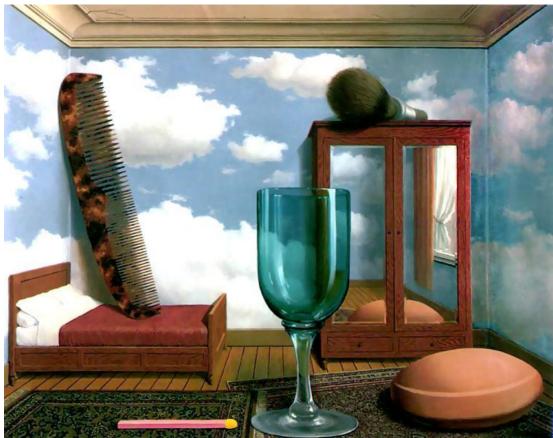
Single-view Metrology and Camera Calibration



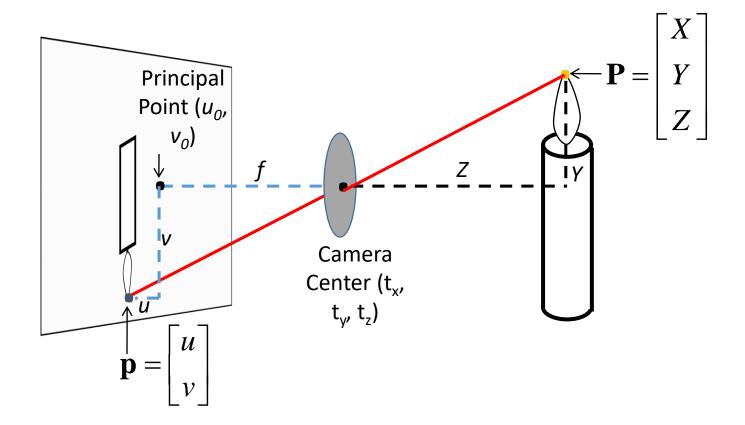
Computer Vision Jia-Bin Huang, Virginia Tech

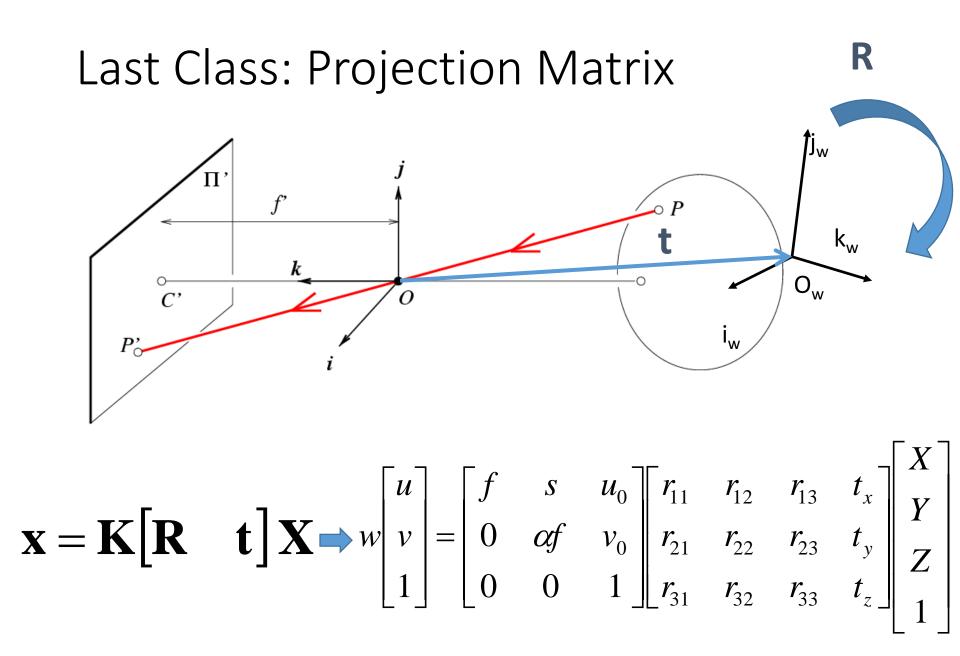
Many slides from S. Seitz and D. Hoiem

Administrative stuffs

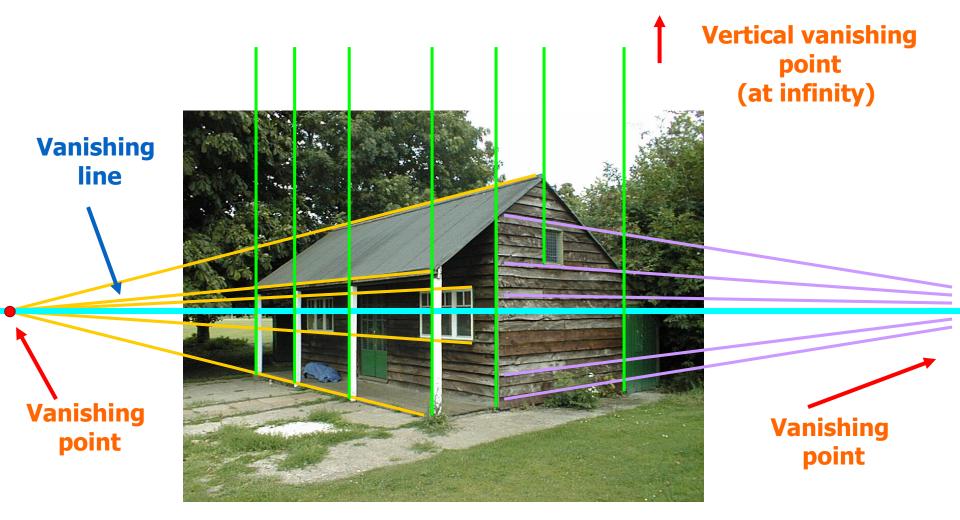
- HW 2 due 11:59 PM on Oct 3rd
- HW 2 competition on shape alignment
 Submit your results <u>here</u>
- Ask/discuss questions on Piazza

