

P3Xj

• Theory:
The Levenberg–Marquardt 
algorithm

• Practice:
The Ceres-Solver from Google

http://en.wikipedia.org/wiki/Levenberg-Marquardt_algorithm
http://code.google.com/p/ceres-solver/


Auto-calibration

•Auto-calibration: determining intrinsic camera 
parameters directly from uncalibrated images

•For example, we can use the constraint that a 
moving camera has a fixed intrinsic matrix
• Compute initial projective reconstruction and find 3D 

projective transformation matrix Q such that all camera 
matrices are in the form Pi = K [Ri | ti]

•Can use constraints on the form of the calibration 
matrix, such as zero skew



Summary so far

• From two images, we can:
• Recover fundamental matrix F
• Recover canonical camera projection matrix P and P’ from F
• Estimate 3D positions (if K is known) that correspond to each 

pixel

• For a moving camera, we can:
• Initialize by computing F, P, X for two images
• Sequentially add new images, computing new P, refining X, and 

adding points
• Auto-calibrate assuming fixed calibration matrix to upgrade to 

similarity transform



Recent work in SfM

•Reconstruct from many images by efficiently finding 
subgraphs
• http://www.cs.cornell.edu/projects/matchminer/ (Lou et 

al. ECCV 2012)

• Improving efficiency of bundle adjustment or
• http://vision.soic.indiana.edu/projects/disco/ (Crandall et al. ECCV 2011)

• http://imagine.enpc.fr/~moulonp/publis/iccv2013/index.html (Moulin et 
al. ICCV 2013)

Reconstruction of Cornell (Crandall et al. ECCV 2011)

(best method with software available; also has good overview of recent methods) 

http://www.cs.cornell.edu/projects/matchminer/
http://vision.soic.indiana.edu/projects/disco/
http://imagine.enpc.fr/~moulonp/publis/iccv2013/index.html
https://www.youtube.com/watch?v=hlKlbpHpNEE


3D from multiple images

Building Rome in a Day: Agarwal et al. 2009



Structure from motion under orthographic projection

3D Reconstruction of a Rotating Ping-Pong Ball

C. Tomasi and T. Kanade. Shape and motion from image streams under orthography: 
A factorization method. IJCV, 9(2):137-154, November 1992. 

•Reasonable choice when 
•Change in depth of points in scene is much smaller than distance to camera
•Cameras do not move towards or away from the scene  

http://www.eecs.berkeley.edu/~yang/courses/cs294-6/papers/TomasiC_Shape and motion from image streams under orthography.pdf


Orthographic projection for 
rotated/translated camera

x

Xa1

a2



Affine structure from motion

•Affine projection is a linear mapping + translation in in 
homogeneous coordinates

1. We are given corresponding 2D points (x) in several frames

2. We want to estimate the 3D points (X) and the affine 
parameters of each camera (A)
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Step 1: Simplify by getting rid of t: shift to 
centroid of points for each camera
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Suppose we know 3D points and 
affine camera parameters …

then, we can compute the observed 2d 
positions of each point
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What if we instead observe 
corresponding 2d image points?

Can we recover the camera parameters and 3d 
points?

cameras (2m)

points (n)
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What rank is the matrix of 2D points?



Factorizing the measurement matrix

Source: M. Hebert

AX



Factorizing the measurement matrix

Source: M. Hebert

•Singular value decomposition of D:



Factorizing the measurement matrix

Source: M. Hebert

•Singular value decomposition of D:



Factorizing the measurement matrix

Source: M. Hebert

• Obtaining a factorization from SVD:



Factorizing the measurement matrix

Source: M. Hebert

A
~

X
~

• Obtaining a factorization from SVD:



Affine ambiguity

•The decomposition is not unique. We get the same 
D by using any 3×3 matrix C and applying the 
transformations A → AC, X →C-1X

•That is because we have only an affine 
transformation and we have not enforced any 
Euclidean constraints (like forcing the image axes to 
be perpendicular, for example)

Source: M. Hebert

S
~

A
~

X
~



•Orthographic: image axes are perpendicular and of 
unit length

Eliminating the affine ambiguity

x

Xa1

a2

a1 · a2 = 0

|a1|2 = |a2|2 = 1

Source: M. Hebert



Solve for orthographic constraints

•Solve for L = CCT

•Recover C from L by Cholesky decomposition: 
L = CCT

•Update A and X: A = AC, X = C-1X
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How to solve L = CCT ?

