

Computer Vision Jia-Bin Huang, Virginia Tech

Many slides from S. Seitz and D. Hoiem

Administrative stuffs

- HWs
 - HW 1 is back
 - HW 2 due 11:59 PM on Oct 3rd.
 - Frequently asked questions for HW 2
 - Partial credits
- Think about your final projects
 - work in groups of 2-4
 - should evince independent effort to learn about a new topic, try something new, or apply to an application of interest
 - Proposals will be due Oct 27

Top edge methods – average F-score

- Subhashree (0.673)
 - Canny for different channels with oriented filters
- Shruti Phadke (0.66)
 - Simple Gradient, colour channel splitting
- Ben Zhao (0.658)
 - Oriented Elongated Gaussian

Excellent HW 1 report:

Badour AlBahar

Review: Interpreting Intensity

Light and color

–What an image records

Filtering in spatial domain

- Filtering = weighted sum of neighboring pixels
- Smoothing, sharpening, measuring texture

Filtering in frequency domain

- Filtering = change frequency of the input image
- Denoising, sampling, image compression

Image pyramid and template matching

- Filtering = a way to find a template
- Image pyramids for coarse-to-fine search and multi-scale detection

Edge detection

- Canny edge = smooth -> derivative -> thin -> threshold -> link
- Finding straight lines, binary image analysis

Review: Correspondence and Alignment

Interest points

- Find distinct and repeatable points in images
- Harris-> corners, DoG -> blobs
- SIFT -> feature descriptor

Feature tracking and optical flow

- Find motion of a keypoint/pixel over time
- Lucas-Kanade:
 - brightness consistency, small motion, spatial coherence
- Handle large motion:
 - iterative update + pyramid search

Fitting and alignment

 find the transformation parameters that best align matched points

Object instance recognition

 Keypoint-based object instance recognition and search

Perspective and 3D Geometry

- Projective geometry and camera models
 - What's the mapping between image and world coordiantes?

Single view metrology and camera calibration

- How can we measure the size of 3D objects in an image?
- How can we estimate the camera parameters?

Photo stitching

• What's the mapping from two images taken without camera translation?

• Epipolar Geometry and Stereo Vision

• What's the mapping from two images taken with camera translation?

Structure from motion

• How can we recover 3D points from multiple images?

Next two classes: Single-view Geometry

How tall is this woman?

How high is the camera?

What is the camera rotation?

What is the focal length of the camera?

Which ball is closer?

Today's class Mapping between image and world coordinates

- Pinhole camera model
- Projective geometry
 Vanishing points and lines

Projection matrix

Image formation

Let's design a camera

- -Idea 1: put a piece of film in front of an object
- -Do we get a reasonable image?

Slide source: Seitz

Pinhole camera

Idea 2: add a barrier to block off most of the rays

- This reduces blurring
- The opening known as the **aperture**

Pinhole camera

f = focal length
c = center of the camera

Figure from Forsyth

Camera obscura: the pre-camera

- First idea: Mo-Ti, China (470BC to 390BC)
- First built: Alhazen, Iraq/Egypt (965 to 1039AD)

Illustration of Camera Obscura

Freestanding camera obscura at UNC Chapel Hill

Photo by Seth Ilys

Camera Obscura used for Tracing

Lens Based Camera Obscura, 1568

First Photograph

Oldest surviving photograph

• Took 8 hours on pewter plate

Joseph Niepce, 1826

Photograph of the first photograph

Stored at UT Austin

Niepce later teamed up with Daguerre, who eventually created Daguerrotypes

Dimensionality Reduction Machine (3D to 2D)

3D world

2D image

Point of observation

Slide source: Seitz

Projection can be tricky...

Slide source: Seitz

Projection can be tricky...

Making of 3D sidewalk art: <u>http://www.youtube.com/watch?v=3SNYtd0Ayt0</u>

Projective Geometry

What is lost?

• Length

Length is not preserved

Projective Geometry

What is lost?

- Length
- Angles

Projective Geometry

What is preserved?

• Straight lines are still straight

Parallel lines in the world intersect in the image at a "vanishing point"

Vanishing points

- The projections of parallel 3D lines intersect at a vanishing point
- The projection of parallel 3D planes intersect at a vanishing line
- If a set of parallel 3D lines are also parallel to a particular plane, their vanishing point will lie on the vanishing line of the plane
- Not all lines that intersect are parallel
- Vanishing point <-> 3D direction of a line
- Vanishing line <-> 3D orientation of a surface

Photo from online Tate collection

Note on estimating vanishing points

Use multiple lines for better accuracy

... but lines will not intersect at exactly the same point in practice One solution: take mean of intersecting pairs ... bad idea!

