Epipolar Geometry and
Stereo Vision

Left view Right view
Computer Vision

Jia-Bin Huang, Virginia Tech

Many slides from S. Seitz and D. Hoiem



Last class: Image Stitching

* Two images with rotation/zoom but no translation
X




This class: Two-View Geometry

* Epipolar geometry
* Relates cameras from two positions

 Stereo depth estimation
* Recover depth from two images



Depth from Stereo

* Goal: recover depth by finding image coordinate x’
that corresponds to x

X

C Baseline C’
B



Depth from Stereo

* Goal: recover depth by finding image coordinate x’
that corresponds to x

e Sub-Problems

1. Calibration: How do we recover the relation of the
cameras (if not already known)?

2. Correspondence: How do we search for the matching
point x'?
X




Correspondence Problem

A=

* We have two images taken from cameras with different
intrinsic and extrinsic parameters

* How do we match a point in the first image to a point in the
second? How can we constrain our search?



Key idea: Epipolar constraint



Key idea: Epipolar constraint

Potential matches for x have to lie on the corresponding line I".

Potential matches for x” have to lie on the corresponding line /.



Epipolar geometry: notation

y

. e ec
0

e Baseline — line connecting the two camera centers

e Epipoles

= intersections of baseline with image planes

= projections of the other camera center

e Epipolar Plane — plane containing baseline (1D family)




Epipolar geometry: notation

y

e ec

0
e Baseline — line connecting the two camera centers
e Epipoles
= intersections of baseline with image planes
= projections of the other camera center

e Epipolar Plane — plane containing baseline (1D family)

e Epipolar Lines - intersections of epipolar plane with image
planes (always come in corresponding pairs)




Example: Converging cameras




Example: Motion parallel to image
plane




Example: Forward motion

What would the epipolar lines look like if the
camera moves directly forward?



Example: Forward motion

3] A
'

Epipole has same coordinates in both images.
Points move along lines radiating from e:
“Focus of expansion”




Epipolar constraint: Calibrated case

X

(@)

Given the intrinsic parameters of the cameras:

1. Convert to normalized coordinates by pre-multiplying all points with the
inverse of the calibration matrix; set first camera’s coordinate system to
world coordinates

9, -1 A1 11,1 '
X=K7"x=X X =K™x'=X
, 3D scene point
Homogeneous 2d point
(3D ray towards X) 2D pixel coordinate

3D scene point in 2" camera’s
(homogeneous)

3D coordinates



Epipolar constraint: Calibrated case

X

(@)

Given the intrinsic parameters of the cameras:

1. Convert to normalized coordinates by pre-multiplying all points with the

inverse of the calibration matrix; set first camera’s coordinate system to
world coordinates

2. Define some R and t that relate X to X’ as below

for some scale factor
R =K™tx="X R =K' Ix' =X’
X=RX+t



Epipolar constraint: Calibrated case

X

x=K™*x=X X'=K'*x'=X'
X=RX'+t m)  R.[tx(RX)]=0

(because X, Rx’', and t are co-planar)

tx2=tx (RE+0=tx(R) M) £ (tx%=2[tx (R =0



Essential matrix

(@)

gtx(RE)]=0 mm) RK'EX'=0 with E=[t| R
a=(a1a2a3)T 1

b = (b]_ b2 bg)T Essential Matrix
_ (Longuet-Higgins, 1981)

0 —as as |

alx =1 a 0 -a
e, o 0] axb=]|alxb




Properties of the Essential matrix

X

(@)

R-[tx(R&)] =0 :> SEX'=0 with E=[t]R

Drop ”» below to simplify notation

e £ x’ is the epipolar line associated with x’ (/ = E x)

Skew-
e F'x is the epipolar line associated with x (I’ = E'x) symmetric
eFe’=0 and Ele=0 matrix

e Fis singular (rank two)

e F has five degrees of freedom
— (3 for R, 2 for t because it’s up to a scale)



The Fundamental Matrix

Without knowing K and K’, we can define a similar
relation using unknown normalized coordinates

oKty mm) x'Fx'=0 with F=K'EK'™
K r—1 @

Fundamental Matrix

(Faugeras and Luong, 1992)




Properties of the Fundamental
matrix

O.’

X FxX'=0 with F=K TEK'™?

e Fx’ isthe epipolar line associated with x’ (/ =F X,)

F'x is the epipolar line associated with x (/’ = FTX)

Fe’=0 and Fle=0

F is singular (rank two): det(F)=0

F has seven degrees of freedom: 9 entries but defined up to scale, det(F)=0



Estimating the Fundamental Matrix

* 8-point algorithm
* Least squares solution using SVD on equations from 8 pairs of
correspondences
» Enforce det(F)=0 constraint using SVD on F

 7-point algorithm
» Use least squares to solve for null space (two vectors) using SVD and
7 pairs of correspondences

. 3ol\(e)for linear combination of null space vectors that satisfies
et(F)=0

* Minimize reprojection error
* Non-linear least squares

Note: estimation of F (or E) is degenerate for a planar scene.