Last Class: Pinhole Camera





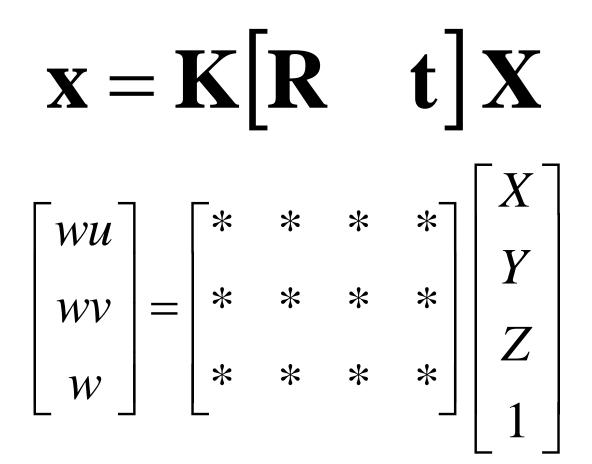
Last class: Vanishing Points



This class

- How can we calibrate the camera?
- How can we measure the size of objects in the world from an image?
- What about other camera properties: focal length, field of view, depth of field, aperture, f-number?

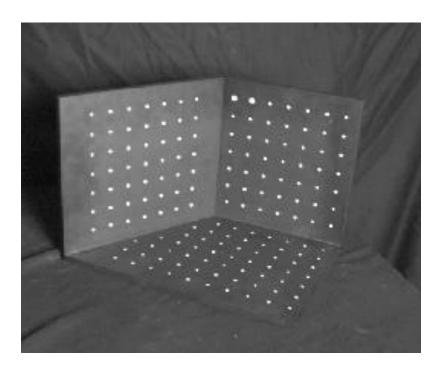
How to calibrate the camera?

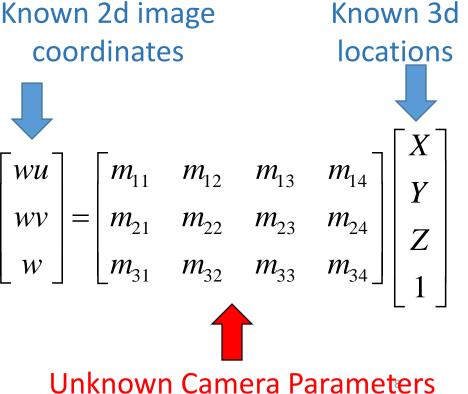


Calibrating the Camera

Method 1: Use an object (calibration grid) with known geometry

- Correspond image points to 3d points
- Get least squares solution (or non-linear solution)





Unknown Camera Parameters

Knov image

wn 2d
e coords
$$\begin{bmatrix} su \\ sv \\ s \end{bmatrix} = \begin{bmatrix} m_{11} & m_{12} & m_{13} & m_{14} \\ m_{21} & m_{22} & m_{23} & m_{24} \\ m_{31} & m_{32} & m_{33} & m_{34} \end{bmatrix} \begin{bmatrix} X \\ Y \\ Z \\ 1 \end{bmatrix}$$
 Known 3c
locations

$$m_{31}uX + m_{32}uY + m_{33}uZ + m_{34}u = m_{11}X + m_{12}Y + m_{13}Z + m_{14}$$
$$m_{31}vX + m_{32}vY + m_{33}vZ + m_{34}v = m_{21}X + m_{22}Y + m_{23}Z + m_{24}$$

$$0 = m_{11}X + m_{12}Y + m_{13}Z + m_{14} - m_{31}uX - m_{32}uY - m_{33}uZ - m_{34}u$$

$$0 = m_{21}X + m_{22}Y + m_{23}Z + m_{24} - m_{31}vX - m_{32}vY - m_{33}vZ - m_{34}v$$

Unknown Camera Parameters

Knc imag

Known 2d
age coords
$$\begin{bmatrix} su \\ sv \\ s \end{bmatrix} = \begin{bmatrix} m_{11} & m_{12} & m_{13} & m_{14} \\ m_{21} & m_{22} & m_{23} & m_{24} \\ m_{31} & m_{32} & m_{33} & m_{34} \end{bmatrix} \begin{bmatrix} X \\ Y \\ Z \\ 1 \end{bmatrix}$$
 Known 3d
locations
$$0 = m_{11}X + m_{12}Y + m_{13}Z + m_{14} - m_{31}uX - m_{32}uY - m_{33}uZ - m_{34}u$$
$$0 = m_{21}X + m_{22}Y + m_{23}Z + m_{24} - m_{31}vX - m_{32}vY - m_{33}vZ - m_{34}v$$