𝑎 𝑏 𝑐
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Algorithm summary
•Given: m images and n tracked features xij

•For each image i, center the feature coordinates

•Construct a 2m × n measurement matrix D:
• Column j contains the projection of point j in all views
• Row i contains one coordinate of the projections of all the n 

points in image i

•Factorize D:
• Compute SVD: D = U W VT

• Create U3 by taking the first 3 columns of U
• Create V3 by taking the first 3 columns of V
• Create W3 by taking the upper left 3 × 3 block of W

•Create the motion (affine) and shape (3D) matrices:
A = U3W3

½  and S = W3
½ V3

T

•Eliminate affine ambiguity
• Solve L = CCT using metric constraints
• Solve C using Cholesky decomposition
• Update A and X: A = AC, S = C-1S Source: M. Hebert



Dealing with missing data
•So far, we have assumed that all points are visible 

in all views

•In reality, the measurement matrix typically looks 
something like this:

One solution:
• solve using a dense submatrix of visible points
• Iteratively add new cameras

cameras

points



Reconstruction results

C. Tomasi and T. Kanade. Shape and motion from image streams under orthography: 
A factorization method. IJCV, 9(2):137-154, November 1992. 

http://www.eecs.berkeley.edu/~yang/courses/cs294-6/papers/TomasiC_Shape and motion from image streams under orthography.pdf


Further reading

•Short explanation of Affine SfM: class notes from 
Lischinksi and Gruber

http://www.cs.huji.ac.il/~csip/sfm.pdf

•Clear explanation of epipolar geometry and 
projective SfM
• http://mi.eng.cam.ac.uk/~cipolla/publications/contributionToEditedB

ook/2008-SFM-chapters.pdf

http://www.cs.huji.ac.il/~csip/sfm.pdf
http://mi.eng.cam.ac.uk/~cipolla/publications/contributionToEditedBook/2008-SFM-chapters.pdf


Review of Affine SfM from Interest Points

1. Detect interest points (e.g., Harris)
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Review of Affine SfM from Interest Points

2.  Correspondence via Lucas-Kanade tracking

a) Initialize (x’,y’) = (x,y)

b) Compute (u,v) by

c) Shift window by (u, v): x’=x’+u; y’=y’+v;

d) Recalculate It

e) Repeat steps 2-4 until small change
• Use interpolation for subpixel values

2nd moment matrix for feature 

patch in first image
displacement

It = I(x’, y’, t+1) - I(x, y, t) 

Original (x,y) position



Review of Affine SfM from Interest Points

3.  Get Affine camera matrix and 3D points using 
Tomasi-Kanade factorization

Solve for 
orthographic 
constraints 



HW 3 – Part 1-A. Vanishing points
% Load the image

im = imread(‘new_classroom_building.jpg’);

% Manually select at least three lines 

(press q to stop)

vp = getVanishingPoint(im);

lines – [3 x N], N >= 3

line equation (a, b, c): au + bv + c = 0

Problem: Solving the VPs using lines
1. Find points at the intersections of each pair of lines. Take the mean as your VP.

-> less accurate
2. Find a point that minimizes the sum of the distances to the lines. Solve for VP using A\b;

𝑎1 𝑏1
𝑎2 𝑏2
𝑎3 𝑏3

𝑢
𝑣

=
−1
−1
−1

3. Maximum likelihood estimate to minimize averaged angular differences (L-M)

Write-up
• Plot the VPs and the lines used to estimate them on the image plane.
• Specify the three VPs (u,v) in the image plane
• Plot the ground horizon line and specify its normalized parameters: au + bv + c = 0



HW 3 – Part 1-B. Finding K
VPs = [vp1, vp2, vp3] - [3 x 3] 

Write-up
• Show the process of finding camera focal length and optical center 
• Report the estimated camera focal length (f) and optical center (u0, v0).

