
Alignment and Object Instance
Recognition

Computer Vision

Jia-Bin Huang, Virginia Tech
Many slides from S. Lazebnik and D. Hoiem

Administrative Stuffs

• HW 2 due 11:59 PM Oct 3rd
• Please start early

• Anonymous feedback
• Lecture

• Lectures going too fast

• Show more examples/code to demonstrate how the algorithms
work

• HW assignments
• List functions that are not allowed to use

• Piazza
• Encourage more students to participate (e.g. answer questions)

• Group the questions into threads

Today’s class

• Review fitting

• Alignment

• Object instance recognition

• Example of alignment-based category recognition

Previous class

• Global optimization / Search for parameters
• Least squares fit

• Robust least squares

• Iterative closest point (ICP)

• Hypothesize and test
• Generalized Hough transform

• RANSAC

Least squares line fitting
•Data: (x1, y1), …, (xn, yn)

•Line equation: yi = m xi + b

•Find (m, b) to minimize

022  yAApA
TT

dp

dE

 

)()()(2

1

1

1
2

2

11

1

2

ApApyApyy

yAp

TTT

nn

n

i ii

y

y

b

m

x

x

y
b

m
xE




































































 



 


n

i ii bxmyE
1

2)(

(xi, yi)

y=mx+b

  yAAApyAApA TTTT 1


Matlab: p = A \ y;

Modified from S. Lazebnik

Least squares line fitting
function [m, b] = lsqfit(x, y)

% y = mx + b

% find line that best predicts y given x

% minimize sum_i (m*x_i + b - y_i).^2

A = [x(:) ones(numel(x), 1)];

b = y(:);

p = A\b;

m = p(1);

b = p(2);

A yp

Total least squares
Find (a, b, c) to minimize the sum of
squared perpendicular distances

 


n

i ii dybxaE
1

2)((xi, yi)

ax+by+c=0

 


n

i ii cybxaE
1

2)(
Unit normal:

N=(a, b)

0)(2
1





 

n

i ii cybxa
c

E
ybxay

n

b
x

n

a
c

n

i i

n

i i    11

ApAp
TT

nn

n

i ii
b

a

yyxx

yyxx

yybxxaE 




























 

2

11

1

2))()((

Solution is eigenvector corresponding to smallest eigenvalue of ATA

See details on Raleigh Quotient: http://en.wikipedia.org/wiki/Rayleigh_quotient

pp

ApAp
 pp ApAp

T

TT
TTT minimize1 s.t.minimize 

Slide modified from S. Lazebnik

http://en.wikipedia.org/wiki/Rayleigh_quotient

Total least squares
function [m, b, err] = total_lsqfit(x, y)

% ax + by + c = 0

% distance to line for (a^2+b^2=1): dist_sq = (ax + by + c).^2

A = [x(:)-mean(x) y(:)-mean(y)];

[v, d] = eig(A'*A);

p = v(:, 1); % eigenvector corr. to smaller eigenvalue

% get a, b, c parameters

a = p(1);

b = p(2);

c = -(a*mean(x)+b*mean(y));

err = (a*x+b*y+c).^2;

% convert to slope-intercept (m, b)

m = -a/b;

b = -c/b; % note: this b is for slope-intercept now

A p

Robust Estimator

1. Initialize: e.g., choose 𝜃 by least squares fit and

2. Choose params to minimize:
• E.g., numerical optimization

3. Compute new

4. Repeat (2) and (3) until convergence

 errormedian5.1 


i i

i

dataerror

dataerror
22

2

),(

),(





 errormedian5.1 

function [m, b] = robust_lsqfit(x, y)

% iterative robust fit y = mx + b

% find line that best predicts y given x

% minimize sum_i (m*x_i + b - y_i).^2

[m, b] = lsqfit(x, y);

p = [m ; b];

err = sqrt((y-p(1)*x-p(2)).^2);

sigma = median(err)*1.5;

for k = 1:7

p = fminunc(@(p)geterr(p,x,y,sigma), p);

err = sqrt((y-p(1)*x-p(2)).^2);

sigma = median(err)*1.5;

end

m = p(1);

b = p(2);

x

y

Hough transform
P.V.C. Hough, Machine Analysis of Bubble Chamber Pictures, Proc. Int. Conf. High

