
Fitting and Alignment

Computer Vision

Jia-Bin Huang, Virginia Tech
Many slides from S. Lazebnik and D. Hoiem

Administrative Stuffs

• Homework grading policy
• Graduate students: graded out of 600 points

• Undergrad students: graded out of 525 points

• For example, grad students need to complete on
average 25 points extra credits.

• HW 1
• Extra credits due 11:59 PM Friday 9/23

• Competition: Edge Detection
• Submission link

• Leaderboard

• Anonymous feedback
• Lectures are too fast, too many slides

https://goo.gl/forms/p5JwKOiyij1VHgie2
https://docs.google.com/spreadsheets/d/1AEr9JUXH3imqWPpjaFiiolEXvpQPMlspbVaM_wnsj58/edit?usp=sharing

Where are we?
• Interest points

• Find distinct and repeatable points in images
• Harris-> corners, DoG -> blobs
• SIFT -> feature descriptor

• Feature tracking and optical flow
• Find motion of a keypoint/pixel over time
• Lucas-Kanade:

• brightness consistency, small motion, spatial coherence

• Handle large motion:
• iterative update + pyramid search

• Fitting and alignment (this class)
• find the transformation parameters that

best align matched points

• Object instance recognition (next class)
• Keypoint-based object instance recognition and search

Review: Harris Corner Detector

• Second moment matrix














)()(

)()(
)(),(

2

2

DyDyx

DyxDx

IDI
III

III
g






4

1. Image
derivatives

2. Square of
derivatives

3. Gaussian
filter g(I)

Ix Iy

Ix
2 Iy

2 IxIy

g(Ix
2) g(Iy

2) g(IxIy)

222222)]()([)]([)()(yxyxyx IgIgIIgIgIg  

])),([trace()],(det[2

DIDIhar 

4. Cornerness function – both eigenvalues are strong

har5. Non-maxima suppression

1 2

1 2

det

trace

M

M

 

 



 

(optionally, blur first)

Review: Find local maxima in position-
scale space of Difference-of-Gaussian

K. Grauman, B. Leibe

)()( yyxx LL 



2

3

4

5

 List of
(x, y, s)

Review: SIFT Descriptor

[Lowe, ICCV 1999]

Histogram of oriented

gradients

• Captures important texture

information

• Robust to small translations /

affine deformations
K. Grauman, B. Leibe

Review: Lucas-Kanade Tracker

Brightness consistency

I(x,y,t) I(x,y,t+1)

),(),,(1,  tvyuxItyxI

tyx IvIuItyxItvyuxI ),,()1,,(
Small motion

0 tyx IvIuI

Spatial coherence

Dealing with larger movements:
Iterative refinement

1. Initialize (x’,y’) = (x,y)

2. Compute (u,v) by

3. Shift window by (u, v): x’=x’+u; y’=y’+v;

4. Recalculate It

5. Repeat steps 2-4 until small change
• Use interpolation for subpixel values

2nd moment matrix for feature

patch in first image displacement

It = I(x’, y’, t+1) - I(x, y, t)

Original (x,y) position

image Iimage J

Gaussian pyramid of image 1 (t) Gaussian pyramid of image 2 (t+1)

image 2image 1

Dealing with larger movements:
coarse-to-fine registration

run iterative L-K

run iterative L-K

upsample

.

.

.

Fitting [ˈfidiNG]:

find the parameters of a model that
best fit the data

Alignment [əˈlīnmənt]:

find the parameters of the
transformation that best align
matched points

Source: K. Grauman

Fitting and alignment
• Choose a parametric model to represent a set of

features

simple model: lines simple model: circles

complicated model: car

complicated model: face shape

Fitting and Alignment -Design challenges

• Design a suitable goodness of fit measure
• Similarity should reflect application goals

• Encode robustness to outliers and noise

• Design an optimization method
• Avoid local optima

• Find best parameters quickly

Fitting and Alignment: Methods

• Global optimization / Search for parameters
• Least squares fit

• Robust least squares

• Iterative closest point (ICP)

• Hypothesize and test
• Generalized Hough transform

• RANSAC

Simple example: Fitting a line

Least squares line fitting
•Data: (x1, y1), …, (xn, yn)

•Line equation: yi = m xi + b

•Find (m, b) to minimize

022  yAApA
TT

dp

dE

 

)()()(2

1

1

1
2

2

11

1

2

ApApyApyy

yAp

TTT

nn

n

i ii

y

y

b

m

x

x

y
b

m
xE




































































 



 


n

i ii bxmyE
1

2)(

(xi, yi)

y=mx+b

  yAAApyAApA TTTT 1


Matlab: p = A \ y;

