
Alignment and Object Instance 
Recognition

Computer Vision

Jia-Bin Huang, Virginia Tech
Many slides from S. Lazebnik and D. Hoiem



Administrative Stuffs

• HW 2 due 11:59 PM Oct 3rd
• Please start early

• Anonymous feedback
• Lecture

• Lectures going too fast

• Show more examples/code to demonstrate how the algorithms 
work

• HW assignments
• List functions that are not allowed to use

• Piazza 
• Encourage more students to participate (e.g. answer questions)

• Group the questions into threads



Today’s class

• Review fitting

• Alignment

• Object instance recognition

• Example of alignment-based category recognition



Previous class

• Global optimization / Search for parameters
• Least squares fit

• Robust least squares

• Iterative closest point (ICP)

• Hypothesize and test
• Generalized Hough transform

• RANSAC



Least squares line fitting
•Data: (x1, y1), …, (xn, yn)

•Line equation: yi = m xi + b

•Find (m, b) to minimize 
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Modified from S. Lazebnik



Least squares line fitting
function [m, b] = lsqfit(x, y)

% y = mx + b

% find line that best predicts y given x

% minimize sum_i (m*x_i + b - y_i).^2

A = [x(:) ones(numel(x), 1)];

b = y(:);

p = A\b;

m = p(1);

b = p(2);

A yp



Total least squares
Find (a, b, c) to minimize the sum of 
squared perpendicular distances
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See details on Raleigh Quotient: http://en.wikipedia.org/wiki/Rayleigh_quotient
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Total least squares
function [m, b, err] = total_lsqfit(x, y)

% ax + by + c = 0

% distance to line for (a^2+b^2=1): dist_sq = (ax + by + c).^2

A = [x(:)-mean(x) y(:)-mean(y)];

[v, d] = eig(A'*A);

p = v(:, 1); % eigenvector corr. to smaller eigenvalue

% get a, b, c parameters

a = p(1);

b = p(2);

c = -(a*mean(x)+b*mean(y));

err = (a*x+b*y+c).^2;

% convert to slope-intercept (m, b)

m = -a/b;

b = -c/b; % note: this b is for slope-intercept now

A p



Robust Estimator 

1. Initialize: e.g., choose 𝜃 by least squares fit and

2. Choose params to minimize:
• E.g., numerical optimization

3. Compute new 

4. Repeat (2) and (3) until convergence
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function [m, b] = robust_lsqfit(x, y)

% iterative robust fit y = mx + b

% find line that best predicts y given x

% minimize sum_i (m*x_i + b - y_i).^2

[m, b] = lsqfit(x, y);

p = [m ; b];

err = sqrt((y-p(1)*x-p(2)).^2);

sigma = median(err)*1.5;

for k = 1:7

p     = fminunc(@(p)geterr(p,x,y,sigma), p);

err = sqrt((y-p(1)*x-p(2)).^2);

sigma = median(err)*1.5;

end

m = p(1);

b = p(2);



x

y

Hough transform
P.V.C. Hough, Machine Analysis of Bubble Chamber Pictures, Proc. Int. Conf. High 

Energy Accelerators and Instrumentation, 1959 

Hough space

    siny  cosx
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Use a polar representation for the parameter space 
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Slide from S. Savarese



function [m, b] = houghfit(x, y)

% y = mx + b

% x*cos(theta) + y*sin(theta) = r

% find line that best predicts y given x

% minimize sum_i (m*x_i + b - y_i).^2

thetas = (-pi+pi/50):(pi/100):pi; 

costhetas = cos(thetas);  

sinthetas = sin(thetas);

minr = 0; stepr = 0.005; maxr = 1; 

% count hough votes

counts = zeros(numel(thetas),(maxr-minr)/stepr+1);

for k = 1:numel(x)

r = x(k)*costhetas + y(k)*sinthetas;

% only count parameters within the range of r

inrange = find(r >= minr & r <= maxr); 

rnum = round((r(inrange)-minr)/stepr)+1;

ind = sub2ind(size(counts), inrange, rnum);

counts(ind) = counts(ind) + 1;

end

% smooth the bin counts

counts = imfilter(counts, 

fspecial('gaussian', 5, 0.75));

% get best theta, rho and show counts

[maxval, maxind] = max(counts(:));