Energy Accelerators and Instrumentation, 1959

Hough space

  siny cosx

 



Use a polar representation for the parameter space

 



Slide from S. Savarese

function [m, b] = houghfit(x, y)

% y = mx + b

% x*cos(theta) + y*sin(theta) = r

% find line that best predicts y given x

% minimize sum_i (m*x_i + b - y_i).^2

thetas = (-pi+pi/50):(pi/100):pi;

costhetas = cos(thetas);

sinthetas = sin(thetas);

minr = 0; stepr = 0.005; maxr = 1;

% count hough votes

counts = zeros(numel(thetas),(maxr-minr)/stepr+1);

for k = 1:numel(x)

r = x(k)*costhetas + y(k)*sinthetas;

% only count parameters within the range of r

inrange = find(r >= minr & r <= maxr);

rnum = round((r(inrange)-minr)/stepr)+1;

ind = sub2ind(size(counts), inrange, rnum);

counts(ind) = counts(ind) + 1;

end

% smooth the bin counts

counts = imfilter(counts,

fspecial('gaussian', 5, 0.75));

% get best theta, rho and show counts

[maxval, maxind] = max(counts(:));

[thetaind, rind] = ind2sub(size(counts),

maxind);

theta = thetas(thetaind);

r = minr + stepr*(rind-1);

% convert to slope-intercept

b = r/sin(theta);

m = -cos(theta)/sin(theta);



RANSAC

14IN
Algorithm:

1. Sample (randomly) the number of points required to fit the model (#=2)
2. Solve for model parameters using samples
3. Score by the fraction of inliers within a preset threshold of the model

Repeat 1-3 until the best model is found with high confidence

function [m, b] = ransacfit(x, y)

% y = mx + b

N = 200;

thresh = 0.03;

bestcount = 0;

for k = 1:N

rp = randperm(numel(x));

tx = x(rp(1:2));

ty = y(rp(1:2));

m = (ty(2)-ty(1)) ./ (tx(2)-tx(1));

b = ty(2)-m*tx(2);

nin = sum(abs(y-m*x-b)<thresh);

if nin > bestcount

bestcount = nin;

inliers = (abs(y - m*x - b) < thresh);

end

end

% total least square fitting on inliers

[m, b] = total_lsqfit(x(inliers), y(inliers));

Line fitting demo

demo_linefit(npts, outliers, noise, method)

• npts: number of points

• outliers: number of outliers

• noise: noise level

• Method
• lsq: least squares
• tlsq: total least squares
• rlsq: robust least squares
• hough: hough transform
• ransac: RANSAC

Which algorithm should I use?

 If we know which points belong to the line, how
do we find the “optimal” line parameters?
Least squares

 What if there are outliers?
Robust fitting, RANSAC

• What if there are many lines?
• Voting methods: RANSAC, Hough transform

Slide credit: S. Lazebnik

Alignment as fitting
• Previous lectures: fitting a model to features in one

image

• Alignment: fitting a model to a transformation
between pairs of features (matches) in two images


i

i Mx),(residual

 
i

ii xxT)),((residual

Find model M that minimizes

Find transformation T

that minimizes

M

xi

T

xi

xi'

What if you want to align but have no prior
matched pairs?