 Method 1 – homogeneous linear m_{11} system. Solve for m's entries using m_{12} m_{13} linear least squares $\begin{bmatrix} X_1 & Y_1 & Z_1 & 1 & 0 & 0 & 0 & 0 & -u_1X_1 & -u_1Y_1 & -u_1Z_1 & -u_1 \\ 0 & 0 & 0 & 0 & X_1 & Y_1 & Z_1 & 1 & -v_1X_1 & -v_1Y_1 & -v_1Z_1 & -v_1 \\ \vdots & & & & & & & & & & & & & & \\ \end{bmatrix} \begin{bmatrix} m_{14} \\ m_{21} \\ m_{22} \end{bmatrix}$ 0 0 m_{23} $X_n \quad Y_n \quad Z_n \quad 1 \quad 0 \quad 0 \quad 0 \quad 0 \quad -u_n X_n \quad -u_n Y_n \quad -u_n Z_n \quad -u_n$ 0 m_{24} $\begin{bmatrix} 0 & 0 & 0 & X_n & Y_n & Z_n & 1 & -v_n X_n & -v_n Y_n & -v_n Z_n & -v_n \end{bmatrix}$ 0 m_{31} m_{32} m_{33} m_{34}

Unknown Camera Parameters

Known 2d image coords

$$\begin{bmatrix} su \\ sv \\ s \end{bmatrix} = \begin{bmatrix} m_{11} & m_{12} & m_{13} & m_{14} \\ m_{21} & m_{22} & m_{23} & m_{24} \\ m_{31} & m_{32} & m_{33} & m_{34} \end{bmatrix} \begin{bmatrix} X \\ Y \\ Z \\ 1 \end{bmatrix}$$

Known 3d locations

 Method 2 – nonhomogeneous linear system. Solve for m's entries using linear least squares

Calibration with linear method

- Advantages
 - Easy to formulate and solve
 - Provides initialization for non-linear methods
- Disadvantages
 - Doesn't directly give you camera parameters
 - Doesn't model radial distortion
 - Can't impose constraints, such as known focal length
 - Doesn't minimize projection error
- Non-linear methods are preferred
 - Define error as difference between projected points and measured points
 - Minimize error using Newton's method or other non-linear optimization

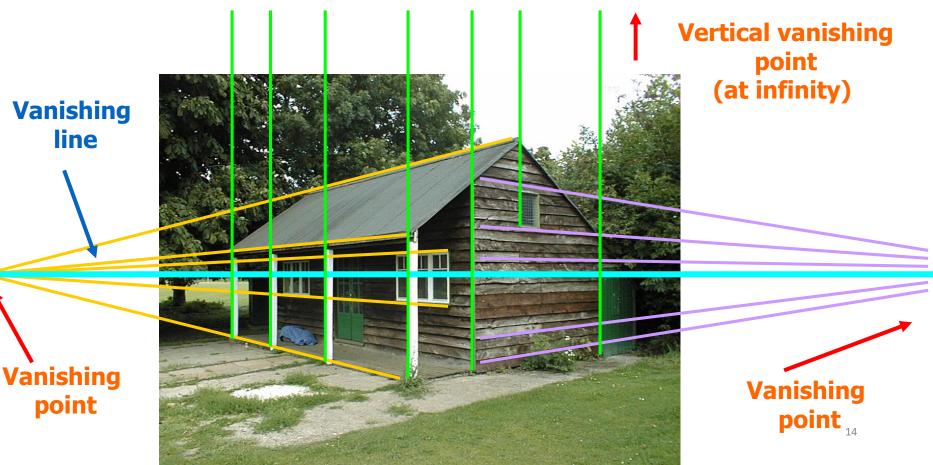
Can we factorize M back to K [R | T]?

- Yes!
- You can use RQ factorization (note not the more familiar QR factorization). R (right diagonal) is K, and Q (orthogonal basis) is R. T, the last column of [R | T], is inv(K) * last column of M.
 - But you need to do a bit of post-processing to make sure that the matrices are valid. See http://ksimek.github.io/2012/08/14/decompose/

Calibrating the Camera

Method 2: Use vanishing points

Find vanishing points corresponding to orthogonal directions



Calibration by orthogonal vanishing points

- Intrinsic camera matrix
 - Use orthogonality as a constraint
 - Model K with only f, u_0 , v_0

For vanishing points

$$\mathbf{p}_{i} = \mathbf{K}\mathbf{R}\mathbf{X}_{i} \qquad \mathbf{X}_{i}^{T}\mathbf{X}_{j} = \mathbf{0}$$
$$\mathbf{X}_{i} = \mathbf{R}^{-1}\mathbf{K}^{-1}\mathbf{p}_{i}$$
$$\mathbf{p}_{i}^{\mathsf{T}}(\mathbf{K}^{-1})^{\mathsf{T}}(\mathbf{R})(\mathbf{R}^{-1})(\mathbf{K}^{-1})\mathbf{p}_{i} = \mathbf{0}$$

- What if you don't have three finite vanishing points?
 - Two finite VP: solve f, get valid u_0 , v_0 closest to image center
 - One finite VP: u_0 , v_0 is at vanishing point; can't solve for f