Modified from S. Lazebnik

Problem with “vertical” least squares
• Not rotation-invariant

• Fails completely for vertical
lines

Slide from S. Lazebnik

Total least squares
If (a2+b2=1) then

Distance between point (xi, yi) and line
ax+by+c=0 is |axi + byi + c|

 


n

i ii dybxaE
1

2)((xi, yi)

ax+by+c=0

Unit normal:
N=(a, b)

Slide modified from S. Lazebnik

proof:
http://mathworld.wolfram.com/Point-
LineDistance2-Dimensional.html

http://mathworld.wolfram.com/Point-LineDistance2-Dimensional.html

Total least squares
If (a2+b2=1) then

Distance between point (xi, yi) and line
ax+by+c=0 is |axi + byi + c|

Find (a, b, c) to minimize the sum of
squared perpendicular distances

 


n

i ii dybxaE
1

2)((xi, yi)

ax+by+c=0

 


n

i ii cybxaE
1

2)(

Unit normal:
N=(a, b)

Slide modified from S. Lazebnik

Total least squares
Find (a, b, c) to minimize the sum of
squared perpendicular distances

 


n

i ii dybxaE
1

2)((xi, yi)

ax+by+c=0

 


n

i ii cybxaE
1

2)(
Unit normal:

N=(a, b)

0)(2
1





 

n

i ii cybxa
c

E
ybxay

n

b
x

n

a
c

n

i i

n

i i    11

ApAp
TT

nn

n

i ii
b

a

yyxx

yyxx

yybxxaE 




























 

2

11

1

2))()((

Solution is eigenvector corresponding to smallest eigenvalue of ATA

See details on Raleigh Quotient: http://en.wikipedia.org/wiki/Rayleigh_quotient

pp

ApAp
 pp ApAp

T

TT
TTT minimize1 s.t.minimize 

Slide modified from S. Lazebnik

http://en.wikipedia.org/wiki/Rayleigh_quotient

Recap: Two Common Optimization Problems

Problem statement Solution

 1 s.t. minimize xxAxAx
TTT

xx

AxAx
T

TT

minimize

0 osolution tlsq trivial-non Ax

1..21 :

)eig(],[

vx

AAv





n

T





Problem statement Solution

bAx  osolution t squaresleast bAx \

2
 minimize bAx    bAAAx TT 1



(matlab)

Least squares (global) optimization

Good

• Clearly specified objective

• Optimization is easy

Bad

• May not be what you want to optimize

• Sensitive to outliers
• Bad matches, extra points

• Doesn’t allow you to get multiple good fits
• Detecting multiple objects, lines, etc.

Robust least squares (to deal with outliers)
General approach:

minimize

ui (xi, θ) – residual of ith point w.r.t. model parameters θ
ρ – robust function with scale parameter σ

   ;,xu ii

i



The robust function ρ
• Favors a configuration

with small residuals

• Constant penalty for large

residuals

 


n

i ii bxmyu
1

22)(

Slide from S. Savarese

Robust Estimator

1. Initialize: e.g., choose 𝜃 by least squares fit and

2. Choose params to minimize:
• E.g., numerical optimization

3. Compute new

4. Repeat (2) and (3) until convergence

 errormedian5.1 


i i

i

dataerror

dataerror
22

2

),(

),(





 errormedian5.1 

Other ways to search for parameters (for
when no closed form solution exists)

• Line search
1. For each parameter, step through values and choose value

that gives best fit
2. Repeat (1) until no parameter changes

• Grid search
1. Propose several sets of parameters, evenly sampled in the

joint set
2. Choose best (or top few) and sample joint parameters around

the current best; repeat

• Gradient descent
1. Provide initial position (e.g., random)
2. Locally search for better parameters by following gradient

Hypothesize and test
1. Propose parameters

• Try all possible

• Each point votes for all consistent parameters

• Repeatedly sample enough points to solve for parameters

2. Score the given parameters
• Number of consistent points, possibly weighted by

distance

3. Choose from among the set of parameters
• Global or local maximum of scores

4. Possibly refine parameters using inliers

Hough Transform: Outline

1. Create a grid of parameter values

2. Each point votes for a set of parameters,
incrementing those values in grid

3. Find maximum or local maxima in grid

x

y

b

m

y = m x + b

Hough transform

Given a set of points, find the curve or line that explains

the data points best

P.V.C. Hough, Machine Analysis of Bubble Chamber Pictures, Proc. Int. Conf. High

Energy Accelerators and Instrumentation, 1959

Hough space

Slide from S. Savarese

x

y

b

m

x

y m
3 5 3 3 2 2

3 7 11 10 4 3

2 3 1 4 5 2

2 1 0 1 3 3

b

Hough transform

Slide from S. Savarese

x

y

Hough transform

Issue : parameter space [m,b] is unbounded…

P.V.C. Hough, Machine Analysis of Bubble Chamber Pictures, Proc. Int. Conf. High

Energy Accelerators and Instrumentation, 1959

Hough space

  siny cosx

 