Problem: Solving intrinsic matrix K

Orthogonality constraints 𝑿𝒊
⊤𝑿𝒋 = 𝟎

𝑿𝒊 = 𝑹−𝟏𝑲−𝟏𝒑𝒊
𝒑𝒊
⊤ 𝑲−𝟏 ⊤

(𝑲−𝟏)𝒑𝒋 = 𝟎

VP (2D)VP (3D)

𝑲 =
𝑓 0 𝑢0
0 𝑓 𝑣0
0 0 1

Unknown camera parameters 𝑓, 𝑢0 , v0

𝑲−1 =

1

𝑓
0 −

𝑢0
𝑓

0
1

𝑓
−
𝑣0
𝑓

0 0 1

Approach 1: 
• Closed-form solution: solve 𝑢0, v0 first and then solve f
Approach 2:
• Use numerical solver, e.g., fsolve



HW 3 – Part 1-C. Finding R
VPs = [vp1, vp2, vp3] - [3 x 3] 

Write-up
• Describe how to compute the camera’s rotation matrix.
• Compute the rotation matrix for this image, vertical VP = [0, 1, 0], 

the right-most VP=[1,0,0], left-most VP = [0, 0, 1].

Problem: Solving rotation matrix R

Rotation matrix 𝑹 = 𝒓𝟏 𝒓𝟐 𝒓𝟑

𝒑𝒊 = 𝑲𝑹𝑿𝒊

Set directions of vanishing points
𝑿𝟏 = 𝟏, 𝟎, 𝟎 ⊤

𝑿𝟐 = 𝟎, 𝟏, 𝟎 ⊤

𝑿𝟑 = 𝟎, 𝟎, 𝟏 ⊤

𝒑𝟏 = 𝑲𝒓𝟏
𝒑𝟐 = 𝑲𝒓𝟐
𝒑𝟑 = 𝑲𝒓𝟑

Special properties of R
• inv(R)=RT

• Each row and column of R
has unit length



HW 3 – Part 1-D. Single-view metrology 

Write-up
• Turn in an illustration that shows the horizon line, and the lines and measurements used 

to estimate the heights of the building, tractor, and camera. 
• Report the estimated heights of the building, tractor, and camera in meters.

Problem: Estimate the height of building, tractor, and camera
Height of sign = 1.65m 

tvbr

rvbt





Z

Z

image cross ratio

R

H


𝐫

𝐛



HW 3 – Part 2 Epipolar Geometry

Problem: recover F from matches with outliers 
load matches.mat

[c1, r1] – 477 x 2 

[c2, r2] – 500 x 2

matches  – 252 x 2

matches(:,1): matched point in im1

matches(:,2): matched point in im2

Write-up:
• Describe what test you used for deciding inlier vs. outlier.

• Display the estimated fundamental matrix F after normalizing to unit length

• Plot the outlier keypoints with green dots on top of the first image plot(x, y, '.g');

• Plot the corresponding epipolar lines



Distance of point to epipolar line

x.
x‘=[u v 1]

.
l=Fx=[a b c]

𝑑 𝑙, 𝑥′ =
|𝑎𝑢 + 𝑏𝑣 + 𝑐|

𝑎2 + 𝑏2



HW 3 – Part 3 Affine SfM

Problem: recover motion and structure

load tracks.mat

track_x – [500 x 51]

track_y - [500 x 51]

Use plotSfM(A, S) to diplay

motion and shape

A – [2m x 3] motion matrix

S – [3 x n] 



HW 3 – Part 3 Affine SfM

•Eliminate affine ambiguity

•Solve for L = CCT

• L = reshape(A\b, [3,3]); % A - 3m x 9, b – 3m x 1

•Recover C from L by Cholesky decomposition: L = 
CCT

•Update A and X: A = AC, X = C-1X











T

i

T

i

i

2

1

~

~
~

a

a
Awhere

1~~
11 i

TT

i aCCa

1~~
22 i

TT

i aCCa

0~~
21 i

TT

i aCCa



Multi-view stereo



Multi-view stereo

•Generic problem formulation: given several images of 
the same object or scene, compute a representation 
of its 3D shape

•“Images of the same object or scene”
• Arbitrary number of images (from two to thousands)
• Arbitrary camera positions (special rig, camera network 

or video sequence)
• Calibration may be known or unknown

•“Representation of 3D shape”
• Depth maps
• Meshes
• Point clouds
• Patch clouds
• Volumetric models
• ….