Calibration by vanishing points

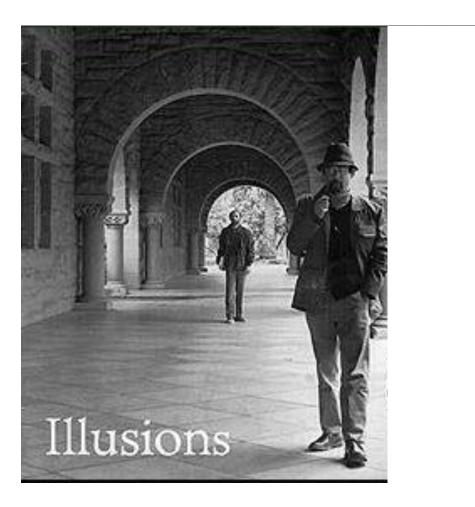
Intrinsic camera matrix

 $\mathbf{p}_i = \mathbf{KRX}_i$

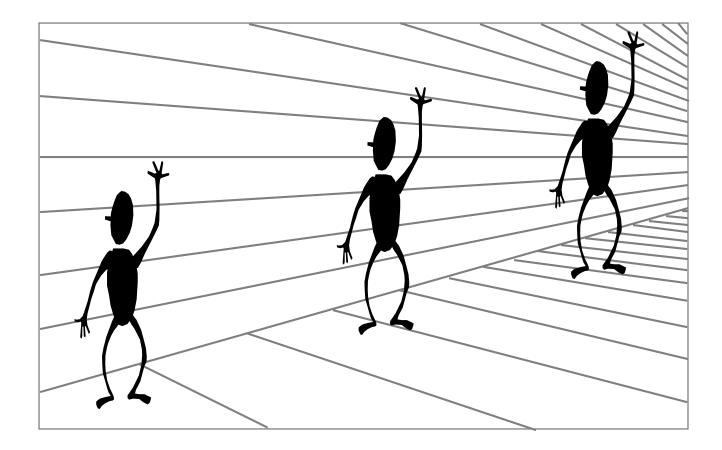
- Rotation matrix
 - Set directions of vanishing points
 - e.g., **X**₁ = [1, 0, 0]
 - Each VP provides one column of R
 - Special properties of R
 - inv(**R**)=**R**[⊤]
 - Each row and column of **R** has unit length

 $\mathbf{p_i} = \mathbf{K}\mathbf{r_i}$

How can we measure the size of 3D objects from an image?