Instead, minimize angular differences

Vanishing objects

Projection: world coordinates→image coordinates

Homogeneous coordinates

- Is this a linear transformation?
 - no—division by z is nonlinear

Converting to homogeneous coordinates

$$(x,y) \Rightarrow \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$

homogeneous image coordinates

$$(x, y, z) \Rightarrow \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix}$$

homogeneous scene coordinates

Converting from homogeneous coordinates

$$\begin{bmatrix} x \\ y \\ w \end{bmatrix} \Rightarrow (x/w, y/w) \qquad \begin{bmatrix} x \\ y \\ z \\ w \end{bmatrix} \Rightarrow (x/w, y/w, z/w)$$

Homogeneous coordinates

Invariant to scaling

Homogeneous Coordinates Cartesian Coordinates

Point in Cartesian is ray in Homogeneous

Basic geometry in homogeneous coordinates

- Append 1 to pixel coordinate to get homogeneous $p_i = p_i$
- Line equation: au + bv + c = 0 $line_i^{\top} p = 0$ $line_i = [a \ b \ c]^{\top}$
- Line given by cross product of two points

 $line_{ij} = p_i \times p_j$

 \mathcal{U}_{i}

 \mathcal{V}_{i}

- Intersection of two lines given by cross product of the lines $q_{ii} = line_i \times line_i$
- Three points lies on the same line

 $p_k^{\mathsf{T}}(p_i \times p_j) = 0$

• Three lines intersect at the same point

 $line_k^{\mathsf{T}}(line_i \times line_j) = 0$

Another problem solved by homogeneous coordinates

Intersection of parallel lines

Interlude: where can this be useful?

Applications

Object Recognition (CVPR 2006)

Applications

Single-view reconstruction (SIGGRAPH 2005)

Applications

Getting spatial layout in indoor scenes (ICCV 2009)

Applications

Inserting synthetic objects into images: <u>http://vimeo.com/28962540</u>

Applications

Creating detailed and complete 3D scene models from a single view

Perspective Projection Matrix

(3x3)

Projection is a matrix multiplication using homogeneous coordinates

(4x4)

Projection matrix

- $\mathbf{x} = \mathbf{K} \begin{bmatrix} \mathbf{R} & \mathbf{t} \end{bmatrix} \mathbf{X}$
- x: Image Coordinates: (u,v,1)K: Intrinsic Matrix (3x3)
- R: Rotation (3x3)
- t: Translation (3x1)
- X: World Coordinates: (X,Y,Z,1)

Projection matrix

Intrinsic Assumptions

- Unit aspect ratio
- Optical center at (0,0)
- No skew

Extrinsic Assumptions

Κ

- No rotation
- Camera at (0,0,0)

Remove assumption: known optical center

Intrinsic Assumptions

• Unit aspect ratio

• No skew

Extrinsic Assumptions

- No rotation
- Camera at (0,0,0)

Remove assumption: square pixels

Intrinsic Assumptions

• No skew

Extrinsic Assumptions

- No rotation
- Camera at (0,0,0)

Remove assumption: non-skewed pixels

Extrinsic Assumptions

- No rotation
- Camera at (0,0,0)

Note: different books use different notation for parameters

Oriented and Translated Camera

Allow camera translation

Intrinsic Assumptions

Extrinsic AssumptionsNo rotation

3D Rotation of Points

Rotation around the coordinate axes, counter-clockwise:

 $R_{x}(\alpha) = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos \alpha & -\sin \alpha \\ 0 & \sin \alpha & \cos \alpha \end{bmatrix}$ P $R_{y}(\beta) = \begin{bmatrix} \cos \beta & 0 & \sin \beta \\ 0 & 1 & 0 \\ -\sin \beta & 0 & \cos \beta \end{bmatrix}$ $R_{z}(\gamma) = \begin{bmatrix} \cos \gamma & -\sin \gamma & 0 \\ \sin \gamma & \cos \gamma & 0 \\ 0 & 0 & 1 \end{bmatrix}$

Allow camera rotation

Degrees of freedom

Vanishing Point = Projection from Infinity

$$w \begin{bmatrix} u \\ v \\ 1 \end{bmatrix} = \begin{bmatrix} f & 0 & u_0 \\ 0 & f & v_0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x_R \\ y_R \\ z_R \end{bmatrix} \Rightarrow \qquad \begin{aligned} u &= \frac{fx_R}{z_R} + u_0 \\ &= \frac{fy_R}{z_R} + v_0 \end{aligned}$$

Scaled Orthographic Projection

- Special case of perspective projection
 - Object dimensions are small compared to distance to camera

• Also called "weak perspective"

$$w \begin{bmatrix} u \\ v \\ 1 \end{bmatrix} = \begin{bmatrix} f & 0 & 0 & 0 \\ 0 & f & 0 & 0 \\ 0 & 0 & 0 & s \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix}$$

Orthographic Projection - Examples

Orthographic Projection - Examples

Applications in object detection

Far field: object appearance doesn't change as objects translate

Near field: object appearance changes as objects translate

Beyond Pinholes: Radial Distortion

- Common in wide-angle lenses or for special applications (e.g., security)
- Creates non-linear terms in projection
- Usually handled by through solving for non-linear terms and then correcting image

Corrected Barrel Distortion

No Distortion

Barrel Distortion

Pincushion Distortion

Things to remember

- Vanishing points and vanishing lines
- Pinhole camera model and camera projection matrix
- Homogeneous coordinates

Next class Applications of camera model and projective geometry

- Recovering the camera intrinsic and extrinsic parameters from an image
- Measuring size in the world
- Projecting from one plane to another