8-point algorithm

1. Solve a system of homogeneous linear equations
a. Write down the system of equations

X' Fx' =0

uu'fi1 +uv'fi; +ufiz +vu'fo F vV o +vfoz U f31 U f3 + f33 =0

(f11]
[ / / / / / / 1 i f12
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Af =| : : ; ; : P P B
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—f 33-




8-point algorithm

1. Solve a system of homogeneous linear equations

a. Write down the system of equations
b. Solve f from Af=0 using SVD

Matlab:

[U, S, V] = svd(A);

f V(:, end);

F reshape (f, [3 3])’;



Need to enforce singularity constraint

Fundamental matrix has rank 2 : det(F) = 0.

AN
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Left : Uncorrected F — epipolar lines are not coincident.

Right: Epipolar lines from corrected F.



8-point algorithm

1. Solve a system of homogeneous linear equations

a. Write down the system of equations

b. Solve f from Af=0 using SVD
Matlab:
(U, S, V] = svd(R);
f = V(:, end);
FF = reshape(f, [3 3])’;

2. Resolve det(F) = 0 constraint using SVD

Matlab:

[U, S, V] = svd(F);
S(3,3) = 0;

F = U*xS*V’;



8-point algorithm

1. Solve a system of homogeneous linear equations

a. Write down the system of equations
b. Solve f from Af=0 using SVD

2. Resolve det(F) = 0 constraint by SVD

Notes:
 Use RANSAC to deal with outliers (sample 8
points)
e How to test for outliers? |x'F x | < threshold?

 Solve in normalized coordinates
* mean=0
 standard deviation ~=(1,1,1)
* just like with estimating the homography for stitching



Comparison of homography estimation and the 8-

point algorithm

Assume we have matched points xex’ with outliers

Homography (No Translation)

* Correspondence Relation

X'=HX = X'xHx =0
1. Normalize image
coordinates

X=Tx X'=TX
2. RANSAC with 4 points
 Solution via SVD

3. De-normalize: H=T'"HT

Fundamental Matrix (Translation)
* Correspondence Relation

XTFx=0
1. Normalize image
coordinates

X=Tx X'=T%
2. RANSAC with 8 points
* Initial solution via SVD
 Enforce det(ﬁ)z oby SVD
3. De-normalize: F=T"FT



/-point algorithm

Computation of F from 7 point correspondences

(i) Form the 7 x O set of equations Af = (.
(i) System has a 2-dimensional solution set.
(i) General solution (use SVD) has form

f=A,+ g
(iv) In matrix terms

F = \Fp [LF
(v) Condition det F = 0 gives cubic equation in A and .
(vi) Either one or three real solutions for ratio A : p.

Faster (need fewer points) and could be more robust (fewer points), but
also need to check for degenerate cases



“Gold standard” algorithm

* Use 8-point algorithm to get initial value of F
e Use F to solve for P and P’ (discussed later)

* Jointly solve for 3d points X and F that minimize the
squared re-projection error

X

\ /

See Algorithm 11.2 and Algorithm 11.3 in HZ (pages 284-285) for details

S




Comparison of estimatio

'

n algorithms

8-point Normalized 8-point Nonlinear least squares
Av. Dist. 1 2.33 pixels 0.92 pixel 0.86 pixel
Av. Dist. 2 2.18 pixels 0.85 pixel 0.80 pixel




We can get projection matrices P and
P” up to a projective ambiguity

K’ *rotation K’*translation

|/

P=[110] P’ =[e']F|e] eTF=0
See HZ p. 255-256

Code:

function P = vgg P from F(F)
[U,S,V] = svd(F);

e = U(:,3);

P = [-vgg contreps(e) *F e];

If we know the intrinsic matrices (K and K’), we can resolve the ambiguity


http://www.robots.ox.ac.uk/~vgg/hzbook/code/

Let’s recap...

e Fundamental matrix song



http://danielwedge.com/fmatrix/

Moving on to stereo...

Fuse a calibrated binocular stereo pair to produce a
depth image

image 1 image 2

Dense depth map

Many of these slides adapted from
Steve Seitz and Lana Lazebnik




Basic stereo matching algorithm

T HON. A’l"h\ll AM LINCOL. I\ l’reslllcnt of Lnltt‘d States. :W."

eFor each pixel in the first image
* Find corresponding epipolar line in the right image
» Search along epipolar line and pick the best match
* Triangulate the matches to get depth information

eSimplest case: epipolar lines are scanlines
* When does this happen?