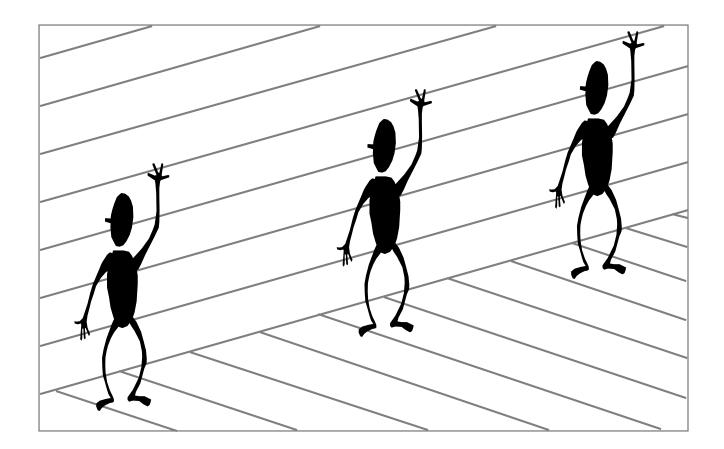


Perspective cues

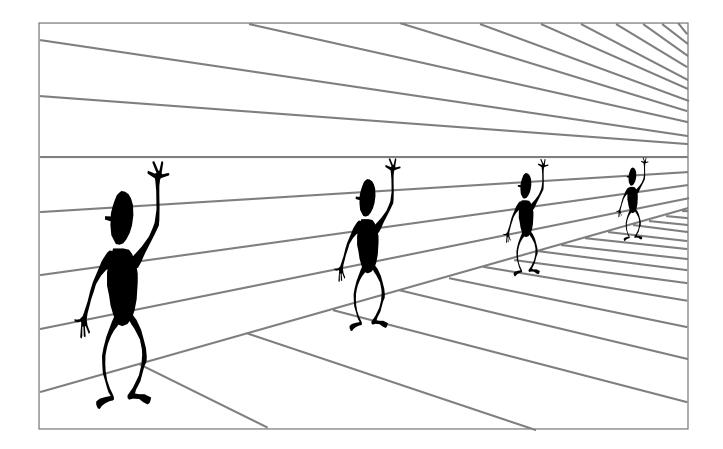


18

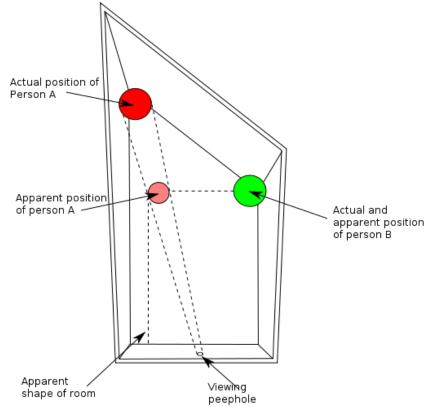
Perspective cues



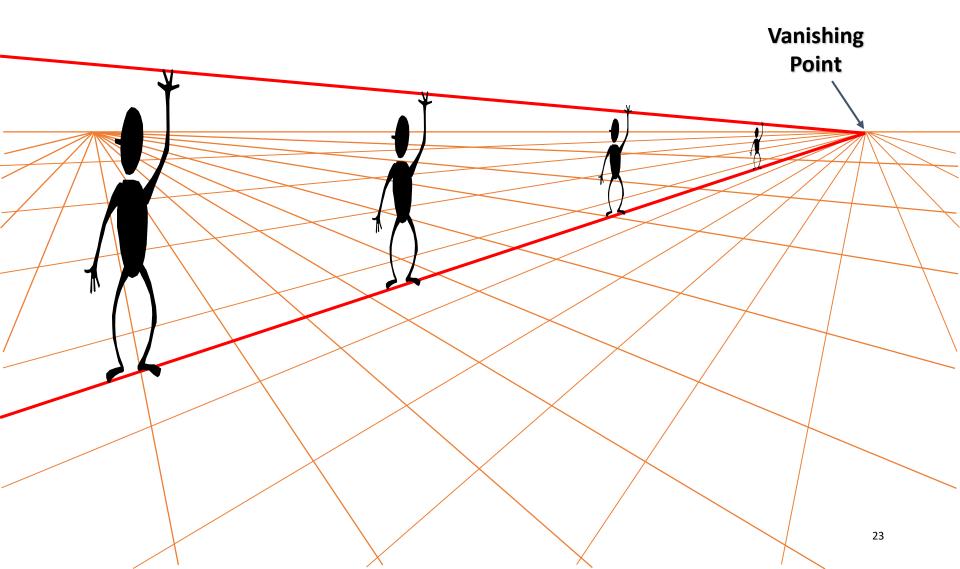
Perspective cues

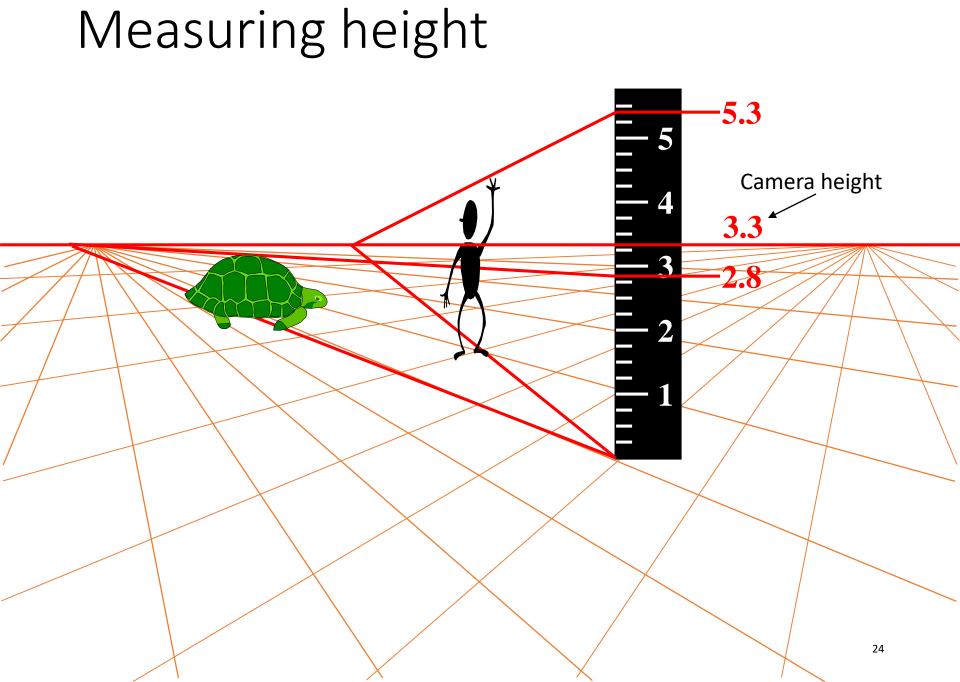


Ames Room



Comparing heights



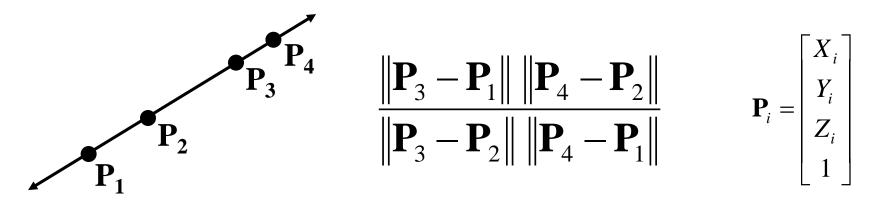


Which is higher – the camera or the man in the parachute?