• Hough transform and RANSAC not applicable

• Important applications

Medical imaging: match brain
scans or contours

Robotics: match point clouds

Iterative Closest Points (ICP) Algorithm

Goal: estimate transform between two dense sets of
points

1. Initialize transformation (e.g., compute difference in
means and scale)

2. Assign each point in {Set 1} to its nearest neighbor in
{Set 2}

3. Estimate transformation parameters
• e.g., least squares or robust least squares

4. Transform the points in {Set 1} using estimated
parameters

5. Repeat steps 2-4 until change is very small

Example: solving for translation

A1

A2 A3
B1

B2 B3

Given matched points in {A} and {B}, estimate the translation of the object




























y

x

A

i

A

i

B

i

B

i

t

t

y

x

y

x

A1

A2 A3
B1

B2 B3

Least squares solution




























y

x

A

i

A

i

B

i

B

i

t

t

y

x

y

x

(tx, ty)

1. Write down objective function
2. Derived solution

a) Compute derivative
b) Compute solution

3. Computational solution
a) Write in form Ax=b
b) Solve using pseudo-inverse or eigenvalue

decomposition 




























































A

n

B

n

A

n

B

n

AB

AB

y

x

yy

xx

yy

xx

t

t


11

11

10

01

10

01

Example: solving for translation

A1

A2 A3
B1

B2 B3

RANSAC solution




























y

x

A

i

A

i

B

i

B

i

t

t

y

x

y

x

(tx, ty)

1. Sample a set of matching points (1 pair)
2. Solve for transformation parameters
3. Score parameters with number of inliers
4. Repeat steps 1-3 N times

Problem: outliers

A4

A5

B5

B4

Example: solving for translation

A1

A2 A3
B1

B2 B3

Hough transform solution




























y

x

A

i

A

i

B

i

B

i

t

t

y

x

y

x

(tx, ty)

1. Initialize a grid of parameter values
2. Each matched pair casts a vote for consistent

values
3. Find the parameters with the most votes
4. Solve using least squares with inliers

A4

A5 A6

B4

B5 B6

Problem: outliers, multiple objects, and/or many-to-one matches

Example: solving for translation

(tx, ty)

Problem: no initial guesses for correspondence




























y

x

A

i

A

i

B

i

B

i

t

t

y

x

y

xICP solution
1. Find nearest neighbors for each point
2. Compute transform using matches
3. Move points using transform
4. Repeat steps 1-3 until convergence

Example: solving for translation

1. Extract edge pixels 𝑝1. . 𝑝𝑛 and 𝑞1. . 𝑞𝑚

2. Compute initial transformation (e.g., compute translation and scaling
by center of mass, variance within each image)

3. Get nearest neighbors: for each point 𝑝𝑖 find corresponding
match(i) = argmin

𝑗
𝑑𝑖𝑠𝑡(𝑝𝑖, 𝑞𝑗)

4. Compute transformation T based on matches

5. Warp points p according to T

6. Repeat 3-5 until convergence

Example: aligning boundaries

p
q

Algorithm Summary

• Least Squares Fit
• closed form solution
• robust to noise
• not robust to outliers

• Robust Least Squares
• improves robustness to noise
• requires iterative optimization

• Hough transform
• robust to noise and outliers
• can fit multiple models
• only works for a few parameters (1-4 typically)

• RANSAC
• robust to noise and outliers
• works with a moderate number of parameters (e.g, 1-8)

• Iterative Closest Point (ICP)
• For local alignment only: does not require initial correspondences

Alignment
• Alignment: find parameters of model that maps one

set of points to another

• Typically want to solve for a global transformation
that accounts for most true correspondences

• Difficulties
• Noise (typically 1-3 pixels)

• Outliers (often 30-50%)

• Many-to-one matches or multiple objects

Parametric (global) warping

Transformation T is a coordinate-changing machine:

p’ = T(p)

What does it mean that T is global?
• Is the same for any point p
• can be described by just a few numbers (parameters)

For linear transformations, we can represent T as a matrix

p’ = Tp

T

p = (x,y) p’ = (x’,y’)



















y

x

y

x
T

'

'

Common transformations

translation rotation aspect

affine perspective

original

Transformed

Slide credit (next few slides):
A. Efros and/or S. Seitz

Scaling
• Scaling a coordinate means multiplying each of its components by a

scalar

• Uniform scaling means this scalar is the same for all components:

 2

• Non-uniform scaling: different scalars per component:

Scaling

X  2,
Y  0.5

Scaling

• Scaling operation:

• Or, in matrix form:

byy

axx





'