[thetaind, rind] = ind2sub(size(counts), 

maxind);

theta = thetas(thetaind);

r = minr + stepr*(rind-1);

% convert to slope-intercept

b = r/sin(theta);

m = -cos(theta)/sin(theta);





RANSAC

14IN
Algorithm:

1. Sample (randomly) the number of points required to fit the model (#=2)
2. Solve for model parameters using samples 
3. Score by the fraction of inliers within a preset threshold of the model

Repeat 1-3 until the best model is found with high confidence



function [m, b] = ransacfit(x, y)

% y = mx + b

N = 200;

thresh = 0.03;

bestcount = 0;

for k = 1:N

rp = randperm(numel(x));

tx = x(rp(1:2));

ty = y(rp(1:2));

m = (ty(2)-ty(1)) ./ (tx(2)-tx(1));

b = ty(2)-m*tx(2);

nin = sum(abs(y-m*x-b)<thresh);

if nin > bestcount

bestcount = nin;

inliers = (abs(y - m*x - b) < thresh);

end

end

% total least square fitting on inliers

[m, b] = total_lsqfit(x(inliers), y(inliers));



Line fitting demo

demo_linefit(npts, outliers, noise, method)

• npts: number of points

• outliers: number of outliers

• noise: noise level

• Method
• lsq: least squares
• tlsq: total least squares
• rlsq: robust least squares
• hough: hough transform
• ransac: RANSAC



Which algorithm should I use?

 If we know which points belong to the line, how 
do we find the “optimal” line parameters?
Least squares

 What if there are outliers?
Robust fitting, RANSAC

• What if there are many lines?
• Voting methods: RANSAC, Hough transform

Slide credit: S. Lazebnik



Alignment as fitting
• Previous lectures: fitting a model to features in one 

image

• Alignment: fitting a model to a transformation 
between pairs of features (matches) in two images
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What if you want to align but have no prior 
matched pairs?

• Hough transform and RANSAC not applicable

• Important applications

Medical imaging: match brain 
scans or contours

Robotics: match point clouds



Iterative Closest Points (ICP) Algorithm

Goal: estimate transform between two dense sets of 
points

1. Initialize transformation (e.g., compute difference in 
means and scale)

2. Assign each point in {Set 1} to its nearest neighbor in 
{Set 2}

3. Estimate transformation parameters 
• e.g., least squares or robust least squares

4. Transform the points in {Set 1} using estimated 
parameters

5. Repeat steps 2-4 until change is very small



Example: solving for translation

A1

A2 A3
B1

B2 B3

Given matched points in {A} and {B}, estimate the translation of the object
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A1

A2 A3
B1

B2 B3

Least squares solution
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1. Write down objective function
2. Derived solution

a) Compute derivative
b) Compute solution

3. Computational solution
a) Write in form Ax=b
b) Solve using pseudo-inverse or eigenvalue  
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A1

A2 A3
B1

B2 B3

RANSAC solution
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1. Sample a set of matching points (1 pair)
2. Solve for transformation parameters
3. Score parameters with number of inliers
4. Repeat steps 1-3 N times

Problem: outliers
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Example: solving for translation



A1

A2 A3
B1

B2 B3

Hough transform solution
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1. Initialize a grid of parameter values
2. Each matched pair casts a vote for consistent 

values
3. Find the parameters with the most votes
4. Solve using least squares with inliers
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Problem: outliers, multiple objects, and/or many-to-one matches

Example: solving for translation



(tx, ty)

Problem: no initial guesses for correspondence
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1. Find nearest neighbors for each point
2. Compute transform using matches
3. Move points using transform
4. Repeat steps 1-3 until convergence

Example: solving for translation



1. Extract edge pixels 𝑝1. . 𝑝𝑛 and 𝑞1. . 𝑞𝑚

2. Compute initial transformation (e.g., compute translation and scaling 
by center of mass, variance within each image)

3. Get nearest neighbors: for each point 𝑝𝑖 find corresponding 
match(i) = argmin

𝑗
𝑑𝑖𝑠𝑡(𝑝𝑖, 𝑞𝑗)

4. Compute transformation T based on matches

5. Warp points p according to T

6. Repeat 3-5 until convergence

Example: aligning boundaries

p
q



Algorithm Summary

• Least Squares Fit 
• closed form solution
• robust to noise
• not robust to outliers