Multi-view stereo: Basic idea

Source: Y. Furukawa



Multi-view stereo: Basic idea

Source: Y. Furukawa



Multi-view stereo: Basic idea

Source: Y. Furukawa



Multi-view stereo: Basic idea

Source: Y. Furukawa



Plane Sweep Stereo

• Sweep family of planes at different depths w.r.t. a reference camera
• For each depth, project each input image onto that plane 
• This is equivalent to a homography warping each input image into the reference 

view
• What can we say about the scene points that are at the right depth? 

reference camera

input image

R. Collins. A space-sweep approach to true multi-image matching. CVPR  1996. 

input image

http://www.ri.cmu.edu/pub_files/pub1/collins_robert_1996_1/collins_robert_1996_1.pdf


Plane Sweep Stereo

Image 1

Image 2

Sweeping 
plane

Scene surface



Plane Sweep Stereo

• For each depth plane
• For each pixel in the composite image stack, compute the variance

• For each pixel, select the depth that gives the lowest variance

• Can be accelerated using graphics hardware

R. Yang and M. Pollefeys. Multi-Resolution Real-Time Stereo on Commodity Graphics 
Hardware, CVPR 2003

http://www.cs.unc.edu/~marc/pubs/YangCVPR03.pdf


Merging depth maps
•Given a group of images, choose each 

one as reference and compute a 
depth map w.r.t. that view using a 
multi-baseline approach

•Merge multiple depth maps to a 
volume or a mesh (see, e.g., Curless
and Levoy 96)

Map 1 Map 2 Merged



Stereo from community photo collections

•Need structure from motion to recover unknown 
camera parameters

•Need view selection to find good groups of images 
on which to run dense stereo









Towards Internet-Scale Multi-View Stereo

•YouTube video, high-quality video

Yasutaka Furukawa, Brian Curless, Steven M. Seitz and Richard Szeliski, Towards Internet-
scale Multi-view Stereo,CVPR 2010. 

http://www.youtube.com/watch?v=ofHFOr2nRxU
http://www.youtube.com/watch?v=ofHFOr2nRxU
http://www.cs.washington.edu/homes/furukawa/gallery/mvs-cvpr10.mov
http://www.cs.washington.edu/homes/furukawa/papers/cvpr10.pdf


Internet-Scale Multi-View Stereo



The Visual Turing Test for Scene Reconstruction

Q. Shan, R. Adams, B. Curless, Y. Furukawa, and S. Seitz, "The Visual Turing Test for Scene 
Reconstruction," 3DV 2013.

http://homes.cs.washington.edu/~shanqi/work/proj_rome_g1/


The Reading List

• “A computer algorithm for reconstructing a scene from two images”, Longuet-Higgins, Nature 
1981

• “Shape and motion from image streams under orthography: 
A factorization method.” C. Tomasi and T. Kanade, IJCV, 9(2):137-154, November 1992

• “In defense of the eight-point algorithm”, Hartley, PAMI 1997

• “An efficient solution to the five-point relative pose problem”, Nister, PAMI 2004

• “Accurate, dense, and robust multiview stereopsis”, Furukawa and Ponce, CVPR 2007

• “Photo tourism: exploring image collections in 3d”, ACM SIGGRAPH 2006

• “Building Rome in a day”, Agarwal et al., ICCV 2009

• https://www.youtube.com/watch?v=kyIzMr917Rc, 3D Computer Vision: Past, Present, and Future

http://cseweb.ucsd.edu/classes/fa01/cse291/hclh/SceneReconstruction.pdf
http://www.eecs.berkeley.edu/~yang/courses/cs294-6/papers/TomasiC_Shape and motion from image streams under orthography.pdf
http://www.cse.unr.edu/~bebis/CS485/Handouts/hartley.pdf
ftp://vista.eng.tau.ac.il/dropbox/SimonKolotov-Thesis/Articles/15.pdf
http://www-cvr.ai.uiuc.edu/ponce_grp/publication/paper/cvpr07a.pdf
http://phototour.cs.washington.edu/Photo_Tourism.pdf
http://research.microsoft.com/pubs/156722/agarwal-rome-cacm11.pdf
https://www.youtube.com/watch?v=kyIzMr917Rc


Next class

•Grouping and Segmentation