'



























y

x

b

a

y

x

0

0

'

'

scaling matrix S

2-D Rotation



(x, y)

(x’, y’)

x’ = x cos() - y sin()
y’ = x sin() + y cos()

2-D Rotation

Polar coordinates…
x = r cos (f)
y = r sin (f)
x’ = r cos (f + )
y’ = r sin (f + )

Trig Identity…
x’ = r cos(f) cos() – r sin(f) sin()
y’ = r sin(f) cos() + r cos(f) sin()

Substitute…
x’ = x cos() - y sin()
y’ = x sin() + y cos()

(x, y)

(x’, y’)

f

2-D Rotation
This is easy to capture in matrix form:

Even though sin() and cos() are nonlinear functions of ,
• x’ is a linear combination of x and y

• y’ is a linear combination of x and y

What is the inverse transformation?

• Rotation by –

• For rotation matrices

   

    














 










y

x

y

x





cossin

sincos

'

'

T
RR 1

R

Basic 2D transformations

TranslateRotate

ShearScale



























y

x

y

x

y

x

1

1

'

'



































y

x

y

x

cossin

sincos

'

'



























y

x

s

s

y

x

y

x

0

0

'

'







































1
10

01
y

x

t

t

y

x

y

x







































1

y

x

fed

cba

y

x

Affine

Affine is any combination of
translation, scale, rotation,
shear

Affine Transformations

Affine transformations are combinations of

• Linear transformations, and

• Translations

Properties of affine transformations:

• Lines map to lines

• Parallel lines remain parallel

• Ratios are preserved

• Closed under composition







































1

y

x

fed

cba

y

x



















































11001

'

'

y

x

fed

cba

y

x

or

Projective Transformations












































w

y
x

ihg

fed
cba

w

y
x

'

'
'Projective transformations are combos of

• Affine transformations, and

• Projective warps

Properties of projective transformations:

• Lines map to lines

• Parallel lines do not necessarily remain parallel

• Ratios are not preserved

• Closed under composition

• Models change of basis

• Projective matrix is defined up to a scale (8 DOF)

Projective Transformations (homography)

• The transformation between two views of a planar
surface

• The transformation between images from two
cameras that share the same center

Application: Panorama stitching

Source: Hartley & Zisserman

Application: document scanning

2D image transformations
(reference table)

Object Instance Recognition

1. Match keypoints to object
model

2. Solve for affine
transformation parameters

3. Score by inliers and choose
solutions with score above
threshold

A1

A2

A3

Affine
Parameters

Choose hypothesis with max
score above threshold

Inliers

Matched
keypoints

This Class

Overview of Keypoint Matching

K. Grauman, B. Leibe

N
p

ix
el

s

N pixels

Af

e.g. color

Bf

e.g. color

A1

A2 A3

Tffd BA ),(

1. Find a set of
distinctive key-
points

3. Extract and
normalize the
region content

2. Define a region
around each
keypoint

4. Compute a local
descriptor from the
normalized region

5. Match local
descriptors

Finding the objects (overview)

1. Match interest points from input image to database image

2. Matched points vote for rough position/orientation/scale of
object

3. Find position/orientation/scales that have at least three votes

4. Compute affine registration and matches using iterative least
squares with outlier check

5. Report object if there are at least T matched points

Input
Image Stored

Image

Matching Keypoints
• Want to match keypoints between:

1. Query image

2. Stored image containing the object

• Given descriptor x0, find two nearest neighbors x1, x2
with distances d1, d2

• x1 matches x0 if d1/d2 < 0.8
• This gets rid of 90% false matches, 5% of true matches in

Lowe’s study

Affine Object Model
• Accounts for 3D rotation of a surface under

orthographic projection

Fitting an affine transformation
• Assume we know the correspondences, how do we

get the transformation?
),(ii yx 

),(ii yx








































2

1

43

21

t

t

y

x

mm

mm

y

x

i

i

i

i

tMxx  ii

Want to find M, t to minimize





n

i

ii

1

2|||| tMxx

Fitting an affine transformation

),(ii yx 
),(ii yx








































2

1

43

21

t

t

y

x

mm

mm

y

x

i

i

i

i












































































i

i

ii

ii

y

x

t

t

m

m

m

m

yx

yx

2

1

4

3

2

1

1000

0100

• Assume we know the correspondences, how do we
get the transformation?