Use a polar representation for the parameter space

 



Slide from S. Savarese

features votes

Hough transform - experiments

Slide from S. Savarese

features votes

Need to adjust grid size or smooth

Hough transform - experiments

Noisy data

Slide from S. Savarese

Issue: spurious peaks due to uniform noise

features votes

Hough transform - experiments

Slide from S. Savarese

1. Image  Canny

2. Canny  Hough votes

3. Hough votes  Edges

Find peaks and post-process

Hough transform example

http://ostatic.com/files/images/ss_hough.jpg

Hough transform for circles

• For a fixed radius r

• Circle: center (a,b) and radius r
222)()(rbyax ii 

Image space Hough space a

b

Adapted by Devi Parikh from: Kristen Grauman
37

Equation of circle?

Equation of set of
circles that all pass
through a point?

Hough transform for circles

• For a fixed radius r

• Circle: center (a,b) and radius r
222)()(rbyax ii 

Image space Hough space

Intersection:

most votes for

center occur

here.

Kristen Grauman
38

Hough transform for circles

• For an unknown radius r

• Circle: center (a,b) and radius r
222)()(rbyax ii 

Hough spaceImage space

b

a

r

?

Kristen Grauman
39

Hough transform for circles

• For an unknown radius r

• Circle: center (a,b) and radius r
222)()(rbyax ii 

Hough spaceImage space

b

a

r

Kristen Grauman
40

Hough transform for circles

• For an unknown radius r, known gradient direction

• Circle: center (a,b) and radius r
222)()(rbyax ii 

Hough spaceImage space

θ

x

Kristen Grauman
41

Original Edges

Example: detecting circles with Hough

Votes: Penny

Note: a different Hough transform (with separate accumulators)

was used for each circle radius (quarters vs. penny).

42
Slide credit: Kristen Grauman

Original Edges

Example: detecting circles with Hough

Votes: QuarterCombined detections

Coin finding sample images from: Vivek Kwatra

43
Slide credit: Kristen Grauman

Generalized Hough for object
detection
• Instead of indexing displacements by gradient

orientation, index by matched local patterns.

B. Leibe, A. Leonardis, and B. Schiele, Combined Object Categorization and

Segmentation with an Implicit Shape Model, ECCV Workshop on Statistical

Learning in Computer Vision 2004

training image

“visual codeword” with

displacement vectors

Source: L. Lazebnik
44

http://www.pascal-network.org/challenges/VOC/pubs/leibe04.pdf

• Instead of indexing displacements by gradient
orientation, index by “visual codeword”

B. Leibe, A. Leonardis, and B. Schiele, Combined Object Categorization and

Segmentation with an Implicit Shape Model, ECCV Workshop on Statistical

Learning in Computer Vision 2004

test image

Source: L. Lazebnik
45

Generalized Hough for object
detection

http://www.pascal-network.org/challenges/VOC/pubs/leibe04.pdf

Hough transform conclusions
Good
• Robust to outliers: each point votes separately

• Fairly efficient (much faster than trying all sets of parameters)

• Provides multiple good fits

Bad
• Some sensitivity to noise

• Bin size trades off between noise tolerance, precision, and speed/memory
• Can be hard to find sweet spot

• Not suitable for more than a few parameters
• grid size grows exponentially

Common applications
• Line fitting (also circles, ellipses, etc.)

• Object instance recognition (parameters are position/scale/orientation)

• Object category recognition (parameters are position/scale)

RANSAC

Algorithm:

1. Sample (randomly) the number of points required to fit the model
2. Solve for model parameters using samples
3. Score by the fraction of inliers within a preset threshold of the model

Repeat 1-3 until the best model is found with high confidence

Fischler & Bolles in ‘81.

(RANdom SAmple Consensus) :

RANSAC

Algorithm:

1. Sample (randomly) the number of points required to fit the model (#=2)
2. Solve for model parameters using samples
3. Score by the fraction of inliers within a preset threshold of the model

Repeat 1-3 until the best model is found with high confidence

Illustration by Savarese

Line fitting example

RANSAC

Algorithm:

1. Sample (randomly) the number of points required to fit the model (#=2)
2. Solve for model parameters using samples
3. Score by the fraction of inliers within a preset threshold of the model

Repeat 1-3 until the best model is found with high confidence

Line fitting example



RANSAC

6IN

Algorithm:

1. Sample (randomly) the number of points required to fit the model (#=2)
2. Solve for model parameters using samples
3. Score by the fraction of inliers within a preset threshold of the model

Repeat 1-3 until the best model is found with high confidence

Line fitting example



RANSAC

14IN
Algorithm:

1. Sample (randomly) the number of points required to fit the model (#=2)
2. Solve for model parameters using samples
3. Score by the fraction of inliers within a preset threshold of the model