The cross ratio

- A Projective Invariant
 - Something that does not change under projective transformations (including perspective projection)

The cross-ratio of 4 collinear points

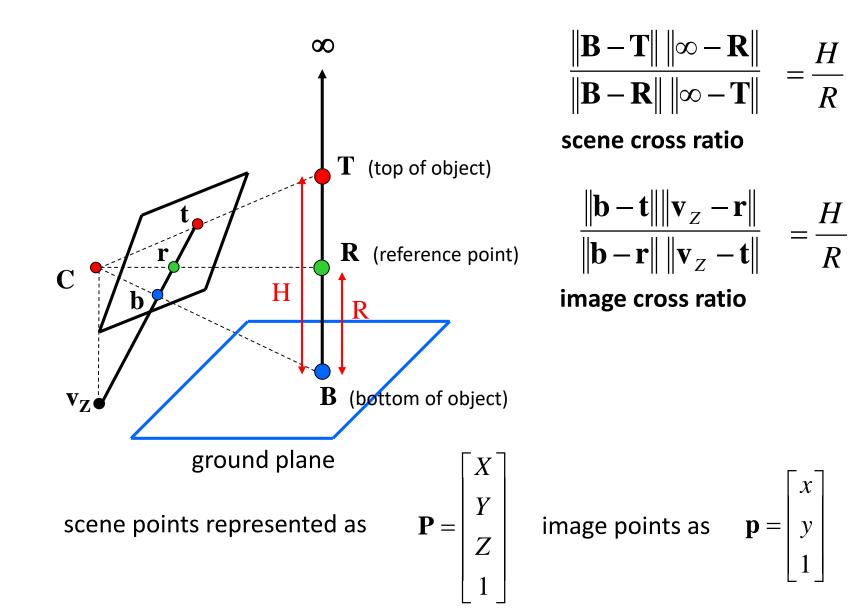


Can permute the point ordering

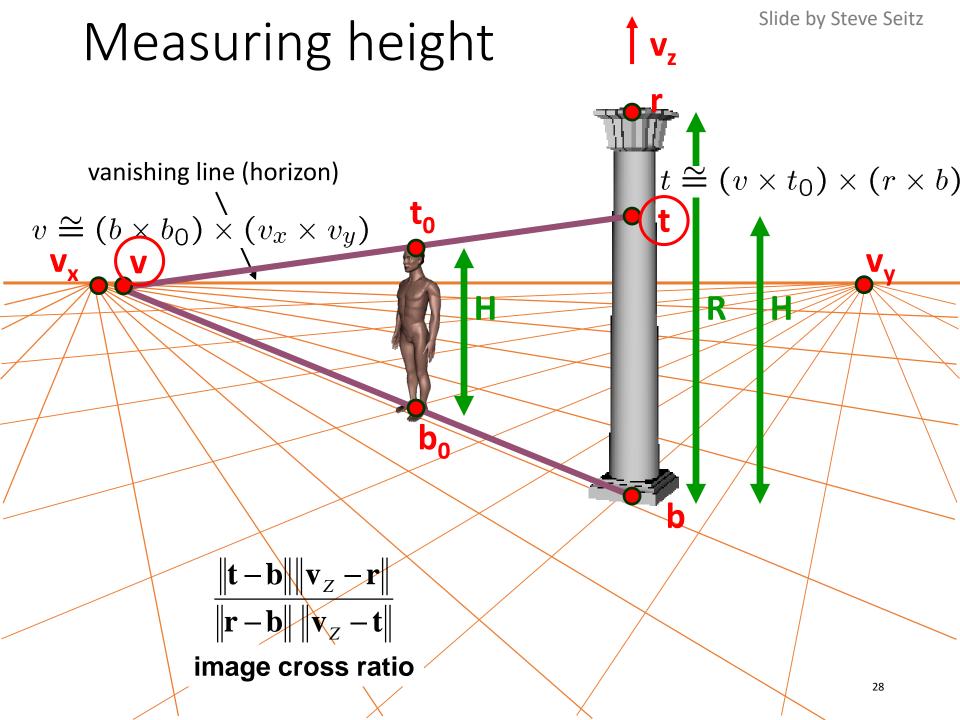
- $\frac{\|\mathbf{P}_{1} \mathbf{P}_{3}\| \|\mathbf{P}_{4} \mathbf{P}_{2}\|}{\|\mathbf{P}_{1} \mathbf{P}_{2}\| \|\mathbf{P}_{4} \mathbf{P}_{3}\|}$
- 4! = 24 different orders (but only 6 distinct values)

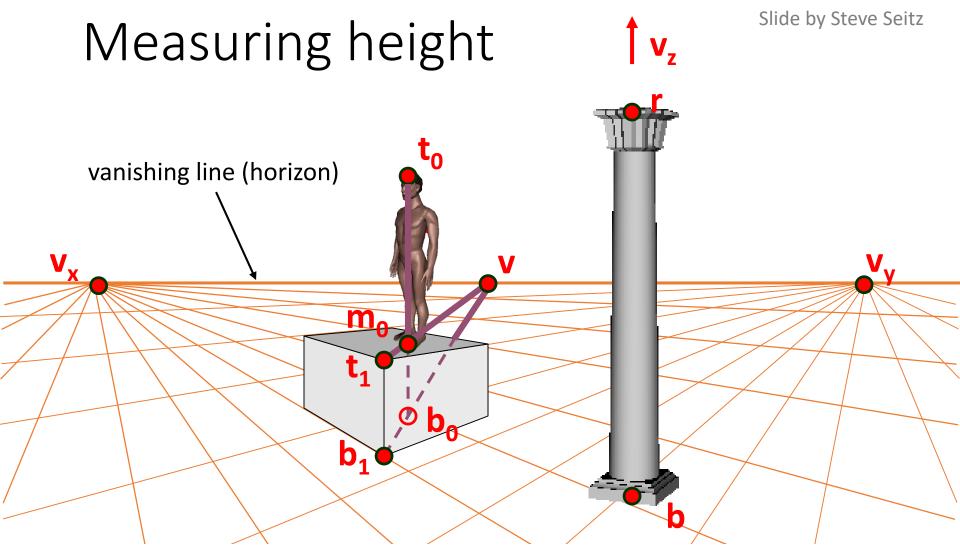
This is the fundamental invariant of projective geometry