• Robust Least Squares
• improves robustness to noise
• requires iterative optimization

• Hough transform
• robust to noise and outliers
• can fit multiple models
• only works for a few parameters (1-4 typically)

• RANSAC
• robust to noise and outliers
• works with a moderate number of parameters (e.g, 1-8)

• Iterative Closest Point (ICP)
• For local alignment only: does not require initial correspondences 



Alignment
• Alignment: find parameters of model that maps one 

set of points to another

• Typically want to solve for a global transformation 
that accounts for most true correspondences

• Difficulties
• Noise (typically 1-3 pixels)

• Outliers (often 30-50%) 

• Many-to-one matches or multiple objects



Parametric (global) warping

Transformation T is a coordinate-changing machine:

p’ = T(p)

What does it mean that T is global?
• Is the same for any point p
• can be described by just a few numbers (parameters)

For linear transformations, we can represent T as a matrix

p’ = Tp

T

p = (x,y) p’ = (x’,y’)
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Common transformations

translation rotation aspect

affine perspective

original

Transformed

Slide credit (next few slides): 
A. Efros and/or S. Seitz



Scaling
• Scaling a coordinate means multiplying each of its components by a 

scalar

• Uniform scaling means this scalar is the same for all components:

 2



• Non-uniform scaling: different scalars per component:

Scaling

X  2,
Y  0.5



Scaling

• Scaling operation:

• Or, in matrix form:

byy

axx
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2-D Rotation



(x, y)

(x’, y’)

x’ = x cos() - y sin()
y’ = x sin() + y cos()



2-D Rotation

Polar coordinates…
x = r cos (f)
y = r sin (f)
x’ = r cos (f + )
y’ = r sin (f + )

Trig Identity…
x’ = r cos(f) cos() – r sin(f) sin()
y’ = r sin(f) cos() + r cos(f) sin()

Substitute…
x’ = x cos() - y sin()
y’ = x sin() + y cos()

(x, y)

(x’, y’)

f



2-D Rotation
This is easy to capture in matrix form:

Even though sin() and cos() are nonlinear functions of ,
• x’ is a linear combination of x and y

• y’ is a linear combination of x and y

What is the inverse transformation?

• Rotation by –

• For rotation matrices
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Basic 2D transformations

TranslateRotate

ShearScale
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Affine is any combination of 
translation, scale, rotation, 
shear



Affine Transformations

Affine transformations are combinations of 

• Linear transformations, and

• Translations

Properties of affine transformations:

• Lines map to lines

• Parallel lines remain parallel

• Ratios are preserved

• Closed under composition
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Projective Transformations
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'Projective transformations are combos of 

• Affine transformations, and

• Projective warps

Properties of projective transformations:

• Lines map to lines

• Parallel lines do not necessarily remain parallel

• Ratios are not preserved

• Closed under composition

• Models change of basis

• Projective matrix is defined up to a scale (8 DOF)



Projective Transformations (homography)

• The transformation between two views of a planar 
surface

• The transformation between images from two 
cameras that share the same center



Application: Panorama stitching

Source: Hartley & Zisserman



Application: document scanning 



2D image transformations 
(reference table)



Object Instance Recognition

1. Match keypoints to object 
model

2. Solve for affine 
transformation parameters

3. Score by inliers and choose 
solutions with score above 
threshold

A1

A2

A3

Affine 
Parameters

Choose hypothesis with max 
score above threshold

# Inliers

Matched 
keypoints

This Class



Overview of Keypoint Matching

K. Grauman, B. Leibe

N
p

ix
el

s

N pixels

Af

e.g. color

Bf

e.g. color

A1

A2 A3

Tffd BA ),(

1. Find a set of   
distinctive key-
points 

3. Extract and 
normalize the    
region content  

2. Define a region 
around each 
keypoint   

4. Compute a local 
descriptor from the 
normalized region

5. Match local 
descriptors



Finding the objects (overview)

1. Match interest points from input image to database image

2. Matched points vote for rough position/orientation/scale of 
object

3. Find position/orientation/scales that have at least three votes

4. Compute affine registration and matches using iterative least 
squares with outlier check

5. Report object if there are at least T matched points

Input 
Image Stored 

Image



Matching Keypoints
• Want to match keypoints between:

1. Query image

2. Stored image containing the object

• Given descriptor x0, find two nearest neighbors x1, x2
with distances d1, d2 

• x1 matches x0 if d1/d2 < 0.8
• This gets rid of 90% false matches, 5% of true matches in 

Lowe’s study



Affine Object Model
• Accounts for 3D rotation of a surface under 

orthographic projection



Fitting an affine transformation
• Assume we know the correspondences, how do we 

get the transformation?
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Fitting an affine transformation
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• Assume we know the correspondences, how do we 
get the transformation?