Repeat 1-3 until the best model is found with high confidence

How to choose parameters?
• Number of samples N

• Choose N so that, with probability p, at least one random sample is free
from outliers (e.g. p=0.99) (outlier ratio: e)

• Number of sampled points s
• Minimum number needed to fit the model

• Distance threshold 
• Choose  so that a good point with noise is likely (e.g., prob=0.95) within threshold

• Zero-mean Gaussian noise with std. dev. σ: t2=3.84σ2

    s
e11log/p1logN 

proportion of outliers e

s 5% 10% 20% 25% 30% 40% 50%

2 2 3 5 6 7 11 17

3 3 4 7 9 11 19 35

4 3 5 9 13 17 34 72

5 4 6 12 17 26 57 146

6 4 7 16 24 37 97 293

7 4 8 20 33 54 163 588

8 5 9 26 44 78 272 1177

modified from M. Pollefeys

RANSAC conclusions
Good
• Robust to outliers

• Applicable for larger number of objective function parameters
than Hough transform

• Optimization parameters are easier to choose than Hough
transform

Bad
• Computational time grows quickly with fraction of outliers and

number of parameters

• Not as good for getting multiple fits (though one solution is to
remove inliers after each fit and repeat)

Common applications
• Computing a homography (e.g., image stitching)

• Estimating fundamental matrix (relating two views)

RANSAC Song

What if you want to align but have no prior
matched pairs?

• Hough transform and RANSAC not applicable

• Important applications

Medical imaging: match brain
scans or contours

Robotics: match point clouds

Iterative Closest Points (ICP) Algorithm

Goal: estimate transform between two dense sets of
points

1. Initialize transformation (e.g., compute difference in
means and scale)

2. Assign each point in {Set 1} to its nearest neighbor in
{Set 2}

3. Estimate transformation parameters
• e.g., least squares or robust least squares

4. Transform the points in {Set 1} using estimated
parameters

5. Repeat steps 2-4 until change is very small

Example: solving for translation

A1

A2 A3
B1

B2 B3

Given matched points in {A} and {B}, estimate the translation of the object




























y

x

A

i

A

i

B

i

B

i

t

t

y

x

y

x

A1

A2 A3
B1

B2 B3

Least squares solution




























y

x

A

i

A

i

B

i

B

i

t

t

y

x

y

x

(tx, ty)

1. Write down objective function
2. Derived solution

a) Compute derivative
b) Compute solution

3. Computational solution
a) Write in form Ax=b
b) Solve using pseudo-inverse or eigenvalue

decomposition 




























































A

n

B

n

A

n

B

n

AB

AB

y

x

yy

xx

yy

xx

t

t


11

11

10

01

10

01

Example: solving for translation

A1

A2 A3
B1

B2 B3

RANSAC solution




























y

x

A

i

A

i

B

i

B

i

t

t

y

x

y

x

(tx, ty)

1. Sample a set of matching points (1 pair)
2. Solve for transformation parameters
3. Score parameters with number of inliers
4. Repeat steps 1-3 N times

Problem: outliers

A4

A5

B5

B4

Example: solving for translation

A1

A2 A3
B1

B2 B3

Hough transform solution




























y

x

A

i

A

i

B

i

B

i

t

t

y

x

y

x

(tx, ty)

1. Initialize a grid of parameter values
2. Each matched pair casts a vote for consistent

values
3. Find the parameters with the most votes
4. Solve using least squares with inliers

A4

A5 A6

B4

B5 B6

Problem: outliers, multiple objects, and/or many-to-one matches

Example: solving for translation

(tx, ty)

Problem: no initial guesses for correspondence




























y

x

A

i

A

i

B

i

B

i

t

t

y

x

y

xICP solution
1. Find nearest neighbors for each point
2. Compute transform using matches
3. Move points using transform
4. Repeat steps 1-3 until convergence

Example: solving for translation

HW 2 – Feature tracker

• Keypoint detection
• Compute second moment matrix

• Harris corner criterion

• Threshold

• Non-maximum suppression

• Tracking
• Kanade-Lucas-Tomasi tracking

• Show keypoint trajectories

• Show points have moved out of
frames

HW 2 – Shape Alignment

• Global transformation (similarity, affine, perspective)

• Iterative closest point algorithm

HW 2 – Local Feature Matching

• Express location of the
detected object

• Implement ratio test
feature matching
algorithm

Things to remember

• Least Squares Fit
• closed form solution
• robust to noise
• not robust to outliers

• Robust Least Squares
• improves robustness to noise
• requires iterative optimization

• Hough transform
• robust to noise and outliers
• can fit multiple models
• only works for a few parameters (1-4 typically)

• RANSAC
• robust to noise and outliers
• works with a moderate number of parameters (e.g, 1-8)

• Iterative Closest Point (ICP)
• For local alignment only: does not require initial correspondences

Next week

• Object instance recognition