Simplest Case: Parallel images

e Image planes of cameras are
parallel to each other and to the
baseline

e Camera centers are at same
height

e Focal lengths are the same




Simplest Case: Parallel images

e Image planes of cameras are
parallel to each other and to the
baseline

e Camera centers are at same
height

e Focal lengths are the same

* Then, epipolar lines fall along the
horizontal scan lines of the
images




Simplest Case: Parallel images

Epipolar constraint:

X Ex'=0, E=txR

R=1  t=(T,0,0)
0 0 O |
E=txR=(0 0 -T
0T 0
0 0 0 u (0
uv )0 0 -T|V|=0 (u v 1)-T|=0 Tv=TV
_O T O_Kl) \TV’/

The y-coordinates of corresponding points are the same



Depth from disparity

X

O Baseline O’
B

disparity =x—x' = B-1T
Z

Disparity is inversely proportional to depth.




Stereo image rectification




Stereo image rectification

eReproject image planes
onto a common plane
arallel to the line
etween camera centers

ePixel motion is horizontal
after this transformation

eTwo homographies (3x3
transform), one for each
Input image reprojection

»C. Loop and Z. Zhang. Computing
Rectifying Homographies for Stereo
Vision. [EEE Cont. Computer Vision

and Pattern Recognition, 1999.



http://research.microsoft.com/~zhang/Papers/TR99-21.pdf

Rectification example




Basic stereo matching algorithm

P HON. ABRAIIAM LINCOLN, President of United States. :"-.’l'

- —— - - .
B
¢ M
. o4
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e|f necessary, rectify the two stereo images to transform
epipolar lines into scanlines

eFor each pixel x in the first image
* Find corresponding epipolar scanline in the right image
* Search the scanline and pick the best match x’
* Compute disparity x-x" and set depth(x) = fB/(x-x’)



Correspondence search

Left Right

scanline

Matching cost h
/\/\{ disparity

eSlide a window along the right scanline and
compare contents of that window with the
reference window in the left image

e Matching cost: SSD or normalized correlation



Correspondence search

Left Right

scanline

SSD



Correspondence search

Left Right

scanline

Norm. corr



Effect of window size

e Smaller window
+ More detail
— More noise

* Larger window
+ Smoother disparity maps
— Less detail
— Fails near boundaries



Fa|Iures of correspondence search

5& HON. A'IIRA"AM LINCO! N, l’msldcnt of Lnl((‘d \tntcs -

Non-Lambertian surfaces, specularities



Results with window search

Data




How can we improve window-based
matching?

* So far, matches are independent for each point

* What constraints or priors can we add?



Stereo constraints/priors

eUnigueness

* For any point in one image, there should be at most one
matching point in the other image

o Violates uniqueness
constraint

0. Left image Right image 0/



Stereo constraints/priors

eUnigueness
* For any point in one image, there should be at most one
matching point in the other image
eOrdering

* Corresponding points should be in the same order in both
vViews




Stereo constraints/priors

eUnigueness
* For any point in one image, there should be at most one
matching point in the other image
eOrdering

* Corresponding points should be in the same order in both
vViews

Ordering constraint doesn’t hold



Priors and constraints

eUnigueness
* For any point in one image, there should be at most one
matching point in the other image
eOrdering
* Corresponding points should be in the same order in both
vViews
eSmoothness

* We expect disparity values to change slowly (for the most
part)



Stereo matching as energy minimization

E = Edata(D; Il’ |2)+ﬂEsmooth(D)

Epe = 3 (W, () -W, (i +D())’  Egmon = 2|IDO D)

| neighbors i, |

eEnergy functions of this form can be minimized using
graph cuts

Y. Boykov, O. Veksler, and R. Zabih, Fast Approximate Energy Minimization via Graph
Cuts, PAMI 2001



http://www.csd.uwo.ca/~yuri/Papers/pami01.pdf

Many of these constraints can be encoded in an
energy function and solved using graph cuts

15
I

Before

Graph cuts Ground truth

Y. Boykov, O. Veksler, and R. Zabih, Fast Approximate Energy Minimization
via Graph Cuts, PAMI 2001

For the latest and greatest: http://www.middlebury.edu/stereo/



http://www.middlebury.edu/stereo/
http://www.csd.uwo.ca/~yuri/Papers/pami01.pdf

Things to remember

* Epipolar geometry

* Epipoles are intersection of baseline with image planes

* Matching point in second image is on a line passing through its
epipole

* Fundamental matrix maps from a point in one image to a line
(its epipolar line) in the other

 Can solve for F given corresponding points (e.g., interest
points)

e Can recover canonical camera matrices from F (with projective
ambiguity)

* Stereo depth estimation

* Estimate disparity by finding corresponding points along
scanlines

* Depth is inverse to disparity



10N

structure from mot

Next class