Measuring height



27



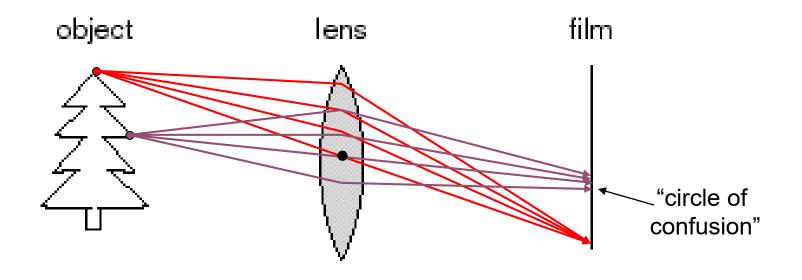


What if the point on the ground plane \mathbf{b}_0 is not known?

- Here the guy is standing on the box, height of box is known
- Use one side of the box to help find **b**₀ as shown above

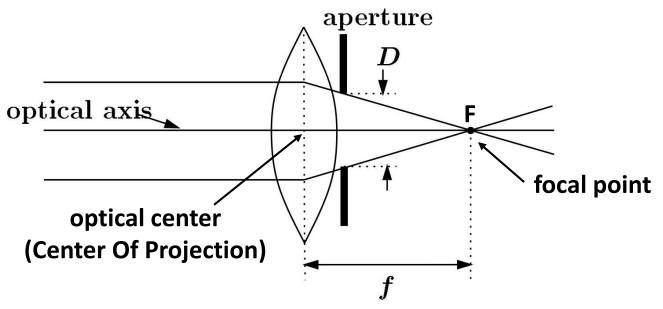
What about focus, aperture, DOF, FOV, etc?

Adding a lens



- A lens focuses light onto the film
 - There is a specific distance at which objects are "in focus"
 - other points project to a "circle of confusion" in the image
 - Changing the shape of the lens changes this distance

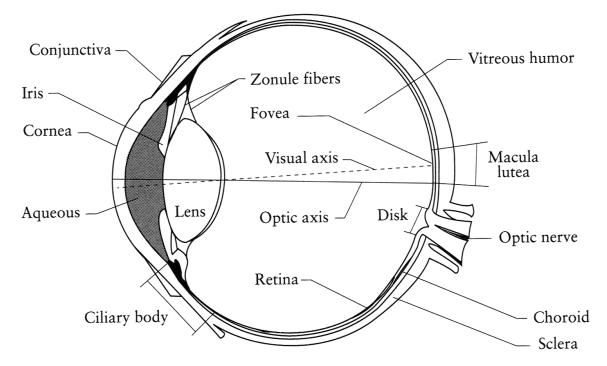
Focal length, aperture, depth of field



A lens focuses parallel rays onto a single focal point

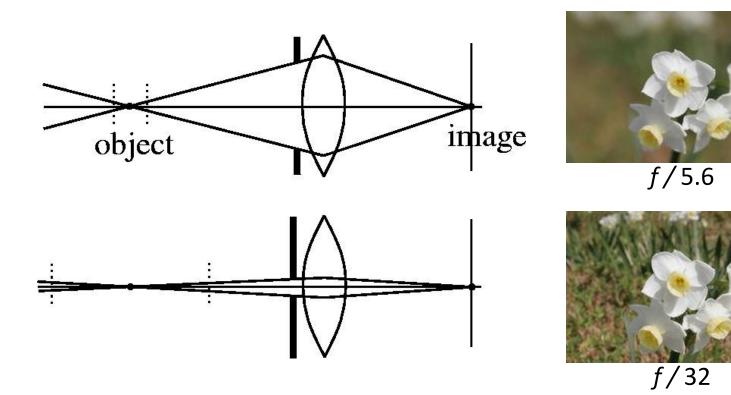
- focal point at a distance *f* beyond the plane of the lens
- Aperture of diameter D restricts the range of rays

The eye



- The human eye is a camera
 - Iris colored annulus with radial muscles
 - Pupil (aperture) the hole whose size is controlled by the iris
 - Retina (film): photoreceptor cells (rods and cones)

Depth of field



Changing the aperture size or focal length affects depth of field

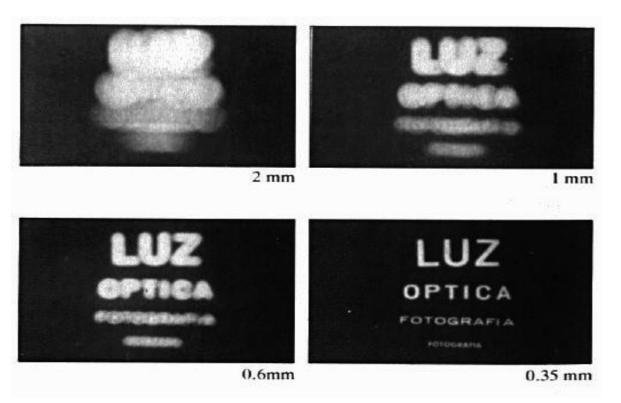
Flower images from Wikipedia http://en.wikipedia.org/wiki/Depth of field