Fitting an affine transformation

• Linear system with six unknowns

• Each match gives us two linearly independent
equations: need at least three to solve for the
transformation parameters












































































i

i

ii

ii

y

x

t

t

m

m

m

m

yx

yx

2

1

4

3

2

1

1000

0100

Finding the objects (in detail)
1. Match interest points from input image to database image

2. Get location/scale/orientation using Hough voting

• In training, each point has known position/scale/orientation
wrt whole object

• Matched points vote for the position, scale, and orientation
of the entire object

• Bins for x, y, scale, orientation
• Wide bins (0.25 object length in position, 2x scale, 30 degrees orientation)

• Vote for two closest bin centers in each direction (16 votes total)

3. Geometric verification

• For each bin with at least 3 keypoints

• Iterate between least squares fit and checking for inliers and
outliers

4. Report object if > T inliers (T is typically 3, can be computed to
match some probabilistic threshold)

Examples of recognized objects

View interpolation

• Training
– Given images of different

viewpoints
– Cluster similar viewpoints

using feature matches
– Link features in adjacent

views

• Recognition
– Feature matches may be

spread over several
training viewpoints

 Use the known links to
“transfer votes” to other
viewpoints

Slide credit: David Lowe

[Lowe01]

Applications

• Sony Aibo
(Evolution Robotics)

• SIFT usage
– Recognize

docking station
– Communicate

with visual cards

• Other uses
– Place recognition
– Loop closure in SLAM

K. Grauman, B. Leibe 54
Slide credit: David Lowe

Location Recognition

Slide credit: David Lowe

Training

[Lowe04]

Another application: category
recognition
• Goal: identify what type of object is in the image

• Approach: align to known objects and choose
category with best match

“Shape matching and object recognition using low distortion correspondence”, Berg et
al., CVPR 2005: http://www.cnbc.cmu.edu/cns/papers/berg-cvpr05.pdf

?

http://www.cnbc.cmu.edu/cns/papers/berg-cvpr05.pdf

Summary of algorithm
• Input: query q and exemplar e

• For each: sample edge points and
create “geometric blur” descriptor

• Compute match cost c to match
points in q to each point in e

• Compute deformation cost H that
penalizes change in orientation and
scale for pairs of matched points

• Solve a binary quadratic program to
get correspondence that minimizes c
and H, using thin-plate spline
deformation

• Record total cost for e, repeat for all
exemplars, choose exemplar with
minimum cost

Input, Edge Maps

Geometric Blur

Feature Points

Correspondences

Examples of Matches

Examples of Matches

Other ideas worth being aware of

• Thin-plate splines: combines global affine warp
with smooth local deformation

• Robust non-rigid point matching: A new point
matching algorithm for non-rigid registration, CVIU
2003 (includes code, demo, paper)

http://step.polymtl.ca/~rv101/thinplates/
https://www.cise.ufl.edu/~anand/pdf/rangarajan_cviu_si_final.pdf

Things to remember
• Alignment

• Hough transform

• RANSAC

• ICP

• Object instance recognition
• Find keypoints, compute

descriptors

• Match descriptors

• Vote for / fit affine parameters

• Return object if # inliers > T

What have we learned?
• Interest points

• Find distinct and repeatable points in images
• Harris-> corners, DoG -> blobs
• SIFT -> feature descriptor

• Feature tracking and optical flow
• Find motion of a keypoint/pixel over time
• Lucas-Kanade:

• brightness consistency, small motion, spatial coherence

• Handle large motion:
• iterative update + pyramid search

• Fitting and alignment
• find the transformation parameters that

best align matched points

• Object instance recognition
• Keypoint-based object instance recognition and search

Next week –
Perspective and 3D Geometry