Fitting an affine transformation

• Linear system with six unknowns

• Each match gives us two linearly independent 
equations: need at least three to solve for the 
transformation parameters
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Finding the objects (in detail)
1. Match interest points from input image to database image

2. Get location/scale/orientation using Hough voting

• In training, each point has known position/scale/orientation 
wrt whole object

• Matched points vote for the position, scale, and orientation 
of the entire object

• Bins for x, y, scale, orientation
• Wide bins (0.25 object length in position, 2x scale, 30 degrees orientation)

• Vote for two closest bin centers in each direction (16 votes total)

3. Geometric verification

• For each bin with at least 3 keypoints

• Iterate between least squares fit and checking for inliers and 
outliers

4. Report object if > T inliers (T is typically 3, can be computed to 
match some probabilistic threshold)



Examples of recognized objects



View interpolation

• Training
– Given images of different 

viewpoints
– Cluster similar viewpoints 

using feature matches
– Link features in adjacent 

views

• Recognition
– Feature matches may be

spread over several 
training viewpoints

 Use the known links to 
“transfer votes” to other 
viewpoints

Slide credit: David Lowe

[Lowe01]



Applications

• Sony Aibo
(Evolution Robotics)

• SIFT usage
– Recognize 

docking station
– Communicate 

with visual cards

• Other uses
– Place recognition
– Loop closure in SLAM

K. Grauman, B. Leibe 54
Slide credit: David Lowe



Location Recognition

Slide credit: David Lowe

Training

[Lowe04]



Another application: category 
recognition
• Goal: identify what type of object is in the image

• Approach: align to known objects and choose 
category with best match

“Shape matching and object recognition using low distortion correspondence”, Berg et 
al., CVPR 2005: http://www.cnbc.cmu.edu/cns/papers/berg-cvpr05.pdf

?

http://www.cnbc.cmu.edu/cns/papers/berg-cvpr05.pdf


Summary of algorithm
• Input: query q and exemplar e

• For each: sample edge points and 
create “geometric blur” descriptor

• Compute match cost c to match 
points in q to each point in e

• Compute deformation cost H that 
penalizes change in orientation and 
scale for pairs of matched points

• Solve a binary quadratic program to 
get correspondence that minimizes c
and H, using thin-plate spline 
deformation

• Record total cost for e, repeat for all 
exemplars, choose exemplar with 
minimum cost

Input, Edge Maps

Geometric Blur

Feature Points

Correspondences



Examples of Matches



Examples of Matches



Other ideas worth being aware of

• Thin-plate splines: combines global affine warp 
with smooth local deformation

• Robust non-rigid point matching: A new point 
matching algorithm for non-rigid registration, CVIU 
2003 (includes code, demo, paper)

http://step.polymtl.ca/~rv101/thinplates/
https://www.cise.ufl.edu/~anand/pdf/rangarajan_cviu_si_final.pdf


Things to remember
• Alignment

• Hough transform

• RANSAC

• ICP

• Object instance recognition
• Find keypoints, compute 

descriptors

• Match descriptors

• Vote for / fit affine parameters

• Return object if # inliers > T



What have we learned?
• Interest points

• Find distinct and repeatable points in images
• Harris-> corners, DoG -> blobs
• SIFT -> feature descriptor

• Feature tracking and optical flow
• Find motion of a keypoint/pixel over time
• Lucas-Kanade: 

• brightness consistency, small motion, spatial coherence

• Handle large motion: 
• iterative update + pyramid search

• Fitting and alignment 
• find the transformation parameters that 

best align matched points

• Object instance recognition 
• Keypoint-based object instance recognition and search



Next week –
Perspective and 3D Geometry