Varying the aperture

Small aperture = large DOF

Large aperture = small DOF

Shrinking the aperture

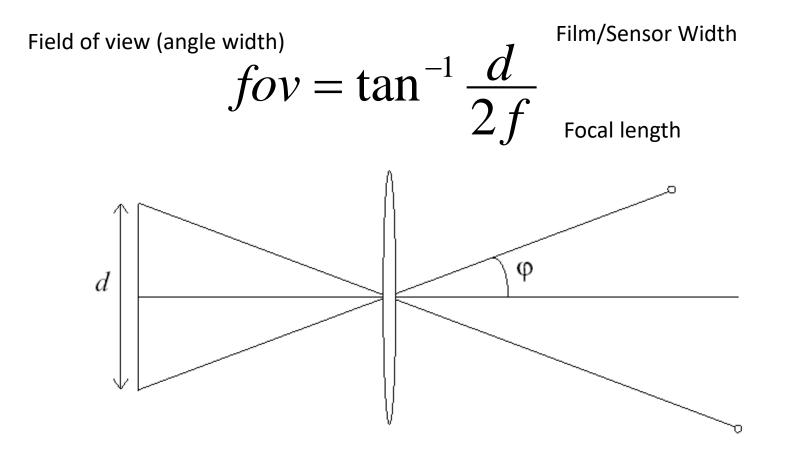


- Why not make the aperture as small as possible?
 - Less light gets through
 - Diffraction effects

Shrinking the aperture

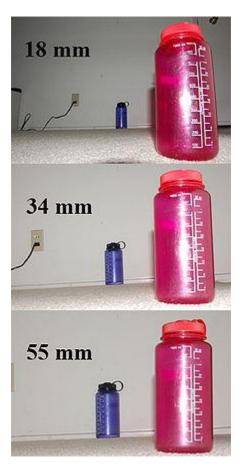
Slide by Steve Seitz

Relation between field of view and focal length



Dolly Zoom or "Vertigo Effect"

http://www.youtube.com/watch?v=NB4bikrNzMk



How is this done?

Zoom in while moving away

http://en.wikipedia.org/wiki/Focal_length

Poltergeist (1982)

Variables that affect exposure

 <u>http://graphics.stanford.edu/courses/cs178-</u> <u>10/applets/exposure.html</u>

How tall is this woman?

How high is the camera?

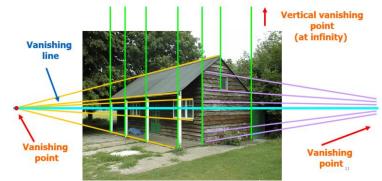
What is the camera rotation?

What is the focal length of the camera?

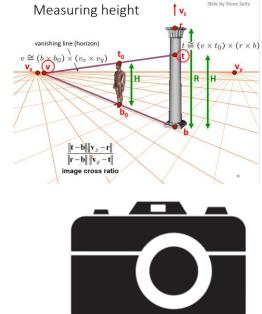
Which ball is closer?

Things to remember

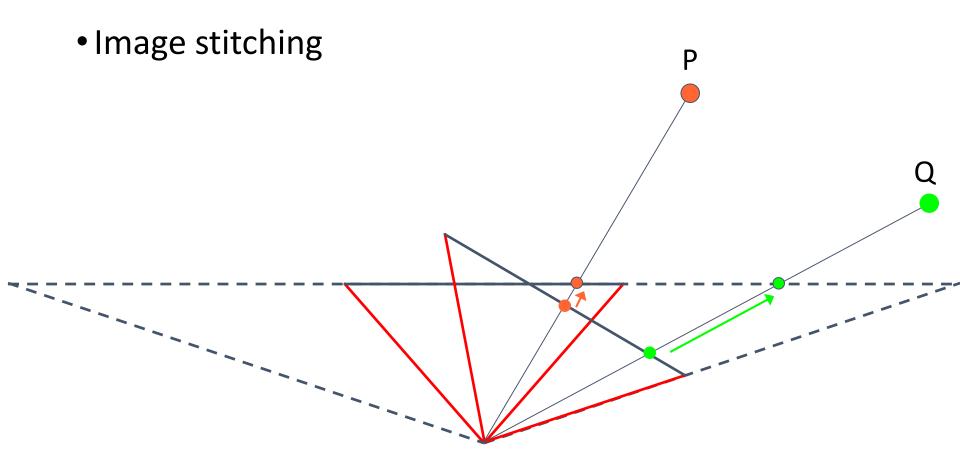
- Calibrate the camera?
 - Use an object with known geometry
 - Use vanishing points



- Measure the size of objects in the world from an image?
 - Use perspective cues
- Camera properties
 - focal length,
 - field of view,
 - depth of field,
 - aperture,
 - f-number?



Next class



Camera Center